N

N

Proving process calculi translations in ecrins:The
pureLOTOS -> MEIJE example

Guillaume Doumenc, Eric Madelaine, Robert de Simone

» To cite this version:

Guillaume Doumenc, Eric Madelaine, Robert de Simone. Proving process calculi translations in
ecrins :The pureLOTOS -> MEIJE example. [Research Report] RR-1192, INRIA. 1990. inria-
00075367

HAL Id: inria-00075367
https://inria.hal.science/inria-00075367
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075367
https://hal.archives-ouvertes.fr

1192

NO

Programme 1

Programma

ique

Calcul Symboli

ligence

tion

Artificielle

et Intel

PROVING PROCESS CALCULI

TRANSLATIONS IN ECRINS
THE PURELOTOS

---> MEILJE

&)
=
. MMN
= s =O
= 552 S
e MMS o)
= . S A 2
> E= . =
552
=
—
=«

e B ¥ > A e ARSI L SEr MR TN s SN 3 T/ T ST WA D LT L SRR

e

Proving process calculi translations in ECRINS
The PureLOTOS — MEIJE example.

Preuves de traductions entre calculs de processus dans
ECRINS :
L’exemple PureLOTOS — MEIJE.

Guillaume Doumenc !

Eric Madelaine
Robert De Simone

LN.R.ILA.
Route des Lucioles, Sophia Antipolis
06 565 VALBONNE Cedex (FRANCE)

gdo@mirsa.inria.fr
madelain@mirsa.inria.fr
rs@Qcma.cma.fr

Résumé Le systéme ECRINS permet la manipulation symbolique dans les algébres de
processus. Un calcul de processus est defini par la donnée de la syntaxe et des régles de
comportement opérationnelles de ses opérateurs. De cette définition, le systéme déduit un
algorithme d’évaluation des comportements des termes de I’algébre. Cet algorithme est
symbolique, c’est & dire qu’il permet de traiter des expressions comportant des variables
libres de processus; les comportements de telles expressions sont décrits par un ensemble
de regles conditionnelles. Le systéme permet également de prouver la validité de lois
équationnelles entre expressions d’une algébre de processus. L’équivalence utilisée est la
bisimulation forte. Ce type de preuve est utilisé aussi pour vérifier la validité de traductions
d'un calcul de processus dans un autre. Nous donnons l’exemple d’une traduction d’un
sous-ensemble de LOTOS dans MEIJE-SCCS, et donnons quelques fragments de la preuve
de sa validité.

Abstract The ECRINS system is a tool for symbolic manipulation in process algebras.
A process calculus is defined by the syntax and the conditional behaviour rules of its opera-
tors. From such a definition, the system builds an algorithm for evaluating the behaviours
of the algebra terms. This computation is symbolic, and it can manage expressions with
free process variables: the behaviours of such expressions are described by conditional op-
erational rules. Another activity of ECRINS is the proof of equational laws w.r.t. strong
bisimulation. Such proofs are used for proving correct intercalculi translations. We give
the example of a translation from a subset of the LOTOS language into the MEIJE-SCCS
algebra, with some pieces of the validity proof.

First author’s contribution was carried out as part of a thesis at the IBM Centre Etudes et Recherches
in La Gaude (FRANCE).

Proving process calculi translations in ECRINS :
The PureLOTOS — MEIJE example.

Guillaume Doumenc
Eric Madelaine
Robert De Simone

ILN.R.IA.
Route des Lucioles, Sophia Antipolis
06 565 VALBONNE Cedex (FRANCE)

gdo@mirsa.inria.fr
madelain@mirsa.inria.fr
rs@cma.cma.fr

1 Introduction.

Process calculi theory was started as a mean to provide strong syntactic and semantic
foundations to the study of parallelism and concurrent communication systems. This made
it possible to design tools which would directly work on the semantical apparatus (here
Plotkin’s Structured Operational Semantics rules) as first-class objects. Such tool would
use the algebraic structure of terms to conduct activities running from plain behaviours
evaluation, to checking of process expressions equivalences of some sort, and ultimately to
different calculi comparisons via embeddings and translations correctness proofs.

