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Groupe d'automorphismes des codes de
Reed et Muller généralisés

The automorphism group of the
Generalized Reed-Muller codes

Thierry Berger*  Pascale Charpin**

V4

Résumé

Nous démontrons que le groupe d'automorphismes des codes de Reed et
Muller généralisés est le groupe général affine. Les codes de Reed et
Muller généralisés ont été définis par KASAMI, LIN et PETERSON. Ils ont
ensuite été étudiés en détail par DELSARTE, GOETHALS et
MAC-WILLIAMS ; notre résultat a pour point de départ leur description de
I'ensemble des mots de poids minimum de ces codes. Un automorphisme
d'un code cyclique g-aire est ici une permutation des éléments du corps

fini GF(q™).

Abstract

We prove that the automorphism group of the Generalized
Reed-Muller codes is the general linear nonhomogeneous group. The
Generalized Reed-Muller codes are introduced by KASAMI, LIN and
PETERSON. An extensive study was made by DELSARTE, GOETHALS and
MAC-WILLIAMS ; our result follows their description of the minimum
weight codewords. An automorphism of a cyclic q-ary code is here a

substitution over the field GF(g™).
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1 Introduction

In this paper we consider linear codes of length ¢™, ¢ = p” and p is a prime,
over a finite field K of characteristic p. Usually these codes arc called eztended
primitive codes. Let G be the finite field of order ¢™; an automorphism of such
a code C is a permutation on G which preserves C. We denote by G(m, ¢)
the general linear nonhomogeneous group GLNH(m, q) whosc clements are
the permutations on G of the form:

™y @ g — Mg + h (1)

where M is a non singular matrix of order m over GF(q) and h is any point
of G represented as a column vector. The whole class of extended primitive
codes being invariant under G(m,q) was characterized by DELSARTE. We
denote by D(m, q) this class of codes. The result of DELSARTE[10] derived
from a significant work on the polynomial codes due essentially to ICASAMI et
al.[13,14,15] and DELSARTE et al.[11]. In particular, DELSARTE generalized
the condition, obtained by IKASAMI et al., for extended cyclic codes which
are invariant under the afline group G(1,q). These conditions arc of great
interest, because a code of D(m,q) is then recognizable by the form of its
zcro’s-set; so it is clear that the class D(m, q) contains interesting subclasses
as the extended Bose-Chaudhury-Hocquenghem (BCH) codes, for m =1, or
the Generalized Reed-Muller (GRM) codes. However there arc few results
about the whole automorphism group of the codes belonging to D(m,q).
Ior instance, the automorphism groups of BCH-codes are not known; on the
other hand, the automorphism group of the extended Reed-Solomon (RS)
codes of length ¢ is exactly G(1,q) [12] and it is well-known that the auto-
morphism group of the binary Reed-Muller (RM) codes is G(m,2) [16].

We say that a GRM-code of length ¢™ over K = GF(¢°) is a g-ary RM-
code. Our main result in the present paper is that the automorphism group
of the g-ary Reed-Muller codes, for any ¢ and any m, is cxactly G(m,q)
(Theorem 5). The generalisation of the RM-codes to the nonbinary case was
originally introduced by IKASAMI et al.[15]; DELSARTE et al. later studied,
in great detail, the properties of these codes and their relatives; in particu-
lar, they obtain in the general case an enumeration of the minimum weight
codewords of the GRM-codes [11]. Starting from this last result we can char-
acterize, in some cases, the permutations on G’ which preserve the set of the



minimum weight codewords of a given GRM-code. The whole result follows

from the fact that the dual of a GRM-code is a GRM-code.

A lincar code of length ¢™ over K can be considered as a subspace of
the modular algebra K[G], that we denote by A. This property is more
interesting for the codes of D(m,q), because a code belonging to D(m,q)
is an extended cyclic code which is an ideal of A. In Section 2 we present
in this context the extended cyclic ¢g-ary codes and the automorphisms of
codes. We point out that the product of the algebra A is an intercsting tool
for the description of the codes of D(m,q). In particular, the product of two
codes of D(m, q) is a code of D(m, q). In Section 3 we explain in A the set of
the minimum weight codewords of the GRM-codes, using the product of the
algebra and the minimum codewords of the extended RS-codes of length ¢.
Henceforth we can identify a permutation which preserves a given GRM-code
with an affine bijection (in Section 4). The proof follows our description of the
minimum weight codewords and uses the fundamental Theorem of the affine
geometry, applied to finite fields - this Theorem is recalled and cxplained in
the Appendix.

