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Mouvement dans un environnement plan par morceaux

Olivier FAUGERAS and Francis LUSTMAN
INRIA
Domaine de Voluceau-Rocquencourt BP 105 - 78153 Le Chesnay Cedex

Résumé

Nous montrons, dans cet article, que le fait que I’environnement soit plan par morceaux
induit une contrainte importante sur les appariements pouvant &tre faits entre deux images
d’une scéne, avec un déplacement inconnu de la caméra. Pour des points ou des droites se
trouvant dans un méme plan, la transformation entre les deux images est une homographie.
Nous montrons que I'on peut déterminer explicitement les inconnues (le mouvement de la caméra
et 'équation du plan) & partir de la matrice de cette homographie. I existe en général deux
solutions, et cette ambiguité résiduelle peut &tre levée en prenant une troisiéme vue du méme
plan, en regardant un second plan, ou bien en utilisant une connaissance a priori de la géométrie
du plan observé. Nous montrons comment combiner I’estimation de la matrice de Phomographie
et Pobtention des appariements (de points ou de droites) entre les deux images, en utilisant une
stratégie de prédiction et vérification d’hypothéses, guidée par un filire de Kalman. Nous
montrons enfin comment cette approche peut servir i la calibration d’un systéme de caméras.

Motion and Structure from Motion in a piecewise planar environment

Abstract

We show in this article that the fact that the environment is piecewise linear provides a
powerful constraint on the kind of matches that exist between two images of the scene when the
camera motion is unknown. For points and lines located in the same plane, the correspondence
between the two cameras is a collineation. We show that the unknowns (the camera motion
and the plane equation) can be recovered, in general, from an estimate of the matrix of this
collineation. The twofold ambiguity that remains can be removed by looking at a second plane,
by taking a third view of the same plane, or by using a priori knowledge about the geometry
of the plane being looked at. We then show how to combine the estimation of the matrix of
collineation and the obtaining of point and line matches between the two images, by a strategy
of Hypothesis Prediction and Testing guided by a Kalman Filter. We finally show how our
approach can be used to calibrate a system of cameras.
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1 Introduction

In solving the motion problem, one has to answer the following questions:’
e which tokens can be computed from the images.
e which constraints can be used to match them between frames.

e how can the motions of objects in the scene and the structure of the scene be robustly
recovered from the token matches.

A potentially useful constraint is exemplified by the idea of limiting the geometric complexity
of the scenes and assuming that the kinds of surfaces which are present are a priori limited. For
example, we could assume that they are well approximated by second degree surfaces, i.e. quadrics.
Even though this might be an interesting line of approach for a number of industrial scenes, it is
appealing to consider first an even simpler case in which the assumption is that surfaces present in
the scene are planes. This is quite acceptable for many practical applications of a mobile vehicle
in an urban or building environment where streets, walls, ceilings, and floors are fairly common.

This idea has already been exploited in a number of contexts. Assuming that the stereo problem
has been solved, Saint-Vincent (1] searches for vertical planes in 3D data obtained from stereo.
Thonnat [2] searches for planes from 3D data, first using a blind generation of hypotheses and then
a phase of classification by an “expert system”. For these two authors, the planarity constraint is
not used to help solve the stereo matching problem but is used after, to perform piecewise linear
approximation on the resulting 3D data. Lorette and Gandaire [3], on the other hand, explicitely
proposed to use the planarity constraint as a guide to determine whether two shapes can be the
perspective images of the same planar shape but did not relate that to motion.

The case of the motion problem, and more precisely the optical flow based approach to that
problem, has been studied in great detail by Waxman and Ullmann (4], Subbarao and Waxman (5],
Tziritas [6], and Maybank {7]. The main result is that the motion is ambiguous, i.e. that the
measurements yield several interpretations of the motion of a planar patch.

For the token matching approach of the same problem, we refer to the very interesting work
of the german school, among which Josef Krames [8]. More recently, Tsai and Huang [9] have
studied in detail the motion of a planar patch when snapshots are taken at discrete time instants
and tokens have been matched between these snapshots. Again, the main result is that the solutjon
is not unique. Longuet-Higgins [10] shows nevertheless that the solution is unique if not all the
observed points are closer to one camera than to the other.

Our work extends that of Tsai and Huang in a number of directions. Like all the previous
authors, we assume that, in the motion case, only one motion is present ; in our case, even though
it is not essential in the mathematical proofs, we assume for simplicity that the camera is moving
in an otherwise static environment. We make full use of the fundamental property that if two
cameras are forming the image of a plane, then the correspondence -between the two retinas has
a very simple analytical form : it is a collineation, i.e. it is linear in projective coordinates. This
implies in particular that, because of the fundamental duality property of projective geometry,
points and lines play exactly the same role as tokens. We characterize (like Tsai and Huang)
the relationship between this collineation and the geometry of the problem. We then prove (in
a somewhat simpler way than Tsal and Huang) that, given the matrix of the collineation, the
positions and orientations of the second camera and the plane with respect to the first one can be
recovered. We analyze in detail the number of solutions and provide a geometric interpretation of
the degenerate cases.