We present here the ECRINS software system, which is a first attempt at defining such
a tool. We examplify its functional use by running an automatic proof of a human-defined
translation from- a pure version of the LOTOS language into the MEIJE algebra. Here
pure means without variables and value-passing. MEIJE is a language which owes most of
its operators to CCS, and in addition incorporate the latter SCCS simultaneity product,
with an asynchronous parallel mechanism [Bo85). The validity proof is structural: each
operator of PureLOTOS is proved to be in strong bisimulation with its corresponding
MEUE expression.

2 Process calculi.

Process algebras

Process calculi are now a well-accepted generic notion for designing a class of formalisms
which share the same definitional principles : CCS [Mi80}, SCCS [Mi83], MEIJE [Bo85],
TCSP [Br83], ACP [BK85], PureLOTOS [Ai86] to name a few. We shall assume reader’s
acquaintance with at least one of these languages and its definitional mechanisms.
Process calculi are based on two main types : actions and processes. Operators take
actions and processes arguments into processes, providing an classical algebraic structure.

Operational semantics provides interpretation of closed terms into transitions systems,
with actions as transition labels. Operators and non-closed expressions are then inter-
Preted as transition system transformers; this semantics is defined through a specific class
of Plotkin’s style “Structural Operational Semantics” conditional rewrite rules [P181]. We
shall describe further this class while presenting ECRINS in the next section; see also
[DSis5].

Special operators are action renamings and recursive definitions. They are present in
all process calculi, and as such are treated generally by ECRINS.

Actions

In all process algebras existing so far, actions are themselves structured. This structure
is what allows for synchronization and further communication to be handled in relevant
operators rules. Just recall the inverse signals in CCS, which meets in synchronization and
produce a hidden action 7. In addition in SCCS and MEIJE there is a full commutative
monoid of potential simultaneous actions, again containing a group of invertible signals.
Actions structure in ACP is more loose and parametric, while in PureLOTOS it is only a
set of so-called gate names without structure, but for a distinguished termination action
d.

Some operators in these process algebras have a neat scoping role with respect to ac-
tions encapsulation (restriction in CCS, SCCS, MEIJE, ACP and hiding in ACP, PureLO-
TOS). As ECRINS will deal in full generality with calculi described only by abstract ac-
ceptable rules for operators, this scoping function will need be made explicit with the
further construct :

local <action> in <process expression>

This construct resembles formally the A-abstraction of A-calculus : not only is the action
name declared to be local to the given expression, but also instanciation of any process
variable appearing in it will lead to a-conversion to avoid name clash.

3 Ecrins

ECRINS is a manipulation system for process calculi, process calculi semantics and process
calculi expressions. It can be split in three main parts : Compiling a calculus description to
get a parser for terms. evaluating the behaviours of expressions and proving bisimulation
equivalences.

3.1 Compiling and Parsing

A process calculus must be described in a calculus description file. This file is to be anal-
ysed by the calculus compiler. Then terms of the calculus can be parse and manipulated
by EcriNs. The calculus description file contains the syntactic definition of the calcu-
lus operators; the calculus compiler uses this part to produce a scanner and a parser for
expressions of the calculus.

@ parse x = local signal s in (p[s!/a] // q[s?/al)\s!;
x : Process of meije

In addition one has to provide semantics for such operators, using a specific svntax
for structural operational rules. This allowed syntax is describe below. Theses rules in

themselves are the main object manipulated inside ECRINS. They are parsed and analysed
for coherency at this level.

We now sketch the allowed syntax formats using examples. Full documentation will
be found in [MaDSiVe89)] and is recalled shortly below.

operator hiding:: Process Label --> Process
syntax
\\ left 4
semantics
hiding Pp--a-->p’ & (a equal s)
P\s -- tau --> p’\\s
hiding-not
P --a=-=>p’ & not (a equal s)
P\s -- a -=> p’\\s
end

The first line declares the name and the signature of the operator. Then follows the
concrete syntax description. along with associativity and priority declarations aimed at the
parser generator. The end right upper part of the rules (eg. (a equal s)) is a predicate
over actions conditioning the applicability of the rule. The plain format of the structural
conditional rules will be explain below.