2 GRM-codes in a modular algebra

Recall that G = GF(q™), ¢ = p”, may be identified to the ficld GF(p™). In
general ' = GI'(¢¢). The algebra A = K[G] is the set of formal polynomials,

z:Zngg , o€ K
9€G

with the usual operations:

a Z T X9+ b Z Yo X7 = Z(axg + by ) X7
9€G 9€G geG

aXX" =abX?t* | 0= 0X, 1=X°,
9€G
wherea€e K, be K, z€ A, ye A, g€ G, heG.

By convention, a K-subspace of A is a code of A. An automorphism
of a code is a permutation of the ¢™ coordinate places which transforms



codewords into codewords. Then we define a permutation ¢ on G as a trans-
formation on A:

oy T X9 — >z, X"(g)zzxa_x(g) X9 . (2)
9€G 9€G 9€G

We denote by Aut(C) the automorphism group of a code C'. A permutation
o is an element of Aut(C) if and only if o(z) € C for all z € C.

A code C is an extended cyclic code if and only if Aut(C') contains the
pcrmutations: :

Tyo : TEA ngX"g , u €G”
g€eG

- The extension is here the usual one: each codeword is extended by adding
an overall parity check {16] -.

In this case, C can be defined by its zeros-set. Let S = [0,n], n = ¢™ —1;
for cach s € S let us define:

¢s : TEA +— ¢s(z)zzxggsa (3)

9€G

where ¢5(z) is calculated in an overfield of K and G and, by convention,
$o(2) = Yyec 2o

Let « be a primitive element of G. The codeword z is an extension of a
polynomial which has the root o if and only if ¢;(z) = 0. Thus an extended
cyclic code can be uniquely defined by the set {s € S| ¢,(C) = 0} .

Definition 1 Let T be a subset of S containing 0, and assume that T 1is
invariant under the multiplication by ¢ mod n. Then the code,

C={z€A|ds(2)=0,5€T}, (4)
is an extended cyclic q-ary code. We say that T is the defining-set of C.

Let the g-ary expansion of s € S:

m-1

s=)Y siq¢ , si€e0,g-1],

=0



and define the g-weight of s as wy(s) = S si. Let v € {1, m(q~1)[. Then
the sct:
L(myq) = (s€ S lwgls) <v ) (5)

is the defining-set of the q-ary RM-code of order m(q —1) — v, denoted by
C.(m,q) [9,11,15].

REMARKS 1: 1) The code C,(1,q) is the extended Reed-Solomon code of
minimum distance v + 1.

2) Recall that the dual of C,(m, ¢) is the code C,(m, q), with p = m(¢g—1) —
v+1[15)].

3) For each ¢’ dividing q, we can define a class of ¢’-ary extended cyclic codes
as codes of A. Then we can always define the p-ary RM-codes as codes of
A: that is the codes C,(rm,p), with defining-set I, (rm, p).

The following Theorem, due to DELSARTE, gives a necessary and sufli-
cient condition for cyclic g-ary codes to be invariant under the group G(m, ¢).

Theorem 1 [10] Let C be a code of A. Then Aut(C) contains G(m,q) if
and only if C is an extended cyclic q-ary code, the defining-sel T' of which
satisfies:

s€T and t satisfies (I) = tel , (6)

where (1) s :

(1) + wy(p*t) S we(p’s) , ke0,r—1]

r

- q = p" and the multiplication in S is calculated modulo n -

REMARK 2: It is clear that the codes C,(m,q) are invariant under G(m, q).
If m =1 - i.e. if we consider codes of length g over K -, we have w,(s) = s
for s € [0,q — 1]. Then the condition (I) is equivalent to

ti<si , 1€[0,r—=1] ,

where (sg,...,8,_1) and (tg,...,t,-1) are respectively the coelficients of the
p-ary expansion of s and t. We then obtain the condition of KASAMI et
al. for extended cyclic codes being invariant under the affine group G(1,q)
[13]. DUR proved in {12] that the automorphism group of the codes C,(1,q),
v € [2,q — 1], is exactly G(1, q) (see also a direct proof in [2]).