We then study under which conditions the ambiguity of the solutions can be removed : we
show that this can be done by looking at another plane or by using a third snapshot of the same
plane. We also discuss the problem of estimating the matrix of the collineation from point and
line matches and study the stability of the motion and structure parameters computed from this
matrix,

We then present an algorithm for obtaining those matches by a technique of Hypothesis Pre-
diction and Testing which makes full use of the analytical correspondence between the two retinas
and recursively estimates the matrix of the collineation by Kalman filtering (this is the automation
of the matching process). Results are presented on real images.

A slightly more detailed version can be found in (11].

2 Fundamental Theorem

Figure 1 illustrates the geometr)" of the problem. Two cameras are forming the images of a plane.
The position and orientation of the second camera with respect to the first one is defined by the
rotation matrix R and the translation vector ¢. The plane is defined by its normal n and its distance

d to the origin.
The coordinate system that we use is the one which can be canonically attached to a camera. It

is defined, as shown in figure 2, as a coordinate system in which the projection of a point M (X,Y,2)
is the point m(z, y) determined by the relations:

X/z=Y/y=2 (1)

It can be shown that such an image coordinate system can be derived from the real image coordinate
system (in pixels) by an affine transformation. The basic assumption is that the camera performs
a perfect perspective transformation with respect to point C (the camera optic center) at a unit
distance from the camera plane. A camera calibration process, described in [12], enables us to
compute this perspective transformation from 3D coordinates to 2D image coordinates in pixels.
We are thus able to derive an affine transformation of the 2D image coordinates such that the
perspective transformation is expressed by equations (1).

As we show next, the correspondence between the images is an homography. Moreover, deter-
mining this homography allows us to explicitly compute the physical parameters :

e the normal n to the plane.
e the rotation R.

e the ratio 5 of the translation to the distance of the plane.

We now show the following :

Proposition 1 Let M be a point of a plane P, the equation of P being n- X1 = d to the origin in
the canonical coordinate system of the first camera. The projections my and my of M on the two
retinas are related by a collineation, or homography, depending only on the relative positions of the
two retinas and of the plane.

a1 a12 axs
mz=Amy = | az a3 a3 |my (2)
a3z} asz ass



Figure 1: Geometry of the problem.

Figure 2: Perspective transformation



Moreover, the matriz A is related to the geometric parameters of the problem by the relgtion :
A=dR +tn' - (3)

Proof: The coordinates X and X; of M in the two canonical coordinate systems of the cameras
are, by definition, related by :
Xo=RX, +t (4)

If M belongs to P, defined by its normal n and its distance o in the canonical coordinate system
of the first camera, then :
’ ﬂ'X]_:'—‘aXl-f-bYl-i-ch:d (5)
n is oriented so that it points towards the first camera : ¢ <0.
Equations (5) and (4) yield : '

tt
X) = (R + —Z-)Xl

As, through equation (1), X1 and X, are the projective coordinates. of m) and mgy, the result is
proved. O

Notice that (2) is a projective equality, true up to a multiplicative factor. 4 depends only upon
eight independent coefficients, corresponding to the cight geometric unknowns of the problem, i.e.
the three rotation parameters, the three coordinates of t/d, and the two parameters describing the
orientation of the plane.

3 Using lirzs

3.1 Affine and Projective geometries

In planar projective geometry, a point m is described by three coordinates X, Y, Z, not all equal
to zero and defined up to a scale factor (ie. XX, XY, AZ, A # 0, represents the same point).
When we try to relate projective and affine geometries, one of the projective coordinates has ta
play a special role. If, as it is usually assumed, it is the third coordinate Z, points such that Z — 0
are affine points at infinity. Projectively, they are just the same as any other points. The affine
coordinates of a projective point not at infinity ‘can be computed by equations (1).

The equation of a projective line is n'm = 0 where n is a 3 x 1 nonzero vector (a,b,c), therefore:

n‘m:aX-r-bY-}-cZ

The affine equation is obtained by dividing by Z {again points at infinity play a special role in the
affine case which they do not projectively):

ar+by~c=90

Just like a projective point is described by threc cocudinates not all equal to zero, a projective
line is also described by three coordinates not all equal to zero. This is the principle of duality of
projective geometry, an extremely powerful tool for sclving many geometric problems [13].