operator ticking :: Action Process --> Process
syntax
* right 3
semantics
ticking p--a-->p’
S*p == a.s --> s*p’
end

operator disable :: Process Process --> Process
syntax
[> left 4
Semantics
disabling_1 P -~ a -->p’ & not(a equal d)
pl>q -- a --> p'[>q
disabling_2 p--a-->p’& (aequal d)
pl>q --d --> p’
disabling_3 q--a-->gq°
pl>q -- a --> ¢’
end

A set of one-step evaluation tactics —basically: “Try and apply this rule!”~ is compiled
from such description. This set may then be used inside a small ML-inspired tactical
language (see [MaDSiVeR9)), or through a standard strategy that is enougth for the trans-
lation problem in this paper.

The allowed Conditional Rewrite Rules format

The rules must obey the following format :

Uj }
{zj — 2ilgcpn & P({u;}z.a1,....am)

: . F({u'}\fnal’"-vam)
Op(l'l,..-gxn,\al..-qam) d - T,({l'l;}[]“n]_‘j, {Q?Ik}j,hl,...,am)

where we call:
¢ premisses the upper part of the rule and conclusion its bottom part.

o subject the term at the left end part of the conclusion. The head operator Op of the
subject has process arguments r,...,&, and action parameters a, . ..y Gm,. Inside
P, F and T’ some other actions may appear: they are constants of the calculus and
had to be declared as such previously.

e formal hypothesis the part of the premisses on the left of the & and working formal
variables the z; with j € 7.

e actions predicate the part of the premisses on the right of the &. P belongs to
boolean operators closure of the following basic predicates : equality, divisibility, set
membership.. over actions terms with synchronization product.

o resulting action the label over the arrow of the conclusion. The resulting action F is
a function of the formal hypotheses actions (and of the operator action parameters).

o resulting process the right end part of the conclusion. The process arguments that
appear as formal hypothesis must be transformed as 2 in the resulting process:
you are not allowed to test a potential future behaviour of a process without mak-
ing it explicitly perform its action within the considered rule, therefore saving the
possibility of choosing another future.

3.2 Evaluation

The ECRINS evaluator manipulates tactics inherited from the rules and piles them up
in deduction trees to produce one-step behaviours of terms. The basic predicates are
transition capabilities of subprocesses of the form e 2 €’ ; they induce the possible shapes
of the trees according to the head operator of e. Then another kind of predicates, this time
defining imperative relation to hold in between actions performed by subterms, reduce the
domain of validity of this composed subtree. In case no actions whatsoever would fulfill
this condition, the subtree should ideally be trimmed out. We shall come back to how
ECRINS deals with such predicates further below. But for now we elaborate more about
tactics, tacticals and to how to build candidate behaviour trees.

We shall not give an exhaustive list of tacticals used in ECRINS and rather prompt the
reader to [MaDSiVe89]. Under certains assumptions on the expression to be evaluated, the
most obvious being that there is no unbounded recursive creations of new parallel process,
the set of behaviours (or specification) is finite. It may then be obtained safely with
simple recourse to the aforementioned A/l tactic. This is the most usual case, specially in
inter-calculi translations. It is the default option of ECRINS.

@ parse x=a:stop+(b:stop//c:stop);
X : Process of meije;

@show eval x;
Specif of: a:stop+(b:stop//c:stop)
--a--> stop
--b--> stop//c:stop
--c--> b:stop//stop
--b.c--> stop//stop
Specif of meije

We now turn to predicates upon actions and their inter-relations. Forcing actions
performed by the subcomponents and the global expression altogether to keep a certain
relation amounts to synchronizing, in a very broad sense. Only certain combinations of
actions are allowed. others are discarded. An obvious problem which raises is how to find
whenever none is still allowed.

In general, as the possible behaviours of any subexpression may itself be a predi-
cate —and this goes down to eventual process variable at the leaves of the expression-,
predicates act as predicates transformers. Then one encounters problems of decidability
and efficiency. These predicates could be treated either formally in logical framework,
or by taking advantage of the underlying interpretations: either in the finite group case
of CCS. or finite monoid case of PureLOTOS, or again in the commutative monoid of

SCCS-MEIJE.