)



REMARK 3: [10] The Theorem 1 characterizes the codes of A which are
invariant under G(rm, p). In this case T is invariant under the multiplication
by p and the condition (I) becomes: w,(t) < wp(s). Thus there is an clement
v of [1,rm(p — 1)] such that the defining-set T is the set { s | wy(s) < v },
which is the defining-set I, (rm, p) of the p-ary RM-code C,(rm,p). Then a
code of A which is invariant under G(rm,p) is a p-ary RM-code.

A code C is an ideal of A if and only if Aut(C) contains the permutations:

Toh @ TEA ngXg+h ,heG
g€G

So a code of D(m,q) is an idcal of A. The algebra A has only onc maximal
ideal namely its radical. The radical P of A is composed with the clements
z € A satisfying 2P = 0. Since (T, e62,X9)? = Ygec z’g’XO , we have:

P={zeA|> z,=0} .
9€G

Hence, by definition, an extended cyclic code is contained in . We denote
by P? the ideal which is the j-power of the ideal P - i.e. which is generated by
the products []i_, zx, zx € P -. Suppose that G is identified to GCF'(p™™) and
let (e1,...,em) be any basis of G, m' = rm. Then for each j € [1,m'(p—1)],

the set

B(j)={ [I(xX* =" | kelo,p-1], 2k 2 j} (7)
=1 1=1
is a basis of P7 [7]. This description yields that P7 is invariant under G(m', p).
Then it becomes from Remark 3 that the j-powers of the radical of A are
the p-ary Reed-Muller codes.
This result was presented by BERMAN in [4]; the reader can see other proofs
in [6,9]; it was proved independantly by PoLI, which showed that the codes
P? are the only ideals of A being invariant under G(m’, p) [17].

One can remark also that C;(m,q) = P and

Cm(q—l)(m’ q) = Pm(q—l) = (Z Xg)]" .

g€eG



Let U and V be two codes of A; we denote by UV the code generated by
the products zy, z € U and y € V and we say that UV is the product of U
and V. Let mar0 € G(m, q); we have

Tamo(zy) = WM,O(x)WM,o(y) , since WM,O(Xth) — xXMlg+h) . xyMgyMh

Hence if U and V are invariant under 7as, then the code UV is invariant un-
der mprp. Particularly a product of two extended cyclic codes is an extended
cyclic code.

We have seen that the product of two p-ary RM-codes is a p-ary RM-code.
This result does not remain the same for the g-ary RM-codes. For instance,
we have P = C(m,q) while P? is not the code Cy(m,q). However we can
prove an inclusion formula and for that, we need to the

Lemma 1 Let ¢ and y be any codewords in A. Let s € S. Then,
s
¢a($?}) = Z ( ¢ ) ¢t(m)¢s—t(y) ’ (8)
t<s

where, (Sg,...,8m—1) and (to,...,tm—1) being the coefficients of the p-ary
expansion of s and t, < denotes the partial order relation:

t<s <= t,<s;, forali . (9)
Proof:
$s(zy) = Do gy yalg+h) =D Ty yry ( , ) gthe™
9€G  heG geG  heG =0
s s .
= Z ( " ) Z :ngt Z yph®™t = Z ( j ) bu(2)ds—i(y)
t=0 9€G heG t<s

- applying LUCAS’S Theorem, we obtain the summation over t < s -. O

Theorem 2 Let v and v’ such that v+ v' < m(q—1). Then the product of
C.(m,q) and C,(m,q) satisfies:

Cv(maq) CU'(qu) - CU+U'(m’q)



Proof: Let U = Cy(m,q), V = C,(m,q), z € U and y € V. Let T be the
defining-sct of UV. Let s € I,4,(m,q) and calculate ¢;(zy) with (8). Let
t <s;ift e l,(m,q)then ¢ (z) =0;if t ¢ I,(m,q), we have:

v<uw(t)<v+v and t<s = wils—t)<v = ¢, (y)=0 .