3.2 Matching lines

Matching points or lines between the two images is in fact the same, which is not surprising since,
as we just showed, points and lines are dual.
Let, indeed, be D; a line on the first retina : nim; = 0 and let D; the corresponding line on

the second retina nim; =0

Proposition 2 If we form, in two retinas, the images of lines belonging to the same 3D plane, the
lines having normals ny and n,y in the image, then :

n = Atﬂz (6)
Proof : The equation of the first line is nim; =0 and the equation of the second line nimy =0,
q 1 2

Since mp = Amy, we have nAm, = 0, or (A'n;)tm; = 0, which proves that n = Aln,. O

Equation 6 is similar to equation (2), and can be exploited using the same methods.

4 Solving the decomposition problem

We show how to solve equation (3).

Proposition 3 Equation (3) hkas, in general, 8 different solutions. It has only 4 iff A has a
singular value of multiplicity 2. The problem is partially undetermined iff A has a singular value
of multiplicity 3.

Proof :
Using the singular value decomposition (SVD), 4 can always be decomposed as : 4 = U AV,

4 being a diagonal matrix, and U and V orthogonal matrices (satisfying UtU = ViV = I). The
elements of 4 are the square roots of the eigenvalues of AA?. These eigenvalues d; are positive and
can be sorted in decreasing order : di > dy > ds

Using this decomposition, we obtain the new equation :

A=d'R' +t'n" . (7)

R, t and n being related to R', t' and n' by :

R =sUR'V?

t=U¢

n=Vn' (8)
d=sd' '

| s=detUdetV

Notice that R' is a rotation (i.e. RR! =1 and det RB' = 1).
Using the canonical basis (e1, ez, e3) and writing n' = zje; + z5ep + T3es, equation (7) gives us
three vector equations : '

d;e; = d'R'e; +t'z; for i = 1,2,3 (9)

Notice that, since n has a unit norm and V is orthogonal, n' has also a unit norm : >3, z} = 1.

Eliminating ¢' finally yields :

d'R'(z e; - zie;) = d;zje; — d;zie; for i # j (10)

6



As R’ preserves the vector norm, we obtain the following set of equations :°

(d? ~dj)a} + (47 - d})23 = 0
(d — df)z} + (d” — df)z% = O (11)
(d? - d})af+ (d% - df)zl =0 :

This can be considered as a linear system in the unknowns z}, £ and zZ. As it must have a
non-zero solution, its determinant must be zero :
(d ~ df)(d? - df)(d* - d}) =0
We therefore obtain different cases, according to the order of multiplicity of the singular values
of A:
1. d, # dy # d3 and then d' = +d,.

34

dl = dg # d3 or d1 # dz = d3, and d' = idz.
For this case, we.consider only the case di = d3, the case d2 = ds being symmetrical.

3. d1=d2 =d3 andd’::}:dz
The solutions &' = £d; or d' = £d; are indeed impossible; let us prove it in case 1, for example,
Assuming d' = dy, the equations (11) yield :
zy =0 and (d% — d2)zi + (& - d3)zE =0
As d; > dy > dg, this implies z; = z3 = 0, which is-impossible because n' has a unit norm.
If di # ds, we can express ), 3 and z3 using equations (11) and remembering that n’ has a
unit norm : :

I, = 0 e1, 63 = £1 - (12)
d2 - d2

g = €3
dl - d3

Let us now study in detail the three cases. The study is divided into two parts, depending on
the sign of d' . '

o Cased >0:

1. Refering to equations (9), we obtain : R'e; = e;. R' is, then, a rotation of axis e;. We
can compute the matrix R as :

cosf 0O -—sind
0 1 0
sin 0 cos#f

Using equations (10) and (12), we find :

2 2 2 2
. _ _ 13 _ \/(dl - d3)(dz - d}
sin = (d d3)72—3- = €183 (di + d3)d; (13)

- d12§+d3$2 . d2+d1d3
et = TR T @Tdd

7




Substituting these values into equations (9) yields :

t' = (d; - d3) 01 (14)

—ZI3

2. In this case, we obtain z; = 7, = 0 and z3 = +1.
We then get :

R =1 ,
t = (d3 - dl)n'

3. 71, 23 and z3 are undefined and the equations (10) and (9) provide us :

In this case, the motion is a pure rotation and the normal remains undefined.

* The same methods allow us to deal with the case d' < 0:

1. The equations (9) yield R'e; = —e2, which implies that R' is a symmetry (i.e. a rotation
of angle ), with respect to an axis v perpendicular to ey, i.e. in the plane (e1,e3). Let
©/2 be the angle between ¢; and v.