ECRINS provides for this three alternative predicate modes of evaluation:

o In logic mode, no resolution whatsoever is attempted. The predicates then appeared
as formal parts of the specification hypothesis. This mode could be wired to a logical
interpreter some days. It has not been yet.

Specif of: ((p:stop)\\s)
{p}{not (s divide u_p)} --u_p--> stop\\s
{p}{(s divide u_p)} --tau--> stop\\s

: Specif of tcsp

e In Boolean Enumeration Array mode (BEA in short) all predicates are interpreted in
a world of simple actions, without simultaneity product. The action world contains
invertible signals denoted as s! and s? respectively, noninvertible actions denoted
simply a. The hidden unobservable action is usually named 7, but can be redeclared
as wished in the calculus description file (eg. i in PureLOTOS).

The enumeration (the support of predicate interpretation) is made finite: we only
consider the actions occurring in the expression, plus a finite number of extra signals
and actions named ezt;, for other possible actions of the process variables in the
expression.

@ parse x= local atom t in ((p[t/al // {t} // qlt/p1\\t);
X : Process of tcsp

Q@ show eval x with sort {p, q} is signals none;
Specif of: local atom t in (p[t/a] //{t}//q[t/b])\\t
{q, p}{#<Cea u_p |a
u.q Ib
res |i>}
=-i=-> local atom t in (x_p[t/a] //{t}//x_q[t/b])\\t
{p}{#<Cea u_p 1i b ext_1 ext_2
res |i b ext_1 ext_2>}
“"u_p=-> local atom t in (x_p[t/a] //{t}//q[t/b])\\t
{q}{#<Cea u.q |i a ext_1 ext_2
res |i a ext_1 ext_2>}
~-u.q--> local atom t in (p[t/a] //{t}//x_q[t/b])\\t
: Specif of tesp

o In Composed Enumeration Array mode (CEA) all predicates are interpreted in a
world of compound actions, safe for the process variables. which are supposed to
perform only atomic actions. Otherwise it resembles strongly the BEA mode, just
with the addition of a simultaneity product in the resulting behaviours. In the case
of finite specifications ~where the All tactic suffices—. the complexity of resulting
actions can be shown to be bounded.

@ parse x= ((a! * p) // (a? * q)) \ a!;
X : Process of meije
@ show eval x with sort {p,q} 1is signals none atoms any;
Specif of: (a!*p//a7?+q)\a!
{q, p}{#<Cea | up u.g res
| tau tau tau
| tau ext_1 ext_1
I tau ext_2 ext_2
| ext_1 tau ext_1
| ext_1 ext_1 ext_1-2
| ext_1 ext_2 ext_1l.ext_2
| ext_2 tau ext_2
| ext_2 ext_1 ext_1.ext_2
| ext_2 ext_2 ext_2"2>}
--res-->
(al*x_p//a?*x_q)\a! : Specif of meije

Even though the syntax of the predicates (see [MaDSiVe89]) was designed explicitly to
represent the equivalent of rational sets in the commutative monoid of SCCS-MELJE (also
called semi-linear sets), this model was not implemented in ECRINS vet. All relevant
problems (intersection, equality, complementation) would there be decidable, using linear

homogeneous diophantine equations techniques ([GS64]), but with exponential complexity.

3.2.1 Bisimulation proving

ECRINS proves bisimulation in between open terms owing to the definitions of [DSi83]:

An equivalence relation R over open process expressions is a strong FH-bisimulation
iff:
Vp, g such that p R ¢,

Vr € Specif(p) such that r= ;ir;fi
3s C Specif(q), s = {st}r, s = Jqp—req%
- Gk

such that: T = J Ve, (P q)ER & Pred C \J, Predy

This means that each rule of one specif must correspond to one or more rules of
the other specif. with same working free variables, equivalent resulting processes and a
predicate “covered™ by the union of the predicates of the corresponding rules.

As usual with bisimulations, the union of all FH-bisimulations is a FH-bisimulation.
This largest FH-bisimulation is included in the largest bisimulation: completeness is not
guaranteed, but differences are limited to some rare specific cases (see [DSi83]).