Thus ¢,(zy) = 0; we have proved that I,,,.(m,q) C T; that means that UV
is contained in C,4,(m,q). O

3 The minimum weight codewords of the
GRM-codes

Recall that A = K[G], G = GF(q™) and K = GF(g¢®). For any clement z
of A, let us define the support of z as the set:

supp(z) ={ g€ G|z, 20} , wherez = > z,X7 . (10)

9€G

The weight of z is: w(z) = |supp(z)|. Let g be a non zero element of G and
let v € [1,q — 1{. We denote by C,({g},q) the extended RS-code of length
¢ and minimum distance v + 1, considered as a code of A in the sense that
each codeword has its support in the subspace ¢gGF(q) of G:

C{gha)={z€eA|z= 3 z,,X" and ¢,(z) =0, s€[0,v]} .
AeGF(q)
(11)

Let z € C,({g},q) and let t € S such that w,(t) < v. Since A7 = A, we have:
$(z) = 3. m(Ag) =g 3 @ =0.

AeGF(q) AEGF(q)
Then ¢,(z) = 0, for cach t € I,(m, q). We have proved:

Lemma 2 Let v € [l1,q — 1[. Then the code C,({g},q) is contained in
C.(q,m), for all g € G*.

Let £ € [1,m] and let V be a k-dimensional subspace of . Let z =
>_gev X9; the following property is proved by IKASAMI et al. in [15]:

SES and wy(s) <k(qg—1) = ¢s(z)=0 . (12)

In accordance with the definition of Ci(4-1)(m, ¢), this property implies:

8



Lemma 3 Let k € [1,m] and define the subset of A:

Ar={ > X9 |V isak— dimensional subspace of G } (13)
gev

Then A C Ci(g-1(m,q).

Now we are able to present a description of the set of the minimum weight
codewords (mwc’s) of any GRM-code. We shall show that a mwe can bhe
identified to an element y of an A or to a mwc z of a code C,({¢g},m) or to
a product of type yz.

In [11], DELSARTE et al. gave another description and the enumeration of the
maoc’s of the GRM-codes of length ¢™ over GF(q). The following Lemma
shows that their results are available for K = GF(¢°), e > 1. So we can
present the enumecration of the mwe’s in this context (Theorem 3). -

Lemma 4 K = GF(q®). Let C be an extended cyclic q-ary code. Lel z be
a mwe of C. Then z = Az" where A € K and ' s ¢« mwe of C whose
coefficients are in GF(q).

Proof: Let T be the defining-set of C and let z = ¥ cg2,X%, 2, € K.
Assume that at least one z4, denoted zj, is not in GF(g). And dcfine:

z® =% :z:gng , keo,ef.
9€G

Since 1" is invariant under the multiplication by ¢, we have for all s € T
k

q
zk) =Y :c" (Z zggs"_k) =0 .

9€G 9€G

Then 2 is an element of C. Now we get:

z —Zz(“)— ZZT" X9 = ZTr (zg)X?
9€G k=0 9€G
where T'r(z,) is the traceof z, over GF(q). Without lost in gencralily, we can
choose z such that Tr(xh) # 0. Since z is a mwc of C, we have w(a') = w(2).
Thus we obtain an 2z’ € C such that the coefficients of 2’ are in (,/ (¢) and
the support of z’ equals the support of ¢ - 1.e. 2’ = Az, A € K -

9



Theorem 3 [11] Let v € {1,m(q - 1)[, m(q—1) —v = u(qg — 1) + v with
v € [0,q—1[. Then the number of the minimum weight codewords of the code
C.(m,q) is

m-u-1 qm—i -1
L =K ] ————N., (14)
1=0 q —1
where Np = 1 and, forv >0, N, = ( Z ) %1:—]-

Theorem 4 Let v = b(q— 1)+ a, a € [0,g—1[, b € [0,m]. A minimum
weight codeword (mwc) of the code C,(m,q) is an element of A of the form:

r=MX"yz , AeK* ,heG ,yeA ,z€A (15)
where
o Ifb=0 theny = X° else y € As.

o Ifa=0then z = X° else there is g € G, g & supp(y), such thal z is a
muwec of the code C,({g},q).

- The set Ay and the code Co({g},q) are respectively defined by (13) and

(11)-.