The rotation R’ can be written as :

cosp 0 sing
0 -1 0
sing 0 —cosp

with : \/
2 — d?)(d? - d?)
. dy + d (di - d})(d% - d}
sin = —lT—i = ge&
! ne y T - &) (15)
cosp = d3z? — dz} _ _didz—dj S
l dy (d1 - ds)ds
Substituting these values into equations (9) yields :
I
t = (dl + d3) 0 (16)
z3
2. We have, once more, z; = T3 =0 and z3 = +1.
R’ is therefore a symmetry with respect to e3 :
-1 0 0
R = 0 -1 0
0 0 1
t = (dg - dl)n’
3. The equations (7) imply that R'z = —z for all vectors z in the plane orthogonal to n'.
R' is therefore a symmetry with respect to the axis n’. Therefore, R' = —~ I + 2n'n"t and,

according to equation (7), ¢ = ~2d'n’.

8
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Since we have a priori no way of knowing the sign of d', we have a total of eight solutions
when the singular values are distinct, four solutions when two singular values are equal, and an
indetermination when the three are equal. But, among these eight solutions to the problem, only
two are possible if we go back to the physical interpretation of the results.

Proposition 4 The observed points being seen by the two cameras the decomposition problem has
n fact only 2 physical solutions in the general case, and 1 solution when there is a double singular
value.

Proof : Let M be a point in the plane, visible by the two cameras, and Z; and Z9 its z-coordinates
in the canonical coordinate systems of figure 1. The constraint of visibility by the two cameras
enforces Z; > 0 and Z; > 0. Combining equations (1) and (2) we obtain aX; = AX; for some real
number a. Using equations (4 and (3), we then obtain o = d , so that

Z2 _ aniz1 +azay1 + as3

- 0
Z d >

Zy and Z; keep a constant sign when M varies in the plane, and d is ¢onstant, so ag; z; +a32y1+ass
also keeps a constant sign when M varies in the plane. The knowledge of one point therefore
determines the sign of d. As d = sd' and since s is determined by A, we have only four solutions,
depending on the sign of d'.

The corresponding solutions for the normal n are n;, —n,, ns and —n, (see equations 12). X,
belong to the plane so that n*X; = d. Using equations (1), writing Z; > O therefore yields :

n‘ml

0
d >

which leaves only two solutions among the four. O

The previous result comes from writing the visibility constraint for one point. What happens if
we write it for all the observed points ? Longuet-Higgins [10] shows the very interesting following
property :

Proposition 5 If not all the observed points are closer to one of the optical center than to the
other, then only one solution satisfies the visibility conditions for all points.

To summarize the process, the knowledge of A gives eight solutions. Writing the visibility
constraint for one point leaves two solutions. If the points are not all closer to one of the cameras
than to the other, writing the visibility constraint leaves only one solution.

Notice, finally, the duality, found by Waxman and Ullmann [4] or Subbarao and Waxman 5] in
the case of optic flow, between the translation and the normal in the SVD coordinate system : in
this coordinate system, the normal and the translation play symmetrical roles and share the same
directions. If d' is positive, for instance, the two solutions (n'y,t'1) and (n'2,¢';) are related by :

{t'z = (dy - d3)n'y

!

ﬂ'z = alt— a3



&

.

Figure 3: An example of double degeneracy.

Figure 4: An example of triple degeneracy.
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5 The degenerate cases

Let us now study the degenerate cases, i.e. the cases when there are singular values with an order
of multiplicity greater than 1.

Proposition 6 A has 2 equal singular values iff t A Rn = O, which means that the translation is
normal to the plane, as shown in figure 3.

A has 3 equal singular values iff either the translation is zero, t.e. in the case of pure rotation,
ort = —2Rn, t.e. a transparent plane is observed from the two opposite sides and at the same

distance, as in figure 4.

Proof :

¢ Double singular value : the singular values are the square roots of the eigenvalues of AA®.
We have A4'z = d®z + (t-z)t + d(Rn-z)t +d(t- z)Rn. Ift = ARn, it is clear that the plane
orthogonal to ¢ is a plane of eigenvectors of AA!. for the eigenvalue d®.

Reciprocally, if there is a double singular value, we have already proved that :

—ifd >0, R'=1TI and t' = £(ds — d;) n’, so that the equations (8) yield :
= Ivt [ ) ! — S .
Rn sUR Vn mvt ml—t
— ifd' <0, R'e3 = e3 and ¢' = (d; + d3) n’, so that the same equations as above show the
result.
e Triple singular value :

If &' is positive, we have shown ' = 0, and therefore ¢t = 0.
Reciprocally, if ¢t = O then A = dR and AA! = 421 and all the singular values are equal to d.