The user provides for a given relation (finite set of terms pairs) which is candidate
for being a bisimulation. Actually we consider the substitutive. reflexive and symmetric
closure of it. We do not close it by transitivity for decidability reasons. The system does
not attempt to add more couple to this relation, not even interactively. This could be
improved in the future. The system answer could be either a Isbisim. a Fail “don’t know”
or a Notisbisim answer. Cases of negative answer raise when two terms are found in a

[

couple such as one enjoys a rule with a provably non-empty predicate while there is no
rule of the other term running on the same process variables, see [MaDSiVes9]

@ parse el = p+p == p;
el : Formula of meije

@ show prove el;
I-- Isbisim {"p+p == p"} : Theorem of meije

@ parse e2 = {p+stop == p, p+q == g+p, (p+q)+r == p+(q+r),
p//stop == p, p//q == q//p, (p//Q//x == p//(q//T),
stop[phi] == stop, (u:p)[phi] == u<phi>:p[phi],
a*stop == stop, a*b*p == (a.b)*p, tau*p == p,
ax(b:p) == (a.b):axp};

€2 : Formula of meije

Q@ prove e2;
: Theorem of meije

Q@ parse e3 = p//q == q;
e3 : Formula of meije

@ show prove e3;
Formula Disproved.
I-- Notisbisim {"p//q == q"} : Theorem of meije

For the time being, ECRINS treats only strong bisimulation. Research is ongoing to-
wards observational bisimulation checking and abstract criteria (following [Bo85]). Several
step evaluation have to be dealt with by incorporating resulting terms pairs in the relation.

4 Translation.

A lot of process calculi have been defined, but the translation between them was rarely
done ([Hen82], [Mill87]. [DSi85]). We present here an algebraic approach to (syntactic)
translation of process calculi, and define the semantical validation of a simple translation.
In algebraic structures, a translation is an homomorphism from source algebra to target
algebra, defined inductively on operators.

4.1 Validity.

Informally, a translation will be said valid for a given equivalence ~ iff semantics of the
source program and its target translation coincide. Here validity will depend on finding
an acceptable backward semantic abstraction T’ such that the meaning of the translated
program corresponds by 7' to another semantic object, equivalent by ~ to the meaning
of the original program. This can be represented by the commutation diagram :

vieS, T : Sw—T,
¢ syntactic t_rinslation T T(t)
! | | J
[t]S - T'(:IT(t)]T) semantic abstraction T [T(t)ﬁT

In our process calculi framework, the semantic meaning is defined by transition systems
for closed terms and transition systems transformers for expressions. In the simple case
where the source algebra of actions can be projected into a subset of the target algebra,
the semantic abstraction can be the identity on these transition systems transformers.
Moreover, we shall use here only strong bisimulation equivalences

Formally we say that a simple translation between process calculi 7 is valid (for the
strong bisimulation) ~ iff :

Vi, t ~ T(1)

4.2 Compositionality.

As we define the translation structurally on operators, we then prove the validity directly
on each operator’s case. The equivalence used must be a congruence to allow the induction
principle: it is the case for the strong bisimulation.

Given :

1. © as the set of source operators and Op € © an operator of arity I,
2. pi as the vector of process variables of the operator Op,

3. T(p;) as the translation of the process variable vector Pi. It is a process variable vec-
tor too. Under the formal hypothesis, its elements must behave as source variables,
i.e. are allowed to perform only source action (recall we assume here that source
actions form a subset of target actions). In the sequel, we will note them simply p;
with a slight abuse of notation.

then the translation 7 will be valid (for the l:=};) iff :

YOp € O, ¥p;, [Op(5})] l;_f{ [T(Op)(pi)]

5 A translation from PureLOTOS to MEIJE

We will show how we can prove the validity of a simple translation by EcrINs. We
will define a syntactic translation from PureLOTOS to MEIJE and prove its validity
for 1-%1:1 This validation will be done by proving that the relation defined by the pairs

< Op,T(Op) > is a bisimulation.

5.1 The translation

The calculus PLotosMeije is the union of the calculus MEIJE (zero, prefix, ticking, parallel,
restriction, trigger. renaming, sum, see [Bo83] or [DSi85]) and PureLOTOS (stop, exit,
hiding, rdv, disable, enable, choice, see [Ai86)), which is the pure synchronization kernel
of LOTOS. A PureLOTOS action is an atom whose label is the corresponding LOTOS
gate name.