Proof: It is well-known that the minimum distance of the GRM-code C,(m, ¢)
cquals (a+1)g®. When a > 0 the codeword z can be considered as a miwc of an
extended RS-code of length ¢ and minimum distance a+1; thus w(z) = a+1.
[rom Lemma 2, z is a mwc of C,(m,q). The weight of an clement ol A,,
b > 0, is clearly ¢% from Lemma 3, y is a mwc of Cog-1y(m,q). Ifa >0
and b > 0, the Theorem 2 implics that the product yz is an clement of
Ch(g-1)+a(m, q). Moreover:

¢a+1) < wlyz) < wly(z) < ¢la+l),

which means that w(z) = (¢ + 1)¢®. Then a codeword z which has the form
(15) is a mwc of C,(m,q). Note that yz # 0, because the support of yz
contains at lcast two cosets of a b-dimensional subspace of G.

Let R, be the number of the z’s defined by (15) and let m(q — 1) — v =
u(q —1) +v,v € [0,¢ — 1[. We want to prove that R, = L, (L, is given by

10



(14)).
In all cases the support of z is contained in an (m — u)-dimensional affine
subspace of G. There is

m-u-1 m—t __ 1

/\u =4q H qm—u—i -1

such affine subspaces. If v = 0, we have a = 0 and R, = /\,,ll\"‘ =L,
Suppose now that v # 0 and fixe g € G*. It is clear that the code C,({¢}, ¢),
. as any extended RS-code, satisfies the following property.

Property 1 For each subset A of GF(q) such that |A| = a + 1, lhere is a
muwc of Co({g}, q) the support of which is the set {Ag|A € A}.

There is 9;_—_1“ possibilities for the choice of ¢ in an (m — u)-dimensional affine
subspace of G. Then we have

e qm'—u _
e, ) =L

e A q _{a)
-smce/\o_land<a+1>_<v).D

REMARK 4: Suppose that G is considered as a GF(p)-space (i.e. ¢ =por G
is identified with GF(p™™)). In accordance with (7), the form of the elements
of Ay is:

<o

H X — 1) | {ey,..., e} are linearly independent in G . (16)

Indecd

p—1
(X -yt = S ( 1);1 ) (—1)EXP=1-0e gnd ( P : ) = (=1)F .
k=0

In the algebra I[F}, F = GF(p), the only ideals are the principal ideals
generated by (X* — 1)¥ k € [1,p — 1], A being any element in F°. Then a
basis of a code Cy({g},p) is

{(Xg—~l)k[k€[a,p—1]} ’ (17)

11



and the codewords can be represented as follows

p—1
z=)Y z(X9—-1) , zm€F

i=a

- for more details the reader can refer to [6] -.

4 The automorphism group of the GRM-
codes

We denote by © = {0;]¢ € [0,7 — 1]} , the Galois group of the ficld G(F'(q),
g = p". Since the field GF(q™), here denoted G, is an [,-vector-space, cach
clement of O can be considered as a linear permutation on G, 0, : g € G —
g, involving a transformation on A (cf. (2)). We denote by G/(m, q)the sct
of the permutations on G

O(M,h,5) : g€ G +— (Mg)’ +h, heG,ie0,r—1], (18)

where M is a non singular matrix of order m over GF(q). 'The group
G(m, q) is usually called the group of the semi-affine bijections on G (de-
noted GSAp(E), I = GF(q) and £ = G, in the Appendix). The group
G(m, q) contains G(m, q) (cf. (1)); if ¢ = p, © contains only the identity and
we have clearly G(m,q) = G(m,q).

Let C be an extended cyclic g-ary code in A, with defining-sct 7. Then 6,
is contained in Aut(C) if and only if T is invariant under the mulliplication
by p* modulo ¢™ — 1. Indeed we have, for any z € C and any s € 1"

6:(0:(2)) = ¢ 3 2, X7 ) = 30 2,(07)° = dbope(2)

gea g€G

where ¢, 1s defined by (3) and C by (4). In particular, we shall show that,
in gencral, a ¢g-ary RM-code cannot be invariant under 0;, z # 0.

Lemmasb ¢ =p",r > 1, v €[2,m(qg—1) - 1]. Then, forallie[l,r-1],
the set I,(m, q) is not invariant under the multiplication by p* modulo ¢™ —1.
In other words, the set © N Aut(C,(m,q)) is reduced to the identity.