If d' is negative, we have shown that ' = —2d'n' and that R'n' = n'. It follows that
t=Ut = -2dUR'n' = -2sdUR'V'n = —2dRn.
Reciprocally, if t = —2dRn, then A = dR - 2dRnn' = dR(I — 2nn') and A'A = d?].

6 Solving the ambiguity problem

In the case where two solutions remain, what can we do to choose the right solution.
In the absence of a priori informations to guide our choice, we can think of three ways to

proceed :
e look at a second plane.
¢ use a third image.

o use known geometric relationships between tokens in the plane, for example that two lines
are orthogonal.

11



In the first two cases, we obtain two pairs of solutions (51,52) and (51,53), and we must thep
find a compatible pair (S;, S5}), i.e. find a common plane equation if we look at a single plane from
three positions, or find a common motion if we look at two planes from two posttions. In general,
there is only one compatible pair, and the problem therefore has a unique solution.

In the third case, let (n1,n}) and (ny,n}) be two pairs of corresponding lines between twg
images, given by their equations. Let R; and R, the two solutions for the rotation. The direction
of the reconstructed lines for a rotation R is n; A R'n) and n; A R'nj. If we know the angle
between these two vectors, checking this angle for R = R, and R = R, will, in general, give the
right solution.

7 Estimating the transformation matrix

Matrix A is estimated by matching points or lines between the two images. In order to fully
determine a planar projective transformation, we need at least four projectively independent points,
Le. such that any three of them are not aligned. In fact, in the process of finding planes we match
a large number of points and lines and because of measurement errors and matching errors they do
not always correspond to actual coplanar points or lines. Therefore we use mean square techniques.
Using equations (2) to match points mi(z1,y1) and my(z,, y2) yields the two equations :

211Z1 + @Y + Q13 — @31 72Ty — A32T2y) — asgTy = 0 (17)
@21T1 + a2:y1 + @23 — as1Y2 Ty — A32y2y1 — azzys = 0

For each pair of matched points between the two images, we obtain two such equations.

As A is defined up to a scale factor, we must impose a constraint over the coefficients. A simple
condition is az3 = 1.

We thus obtain a linear system in eight unknowns a;; (excluding as3), and we can solve these
equations, using mean square techniques or Kalman filtering, as described in the appendix. This
yields matrix A, from which the motion parameters and the plane equation can be deduced. The
advantage of using the Kalman filter is that A can be estimated recursively (see section 9) while
taking into account pixei uncertainty.

Using equations 6, a similar technique can be applied to line.

8 Conditioning of the problem
If we are to use this method with real data, we must study its sensitivity to noise.

® sensitivity of the estimation of 4 in presence of noisy pixel data.

© sensitivity of the estimation of the physical parameters from A4 when 4 is noisy.

8.1 Estimation of 4

Little is to be said about that part of the problem : the estimation of A implies the inversion of
an 8x8 matrix (if we use a simple least-squares technique). The problem is thus conditioned by
the proximity of a singularity of this matrix, which is regular iff the points used are projectively
independent. Therefore, the less triplets of points are aligned and the more distant the points are
from each other, the better the problem will be conditioned.

12
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Figure 5: Variation of the stability of the resolution on a noisy matrix 4 as a function of the
direction of translation : the two peaks correspond to the normal to the plane.

8.2 Estimation of the physical parameters from 4

The main step in estimating the physical parameters from A is the singular value decomposition.
The SVD is quite stable with respect to perturbations, as is demonstrated by two classic theorems on
the stability of singular elements with respect to perturbations, that can be found, mathematically
stated, in [14]. We prefer to give only their english interpretation.

The first theorem states that singular values are stable under a perturbation in the sense that
a variation of € of the coefficients of A induces an equivalent variation of the singular values.

The second theorem states that this same variation of ¢ of the coefficients of A induces a
variation /8 of the singular subspaces, § measuring the isolation of the singular values.

It follows from the previous theorems that the problem will be all the more stable as we will
be far from the degenerate configurations, i.e. :

e translation orthogonal to the plane

e no translation.

This property has been checked experimentally on synthetic data, in a typical case when we
suppose that we are looking at a frontal plane, with the camera rotating 30 degrees around a
vertical axis, and translating horizontally. A uniform noise is added to A, and figure 5 shows the
error on the angle of rotation as a function of the direction of the translation in the horizontal
plane : we can notice two peaks, corresponding to the direction of the normal to the plane. '

9 Finding structure and motion by prediction and verification

We now have all the tools for explaining the world in terms of planes. The method that we propose
" is inspired from the one used in [15,16,17] and has two main steps :

e Hypothesis formation : find n geometric primitives, points or lines, in image 1 and image
2 and suppose they are the images of n coplanar primitives. In order to estimate A, we
need n > 4, with at least four primitives projectively independent. Notice that any four
pairs of primitives provide a solution, and only the way the different hypotheses propagate
discriminates the right hypotheses from the wrong.