10

We have already given in section 3.1 the description of the operators ticking (MEIJE),
hiding and disable (PureLOTOS). A full definition of the union calculus PLotosMeije can
be found in [DMSS].

R. de Simone [DSi85] has proposed a constructive algorithm to translate a new operator
in MEIIE, we have used here a similar construction pattern:

1.

(1]

5.2

Exit : exit & d:stop

The constant atomic action d represents the termination action § of LOTOS.

. Hiding : hide g in p L pli/g).

We rename a gate into the internal action to hide it.

. Rendez-vous : p|{g}lq L local signals a, b in

{(al* p[bl.g/g]/[a'* [b!/g]//let rec {h = a? : h + a?7.b77 : h} in h)\a'\b!\c!}.
We control the two processes by sending only one occurrence of signal a? and then

force them to work independently. For the common gate g, we observe it with the
signal b! and send b? only by pairs to force them to work together.

. Enabling : p >> ¢ += local signals {a, b, ¢} in

(alxple!/d]/[b'=> q/[let tec {h = a?: h+ a?.c?: b7 : h} in h)\a!\b'\c!.
We block the process ¢ by the signal b!, which will be emitted only when p will

terminates. The termination of p is observed through the signal ¢!.

Notice we used here as safe the MEIJE renaming of the terminating d PureLOTOS
gate signal.

Disabling : p[>¢ L local signals {a, b, c} in
(al* plcl.d/d])/ /b => ¢/ let rec {l = b? : stop +a? : | + a%.c? : h} and {h = a?:
h +a%.c? : h} in 1)\a!\b'\¢!

We have to distinguish here three behaviours: p performs an action, p terminates
and ¢ performs an action. The last two behaviours are driven respectively by the
local signals 4! and ¢! :

(a) if p terminates, then the clock ! became the new clock A which blocks the
process g,

(b) if ¢ performs an action the clock ! will stop and then block p.

. Choice : p[lq =z P+q.

Validation proof.

The validation proof is based on strong FH-bisimulation between the source operator and
the target translation. The PureLOTOS variables do not perform any product of actions,
so we can consider the CEA mode, to resolve the predicates associated to the specifications.

We cannot give here the whole validation, but we describe two interesting cases : hiding
and disable. A complete validation proof can be found in [DM8S].

11

Q@ parse t_hiding = p[i / al;
t_hiding : Process of plotosmeije

@ parse r = {t_hiding == p \\ a};
r : Relation of plotosmeije

@ show prove r1;
Evaluation of left-hand-side gives :
Specif of: t_hiding
{p¥{#<Cea u_p li a ext_1
res [i i ext_1>}
--res--> x_pl[i/a]

Evaluation of right-hand-side gives :
Specif of: p\\a
{p}{#<Cea u_p la
res |i>}
~-res--> x_p\\a
{p}{#<Cea u_p |li ext_1
res |i ext_1>}
--res--> x_p\\a

Proof Succeeds
CEA |-- Isbisim {"t_hiding == (p\\a)"}
: Theorem of plotosmeije

For the disabling case. we need to add new pairs to the initial relation; it is not as
such a bisimulation. The new pairs are lemmas about the second or third step behaviours
of the translated expression. They have been found needed during previous attempts of
the proof, and have to be added by hand to the relation. The ECRINS system provides
functions to extract the desired modified expressions after one or more evaluation so that
yourwverneedtotypesuchtemnsbyhand(SeetheuseofnextninthefbHo“dngexanqﬂeL

@ t_disabling = local signals {a, b, ¢} in

plotosmeije> (a! * pL ct.d /d] /// bt =>q ///
plotosmeije> let rec {1 = b?:stop + a?:1 + a?.c?:h and
plotosmeije> h = a?:h + a?.c?:h} in 1)
plotosmeije> \a! \b! \c!;

t_disabling : Process of plotosmeije

@ set s = eval t_disabling;
s: Specif of plotosmeije

Q set t.disabling2 = nextn(2, s); set t_disabling3 = nextn(3, s);
t_disabling2 : Process of plotosmeije
t_disabling3 : Process of plotosmeije