12



Proof: The dual of the code C,(m,q) is Cu(m,q), p = m(g—1)—v+1. Two
dual codes have the same automorphism group. So we can prove the Lemma
only for v < ﬂ%lﬂ We state the property:

H, :TForeachi,i € [1,|r/2]], thereis s € I,(m,q) such that p's & I,(m,q)
- where |r/2] denotes the integer part of r/2 -.

Assume that H, is true. Suppose that there is a j, 7 €||r/2],r — 1], such
that /,(m,¢q) is invariant under the multiplication by p?. Let i = r — j; thus
pT = q = p'p, with i € [1,|r/2]]. Since I,(m,q) is invariant under the
multiplication by ¢, the hypothesis on j contradicts H,. That means: if H,
is true then the Lemma is proved for v. So we shall prove the Lemma in
proving H,, by induction on v, v < ﬂ%&—l Recall that I,(m,q) is the set
of the s € S such that w,(s) < v. If v = 2, we have clearly 1 € I;(m,q)

while p' € I(m, q); indeed the q-weight of p* equals p*. Then H, is true. We
suppose now that H,, is true for all v’ € [2, v[ and we want to prove H,.

Let 7 € [1,|r/2]]. Since H,_; is true, we know that there is s € /,_;(m,¢)
such that p's € I,_1(m,q). If w,(p's) > v —1 then p's & I,(m,q) and H,

is true. So it remains the case wy(p's) = v —1. For A € [0,q — 1], let us

define: . .
ih_ ) AP modulog—-1 if A<g—1
[/\p]—{q—l ifl=¢-1.

If 75! sig' is the g-ary expansion of s, we have [10]:
m-—1

wo(p's) = ) lsip'] (19)

1=

Now we get:
t=s+q¢" with k€[0,m 1] such that [p'si] +p' < q .

Note that this property implies: [p'(sx + 1)] = [p's] + p'.
This choice of k is always possible. Indeed

Psi) 2 a9, Vb — w(p's) 2m(g—p) , from (19);
but wy(p's)=v—1 and v—1< M‘IZ_-Q . Thus

(¢-1)

m(qg - p') < = 5 — 2p'—¢-1>0,

13



which contradicts « < |r/2].
Then we have:

wy(t) = Zs;+(sk+ ) =we(s)+1l< v,
I#k
Thus t € 1,(m, q). Moreover:
wi(p't) = Y _[P'si] + ([p'sk] + 1) = wo(p's) +p'
I#£k
which proves that p't &€ I,(m,q). Therefore H, is true. O

The automorphism group of the GRM-codes is known in the following
cases:

o for ¢ =2, Aut(C,(m,2)) = G(m,2);

o ifm =1, C,(1,q) is an extended RS-code and its automorphism group

is G(1,q) ;

e if v =1 or v = m(q — 1), each permutation on G is an automorphism

of C,(m,q).

So we suppose now that: ¢ > 2, m > 1 and v € [2,m(qg — 1) — 1]. Recall
that Theorem 1 implies that in all cases the automorphism group of C,(m, q)
contains G(m, q).

Theorem 5 v € [2,m(q — 1) — 1]. The automorphism group of the ¢-ary
RM-code of order m(q—1)—v is G(m,q) - i.e. Aut(C,(m,q))= G(m,q).

Proof: Let 0 € Aut(C,(m,q)). We denote by Mw, the set of the mwc’s
of C,(m,q). According to (2), o can be considered as a permutation on G,
so, for simplification, we shall apply ¢ on A or on G. It is clear that, by
definition, 6(Mw,) = Mw,. We shall prove the Theorem in explaining the
action of o on the elements of Mw,. We distinguish four cases:

1. v = b(q—1), b € [1,m — 1]. From Theorem 4, we have:

Mw, = {/\X"ZX9|/\€ K*, he G, Lisab—dim. subspace of G}.

g€L
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That means that o transforms any &-dimensional affine subspace of G in
another. From Corollary 4 and (24) (see in the Appendix), that yields o €
G(m,q). Applying Lemma 5, we obtain o € G(m, q).