13



e Hypothesis verification : we can then use the knowledge of matrix A as a constraint to find
further matches. Indeed, if m, (resp.n;) is a point (resp. line) in the first image which is the
image of a point (resp. line) in the same plane as the first n geometric primitives matched
so far, then there exists in general a point m, (resp. line ny) in the second image such that
my = Am, (resp. ny = A'ny). Knowing A allows us to restrict considerably the number of
potential matches of m; (resp. n;), and in turn each further match can be used to refine the
estimation of A recursively using the Kalman filtering technique, described in the appendix,
and therefore the estimation of the physical parameters. The criterion used for matching is
the Mahalanobis distance between a predicted point and a potential matching point, which is
an euclidean distance weighted by the covariances both on the measurement of image points
and on the transformation A.

If no match can be found, then this means that the current hypothesis is not correct and
another one must be tried.

Notice that, in the general case, the problem is simplified when the observed scene contains
several planar surfaces and we have found one : we now know the motion between the two positions
of the camera, so that we fall in the case of Stereovision rather than pure Motion. We therefore can
use the epipolar constraint to simplify the initial correspondance problem in the following way :
matching one pair of lines between the two images can provide two pairs of matching points, by
taking two points on the line in the first image and matching them with the intersections of the
line in the second image and the epipolar lines of the two points. It is of no use to take more than
two points since three aligned points are not projectively independent.

Updating the world model

Since our goal is to establish a 3D description of the environment in which a mobile vehicle moves,
two key problems are to obtain explicit information about the uncertainty in the world model used
by the robot and to be able to update this information by combining a large number of measures
from different sensors. These ideas are fully developed in [18,19].

In accordance with this approach, the updating of matrix 4, is madec through the use of a
Kalman filter : using an estimate of the desired parameters along with the covariance matrix of
those elements, we can obtain a new estimate with its covariance matrix. We are thus able to
relate the uncertainty of the world model to the pixel uncertainty, and to incorporate any previous
information on the value or the precision of a parameter via the initial estimate.

The possibility to incorporate a priori information is of great value for finding a strategy of
image analysis : commonsense knowledge about the world can be used to guide the system and
help it converge more rapidly. Since we know, for example, that horizontal planes such as a floor
and a ceiling are likely to be found in the image, at a known height, why not first look for them,
refining at the same time the estimation of the motion parameters? The initial estimates may
also be the result of previous computations, the motion parameters being approximately known
through proprioceptive sensors or bcause a plane has already been detected during the analysis of
the last pair of images.

Let us be a little more specific about using a priori knowledge, on an example : if we want to
specify that the axis of rotation u is vertical , then we will give an a priori value of the rotation
meeting that condition u = (001), and we want to specify that the x and y coordinates must
remain small. It follows from that requirement that the covariance matrix on the axis of rotation

14



Figure 6: The knowledge of A4 allows to discriminate the points belonging to the planes.
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‘will be ;

E 0 o
Svert = 0 ¢ O
0 0 K

where ¢ < K. Using equation (3), we can derive a covariance matrix on A from the covariance
matrices on the physical parameters (by linearizing to the first order), and this covariance matrix
will contain the information on the verticality of the axis, thus inhibiting the variation of the
horizontal coordinates of the axis.

Similarly, information concerning the normal or the translation can be injected in the Kalman
filter.

10 Results

The first thing to check is that we can discriminate the points lying in a plane from all the other
points. Figure 6 shows two photographs of a scene containing two main vertical planes. It then
shows the superpositions of predicted segments on the second image, in the two cases of prop-
agation : in both cases, we can see that the superposition is very good for the segments of the
corresponding plane, and bad for the other segments.

Let us now show that the main structures of the environment can be found. The figure 7 shows
the photographs of a corridor, and the three planes that are found (the floor and the two walls) :
the crosses at the endpoints of the segments show the matched segments. .

Finally, we have considered a stereo pair of the calibration grid : we therefore know accurately
the relative position of the cameras, so that we can compare it to the motion obtained by matching
corresponding segments. We show in figure 8 the two images used and the superposition of the
transformed first image onto the second image, as well as the (very accurate) numerical results.
The right solution is obviously the second one.

11 Calibration

We have also used the previous approach to calibrate our camera system. The calibration process
can be decomposed into two steps :

® estimation of the intrinsic parameters of each camera : we assume this has already been done
and refer the reader to [12].