12

@ parse r = {t_disabling == p [> q, t_disabling2 == x_p,
t_disabling3 == x_q};
r : Relation of plotosmeije

@ show prove r;

Evaluation of left-hand-side gives :
Specif of: t_disabling
{p}{#<Cea u_p |i ext_1 ext_2
res |1 ext_1 ext_2>}
--res--> :
local signals {a , b, ¢} in
(((Cat*x_plc!.d/d]l ///vt=>q)///
let rec {1 = (b7:stop+a?:1)+a?.c?:h
and h = a?:h+a?.c?:h} in 1)

\a)\b!)\c!
{p}{#<Cea u_p ld
res |d>}
--res-->

local signals {a , b, c} in
((((at*x_plct.d/d] /1/v'=>q)///
let rec {1 = (b?:stop+a?:1)+a?.c?:h
and h = a?:h+a?.c?:h} in h)
\a)\bH\c!
{q}{#<Cea u_q 1i d ext_1 ext_2
res |i d ext_1 ext_2>}
--res-=-> local signals {a , b , ¢} in

(((Cat*plct.da/d] ///x_q)///stop)\a!)\b!)\c!

Evaluation of right-hand-side gives :
Specif of: pl>q
{pH{#<Cea u_p i ext_1 ext_2
res |i ext_1 ext_2>}
--res--> x_pl>q
{p}{#<Cea u_p Id
res |d>}
--res--> x_p
{q}{#<Cea u_q |i d ext_1 ext_2
res |i d ext_1 ext_2>}
--res--> x_q

- S 0 = e = e - = = = = - - —— " = = —— - = ..

Evaluation of left-hand-side gives :

13

Specif of: t_disabling2
{x_p}{#<Cea u_x_p li ext_1 ext_2

res |i ext_1 ext_2>}

--resg-->

local signals {a , b, ¢} in

(((at*x_x_plc!t.d/d] ///vt=>q)///
let rec {1 = (b?:stop+a?:1)+a?.c?:h
and h = a?:h+a?.c?:h} in h)

\a)\b!)\c!
{x_p}{#<Cea u_x_p Id
res |d>}
--res-->

local signals {a , b, ¢} in
((((at*x_x_plct.d/d] ///vt=>q)///
let rec {1 = (b?:stop+a?:1)+a?.c?:h
and h = a?:h+a?.c?:h} in h)

\at)\b!)\c!

Evaluation of right-hand-side gives :
Specif of: x_p
{x_p}{#<Cea u_x_p li d ext_1 ext_2
res |i d ext_l ext_2>}
--res--> x_X_p

Evaluation of left-hand-side gives :
Specif of: t_disabling3
{x_q}{#<Cea u_x_q 1i d ext_1 ext_2
res |i d ext_.l ext_2>}
--res-->
local signals {a , b, ¢} in

(C(Cat+plct.d/d]l ///x_x_.q)///stop)\at)\b!)\c!

Evaluation of right-hand-side gives :
Specif of: x_q
{x_q}{#<Cea u_x_q [i d ext_1 ext_2
res [i d ext_1 ext_2>}
--res--> x_x_q

Proof Succeeds
CEA |-- Isbisim {"t_disabling == pl>q",
"t_disabling2 == x_p",
"t_disabling3 == x_q"} : Theorem of plotosmeije

14

5

Py

6 Conclusion

We have presented the ECRINS system, with an example automated validity proof for an
intercalculi translation. Only strong bisimulatioh equivalences can be tested in the current
version of ECRINS. It was all we needed for proving our translation from PureLOTOS to
MEUE correct, along with the possibility of renaming the termination action §. Future
developments will allow for correctness proofs of more complex translations, in between
calculi with very different action mechanisms and atomic granularity. In such translations
atomic actions of the source language may correspond to various sequences of actions
in the implementation, requiring an abstraction mechanism over the behaviours. This
will be achieved through the implementation of a broader class of bisimulations, running
from observational equivalence, to equivalences parameterized by abstraction criteria (cf.
(Bo83)).