2. v=bq=1)+a, be[0,m—1[,a € [2,g—1[. Let V=h+ L beany
(b+ 1)-dimensional affine subspace of GG, where h is any element of G and L
is any (b+ 1)-dimensional subspace of G. Let {es, ..., €41} be a basis of L;
let L' be the b-dimensional subspace of G generated by {e,...,€11}. I'rom
Theorem 4 the following codewords are elements of Mw,:

r=yz ,y=X"Y X?, zeC{a}q)andw(z) =a+1 , (20)

g9€eL!

where C,({e1},q) is defined by (11) - by convention, if b = 0 then y = X*
and L' = (-.
It is clear that the support of z is contained in V. Now the code C\,({e1},q),
which is in fact an extended RS-code of minimum distance a + 1, satisfies
the Property 1 (see in the proof of Theorem 4). Since @ > 1, the minimum
distance of Cy({e1},q) is at least 3. So we can define two distinct mwc’s of
C.({e1},9), let z and 2/, satisfying:

| supp(z) N supp(2’) | 2 2 (21)
Let y defined by (20) and:

t=yz and ' =yz' , U =supp(z) and U’ = supp(a’) .

By definition, a mwc of C,(m, q) has its support contained in only one (b+1)-
dimensional affine subspace of G. Since o(z) € Mw, and o(2') € Mw,, we
have two (b+ 1)-dimensional affine subspaces of G, let W and W', containing
respectively supp(o(z)) and supp(o(z’)). But o(UNU') = o(U) N o(U');
moreover (20) and (21) yield

lo(UnU)| > 2¢° .
We then obtain:

2 < oU)No(U) | | WNW'| < ¢!

Since W N W’ is an affine subspace of G, we can conclude that W = W",

15



Applying the Property 1, we can construct a sequence,

Loy s Thyeooh T Tk = Y2k
such that
o 2 is a mwe of Cy({e1},q)

o for each k > 0, z4_; and z; satisfy (21)

o Uiy supp(zi) = V.

Let Uy = supp(z,) and let Wi be the (b + 1)-dimensional aflinc subspace of
G containing o(Ug). Applying the preceding result to zx_; and z, for cach
k > 0, we obtain: '

Wo=W,=...= W,

Moreover any element of V' is containing in an Ug. Then o(V) cquals W,. We
have proved that o transforms any (b + 1)-dimensional affine subspace of G
in a (b+ 1)-dimensional affine subspace of G. From Corollary 4, o € G(m, q);
Thercfore from Lemma 5, o € G(m, q).

3. v=>5b(qg—1)+1,b€ [1,m —1]. The dual of C,(m,q) is C,(m,q), with
p=m(g—1)—v+1=(m->b)(¢g-1).

Then, from 1., Aut(C,(m,q)) = Aut(C.(m,q)) = G(m,q).
4. v =(m —-1)(¢—1)+a,a € [2,g— 1. The dual of C.(m,q) is C.(m,q),
with
p=m(qg—1)—v+1=q—a where g—a€(2,q-2].
Then, from 2., Aut(C.(m,q)) = Aut(C,(m,q)) = G(m,q). O

In the parts 1. and 2. of the proof of Theorem 5, we prove in fact that
a permutation ¢ on G, which preserves Mw,, is an element of the group

G(m,q). Then we have immediatly:

Corollary 1 m > 1 andg>p. Letve [2,(m-1)(g—1)], v =0(¢—1) +a
witha = 0 ora € [2,q—1[. Let C be an extended cyclic q-ary code such that
the set of the mwe’s of C equals Mw,. Then Aut(C) C G(m,q).

16



If ¢ = pitis well-known that a GRM-code is generated by the set of its
muwc’s; recall that the p-ary RM-codes are the powers P¥ of the radical P of
the algebra A (see Remarks 3 and 4). Then, in this case, Theorem 5 involves
a property which is available for all v:

Corollary 2 ¢ =p. Let v € [2,m(p— 1) — 1]. Let C be an extended cyclic
p-ary code such that the set of the mwc’s of C equals the sel of the mwc’s of

Pv. Then Aut(C) C G(m,p).