¢ estimation of the extrinsic parameters, i.e. the relative positions of the cameras. This can
be easily done by looking at a planar rectangular grid of known size (see figure 9), using our
paradigm. The points at the intersection of the horizontal and vertical lines are extracted
from the images of the grid, and are then matched between the images. We thus obtain two
solutions for .each pair of cameras. We can find the right solution, either by using the three
cameras if we are calibrating a trinocular system, or by using the knowledge we have about
the angles of the edges on the grid. The scaling factor is then recovered using the knowledge
of the absolute size of the grid.

This provides a fairly easy way to calibrate a camera system and thus obtain the epipolar
geometry. It has, moreover, proved to be very accurate, and has been successfully used in stereo
experiments.



Figure 7: In these images of a corridor, we were able to find the main structures (segments ended

by crosses). 47
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Two solutions of motion from planarity

angle of rotation in degrees axis of rotation direction of translation | normal to the plane
2.977515 0.332 -0.023 0.943 | 0.007 0.017 -0.143 | 0.404 -0.913
9.773 0.864 0.348 0.365 | 0.082 0.032 -0.996 | 0.065 -0.127
Motion from calibration
Angle of rotation in degrees : 9.705

Axis of rotation :

0.865 0.338 0.369

Translation : -22.732 47.577 7.384

Figure 8: Comparison with calibration results.

Figure 9: the calibration grid and the trinocular system
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12 Conclusion

We have shown, in this article, how an hypothesis on the kinds of structure present in the environ-

ment can be used to constrain the matching process in Motion analysis. We have pushed the idea

of a piecewise planar environment quite far using ideas from projective geometry and combining

them with nonlinear filtering techniques and strategies for testing and verifying hypotheses.
This approach may perhaps be extended to other types of surfaces, like quadrics.

A Kalman filter equations

We use the Kalman filter as a general tool for computer vision problems. The interested reader is
referred to [20] for a general and detailed presentation of the Kalman filter, and to [19] for some

applications. A
Let us summarize what is useful for our application.

A.l The problem

We are confronted with the estimation of an unknown parameter a € IR" given a set of k non
necessarily linear equations of the form

f,-(a:,-,a) =0 (18)

where z; € IR™ and f; is a function from IR™ x [R" into IR?. The vector z; represents some random
parameters of the function f; in the sense that we only measure an estimate z; of them, such that

z; = I + vy (19)

where v; is a random error. The only assumption we make on v; is that its mean is zero, its
covariance is known, and that it is a white noise

Elv;Jj=0
E[v,-vf] =A;2>0
E[v;v}) =0 Vi# J

These assumptions are reasonable. If the estimator is biased, it is possible to substract its mean
to get an unbiased one. If we do not know the covariance of the error (or some other confidence
measure on it), the estimator is meaningless. If two measurements %; and Z; are correlated, we
take the concatenation of them 2, = (Z:,%;) and the concatenated vector function fe = [fE, i
The problem is to find the optimal estimate & of a given the functions f; and the measurements z;.

A.2 Linearizing the equations

The most powerful tools developed in parameter estimation are for linear systems. Before using
complicated nonlinear optimization techniques, it is worthwile to try applying the linear tools to a
linearized version of our equations. This is the Extended Kalman Filtering approach that we now

develop.
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For each nonlinear equation fi(zi,a) = 0 we need to know an estimate @;_; of the solution a,
and again a measure S; of the confidence we have in this estimate!. We assume that &;_, is given

by
A,y =a+w; (20)

where w; is a random error. The only assumptions we make on w; are the same as for v, Le.

E[w,- wf] =5;>0

where S; is a given positive matrix. Here again, no assumption of gaussianness is required.
Having an estimate 4;_; of the solution, the equations are linearized by a first order Taylor
expansion around (%;,a,_) :

8}
oz

filzia) = 0= fi(2:,8,_,) + (zi ~ %) + 3 (a-a; ) (21)
where the derivatives 8’7,-/67, and ﬁ/aa are estimated at (%;,d,_,) :
Equation 21 can be rewritten as :

Y = M;a + u; (22)
where -
n af; .
Y = ft(zi,ai—l) + % a;—
_ 9%
. ' da
87,

Equation 22 is now a linear measurement equation, where y; is the new measurement, M; is the
linear transformation, v; is the random measurement error. Both y; and M; are readily computed
from the actual measurement Z;, the estimate @;_; of a, the function fi and its first derivative.

The second-order statistics of u; are derived easily from those of v;

E[ui] =0
— —t
A n_9fi, 0f;
w. & ull = 24y 2
¢ = Blu] oz A Oz

A.3 Recursive Kalman Filter

When no gaussianness is assumed on the previous random errors u;, v; and w;, the Kalman Filter
equations provide the best (minimum variance) linear unbiased estimate of a. This means that
among the estimators which seek &, as a linear combination of the measurements {y;}, it is the
one which minimizes the expected error norm,

‘In practice, we shall see that only an initial estimate (&,, S,) of a is required prior to the first measurement %,,
while the next ones (4, Si) are provided automatically by the Kalman filter itself.