The ECRINS tool can address a somehow different class of problems, studying properties
of a given process calculus. As an example, we have obtained results on some operators
of PureLOTOS: We have shown in [MaDSi87] how the enable operator can be simulated
up to the weak bisimulation inside the PureLOTOS calculus:

let H = let rec {h0 = {sort_of_p}:h0 [] d_of_p:stop}
in hoO
in
((pld_of_p/d] // {sort_of_p, d_of_p} //H)
// {d_of_p} //
(d_of_p:q)) \\d_of_p

Moreover, if we consider only faithful processes, that is processes which are not allowed
any 7 action, orelse if processes are not allowed any behaviour after emitting a terminating
action d, then the simulation happen to be valid with respect to strong bisimulation.
Similarly, the disable operator can be simulated inside PureLOTOS whenever its process
arguments are faithful.

Recursively defined processes may have infinite specifications that cannot be manip-
ulated as such by the system; finite subsets of such specifications can be computed with
evaluation tactics, but we have no mean to use our bisimulation algorithm in such cases.
More research is still needed to obtain induction principles suitable for semi-automated
proofs in such a framework.

Further developments include a more flexible management of calculi, allowing derived
operators to be defined from a process expression, yvielding a straightforward notion of
subcalculi: the definition of a more general predicate evaluation mode; the implementa-
tion of a broader class of evaluation and bisimulation algorithms. allowing abstraction
mechanisms based on the abstraction criterion concept.

References

[Ai86] G. Ailloux, * Verification in Ecrins of Lotos Programs”, ESPRIT/SEDOS/C2/N45
(1986)

[BIx85] Bergstra. Klop, “Algebra of Communicating Processes with Abstraction”, Theo-
retical Computer Science 37, p77-121 (1985)

[Bo85] G. Boudol, “Notes on Algebraic Calculi of Processes”. Logics and Models of Con-
current Systems, NATO ASI series F13, K.Apt ed. (1985)

15

[Br83] S. Brookes, A Model for Communicating Sequential Processes”, PhD Thesis, Uni-
versity of Oxford (1983)

[DMS8] G. Doumenc, E. Madelaine, “Une traduction de PLOTOS en MEIJE?, Rapport
INRIA RR938 (1988)

[DSi83] R. De Simone. “Higher-Level Synchronising Devices in Meije-Sccs”, Theoretical
Computer Science 37, p245-267 (1985)

[(GS64] S. Ginsburg, S. Spanier, “Bounded Algol-like languages”, Trans. Am. Math. Soci-
ety 113, p176-181 (1964)

[HenS2] M. Hennessy, W. Li, G. Plotkin, “4 First Attempt at Translating CSP Into CCS™,
Second International Conf. on Distributed Computing Systems, Paris, 105-115 (1982)

[MaDSi87] E. Madelaine et R. de Simone, “ECRINS, un laboratoire de preuve pour les
calculs de processus”. Rapport INRIA RR672, (1987)

[MaDSiVe89] E. Madelaine, R. de Simone et D. Vergamini, “€CRINS, A Proof Laboratory
for Process Calculi, User Manual”, to appear INRIA (1989)

[Mi80] R. Milner, “4 Calculus for Communicating Systems”, Lectures Notes in Comput.
Sci. 92 (1980)

[Mi83] R. Milner, “Calculi for Synchrony and Asynchrony”, Theoretical Computer Science
25, p267-310 (1983)

[Mill87] M. Millington, “Theories of translation correctness for concurrent programming
languages”, Thesis. Univ. Edinburgh CST-46-87 (1987)

[P181] G. Plotkin. “4 Structural Approach to Operationnal Semantics”, Report Daimi
EFN-19, Comput. Sci. Dept., Aarhus Univ. (1981)

[Ve86] D. Vergamini, “Verification by Means of Observational Equivalence on Automata™,
Rapport INRIA RR501 (1986)

[Ve87] D. Vergamini. “Veérification de réseauz d’automates finis par équivalences observa-
tionnelles: le systeéme AUTO, These de doctorat Sciences, Université de Nice (1987)

[Ve89] D. Vergamini. “Verification of Distributed Systems: an Experiment”, in Formal
Properties of Finite Automata and Applications, LNCS 386, 1990

Imprimé en France
par . .
. I'Institut National de Recherche en Informatique et en Automatique

&