We suppose now that ¢ = p", r > 1, and we denote by M, the minimum
weight subcode of C,(m,q); the defining-set of M, is given by DELSARTE in
[10]; that is, for v = b(¢— 1) + a, a € [0,g — 1]:

Jo= [} {s€S]|3,iel0,r]suchthatw,(p's) <blg—1)+[p'c]} (22)
c€la,g-1{

- where S = [0,¢™ — 1] -. Clearly M, is invariant under G(m, ¢); moreover if
v satisfies the hypotheses of Corollary 1, the automorphism group of M, is
contained in G(m, q).

Suppose that a = 0. Then it becomes from (22) that

Jogr) = { s € §|3i, i € [0,r[ such that wy(p's) < b(q—1)} = |J p'L(m,q).
iE[O,r[

Hence Jy(q-1) is invariant under the multiplication by p’ modulo ¢™ — 1, for
all y € [1,7[. Then, from Corollary 1 and (18):

Corollary 3 The automorphism group of the minimum weight subcode of
Cb(,,-])(ﬂl,({), be [l’m[; is G(maQ)'

REMARK 5: Let v = b(¢—1)+a,a € [l,g—1[ and b € [1,m[. The Corollary
1 can be applied to the code U = Co(m, ¢)Ce(g-1)(m, ¢). Indeed this code
is generated by the products zy, z € Co(m,q) and y € Cyy1)(m,¢). From
Theorem 2 and Theorem 4, the set of the mwc’s of U is exactly the set of
the mwc’s of C,(m, q). Thus if v satisfies the hypotheses of Corollary 1, the
automorphism group of U is contained in G(m, q).

APPENDIX
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The reader can find in [1] a proof of the Theorem 6, namely the funda-
mental Theorem of the affine geometry. We only shall explain this thecorem
for finite fields. The permutations on the field GF(¢™) , which conscrve the
affine subspaces of same dimension, are characterized by Corollary 4. The
formula (24) means that the group composed with these permutations is
exactly the group G(m, gq) defined by (18).

We denote by E a vector-space over a field F.

Definition 2 An application f : E — E is semi-linear if there is an
automorphism 1 of the field F such that:

L flz+y)=f(@)+ f(y), z € E and y € E.
2. fQz)=71(N)f(z),z € £ and X € F.

Definition 3 An application f': E — E is semi-affine if there isa € I
and f:FE — E semi-linear such that:

fl(z) = f(z)+a , z€E .

The group of the semi-linear bijections is denoted by GS Lg(17); The group
of the semi-affine bijections is denoted by GSAp(E).

Theorem 6 [1] Supposc that the dimension of £ is strictly greater than 1
and that I is not the finite field of order 2. Let f: E — E be a bijection
satisfying: if a, b and ¢ are collinear in E, then f(a), f(b) and f(c) are
collinear in L.

Then f is an element of GSAp(E).

['rom now on , assume that F is the finite field GF(q), ¢ > 2, and that
I is the finite field GF(¢™), m > 1, considered as an F-vector-spacc.

Corollary 4 Lets e [I,m—1] and f: E — E be a bijection which trans-
forms any s-dimensional affine subspace in an s-dimensional affine subspace.
Then f is an element of GSAF(E).

Proof: If s = 1, the Theorem 6 implies f € GSAk(FE). Suppose that s > 1.

Fach 1-dimensional affine subspace L has ¢ elements and can be considered as
an intersection of some s-dimensional affine subspaces. By hypothesis f(L)
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has q clements and is an intersection of some s-dimensional affinc subspaces.
Then we can apply the Theorem 6. O

When F is the finite field GF(q), with ¢ = p” (p is a prime and r > 0),
the group of the automorphisms of the field F is

O={0,:F —F|0(g)=g",ic[0,r—1]}.

Since F is a field of characteristic p, each 6; is an automorphism of the fiecld
I; thus for any h : E — FE | h being a linear bijection, the application 0;0h
is an element of GSLp(FE).

Conversely let f € GSLp(F), associated with the automorphism ;. By
definition, it is clear that the application 6_; o f is linear; hence [ = 0; 0 h,
h linear and bijective. Then we can state:

GSLr(E)={0;0h | 0; € O, h linear and bijective } , (23)
and deduce
GSAR(E)={0;0h+b]|0,€ 0, h linear bijective, b€ I } . (24)

Then GSAp(E) is the group G(m, q) defined by (18) in Section 4.
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