20



while verifying
’ E[ak] =a

The recursive equations of the Kalman Filter which provide a new estimate (&;, S;) of a from
(@i-y,S;-1) are the following ones [20]:

a; = ai-1 + Ki(yi — Midi-1) (23)
Ki = Sioya M{(W; + M;S;_ Mf) ™! (24)
S;=(I - KiM;)S;_y (25)
or equivalently
STt =857+ MW M; (26)

One can see that the previously estimated parameter @,_; is corrected by an amount propor-
tional to the current error y; — M;é;_; called the inovation. The proportionality factor, K, is
called the Kalman gain. At the end of the process, d; is the final estimate and S represents the
covariance of the estimation error :

Sk = E|(ak - a)(ax - a)*]

The recursive process is initialized by ag, an initial estimate of a, and Sy, its error covariance
matrix. Actually, the criterion minimized by the final estimate a; is :

k
C = (a- o) S5 *(a— ao) Z ~ Ma)! Wy — Mia) (27)

It is interesting to note that the first term of equation 27 measures the squared distance of a
from an initial estimate, weighted by its covariance matrix, while the second term is nothing else
than the classical least-square criterion, i.e. the sum of the squared measurement errors weighted
by their covariance matrices. Indeed, intializing the process with an arbitrary do and S;' = 0,
criterion 27 provides the classical least-square estimate d; obtained from the measurements only,
while the initial estimate does not play any role.

The enormous advantage of such a recursive solution, is that if we decide, after a set of k
measurements {z;}, to stop the measures, we only have to keep a; and S; as the whole memory
of the measurement process. If we decide later to take into account additional measurements, we
simply have to initialize @g = a; and Sy = S, and to process the new measurements to obtain
exactly the same solution as if we had processed all the measurements together.

A.4 Gaussian assumption

Up to now, we did not introduce any gaussian assumption on the random measurement errors
v; = z; — Z; of equation 19 and on the prior estimate error wo = a — dg of equation 20. However,
in practice, these errors usually come from a sum of independent random processes, which tend
toward a gaussian process (Central Limit theorem). If we actually identify v; and wg with gaussian
processes, l.e.

vy = N(O,A,‘)

wo = N(O,So)



then, it follows that the noise u; in equation 22 is also gaussian, i.e. u; = N(0,W;) and that all the
successive estimates provided by the recursive Kalman filter are also gaussian :

ar = N(a, S)

Moreover, in this case, the Kalman flter provides the best (minimum variance) unbiased es-
timate &, among all, even nonlinear, filters. This estimate a, is also the maximum likelihood
estimator of a. This comes from the fact that in the gaussian case, the solution is the condi-
tional mean G; = Ela/y,, ..., Y| which both minimizes the variance and maximizes the likelihood
while being expressed as a linear combination of the measurements y;. Therefore in this case, the
minimum variance and minimum variance linear estimates are the same, namely the estimate 4
provided by the Kalman filter [20].

In conclusion, in the gaussian case, the Kalman filter provides the best estimate with the
advantage of preserving gaussianness of all the implied random variables, which means that no
information on the probability density functions of the parameters is lost while keeping only their
mean and covariance matrix.

A.5 Rejecting Outlier Measurements

At iteration ¢, we have an estimate 4;-; and an attached covariance matrix S;~1 for parameter
a. We also have a noisy measurement (%, Ai) of z; and we want to test the plausibility of this
mesurement with respect to the equation f; (zs,a) = 0.

If we consider again a first order expansion of fi(z:,a) around (;,4d;-,) (equation 21), consider-
ing that (%; —z;) and (&,_, —a) are independent centered gaussian processes, we see that fi(%,8:-1)
is also (up to linear approximation) a centered gaussian process whose mean and covariance are
given by:

E(fi(%:,8,.1)] =0

—— - ¢

=t
. - 9f; ,0fi  8fi, dFf,
= B fi(Z:,8i- ) fi(2;, 8,4V = =Li ,. TS, Glie CJs
Qt E[ft(xt)al—l)ft(zt)al—l)] 3z At 9z + da t—1 da
Therefore, if the rank of Q; is q, the generalized Mahalanobis distance :
d(2;,8,_1) = i@ a1 ) Q7 Y fi( &4, 2y)] (28)

has a x? distribution with g degrees of freedom 2.

Looking at a y? distribution table, it is therefore possible to reject an outlier measurement z,
at a 95 % confidence rate by setting an appropriate threshold ¢ on the Mahalanobis distance, and
by keeping only those measurements z; which verify: :

(&, 8-1) < € (29)
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