N
N

N

HAL

open science

Structuring distributed applications as fragmented
objects

Mesaac Makpangou, Jean-Pierre Le Narzul, Marc Shapiro, Yvon Gourhant

» To cite this version:

Mesaac Makpangou, Jean-Pierre Le Narzul, Marc Shapiro, Yvon Gourhant. Structuring distributed
applications as fragmented objects. [Research Report] RR-1404, INRIA. 1991. inria-00075156

HAL Id: inria-00075156
https://inria.hal.science/inria-00075156
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075156
https://hal.archives-ouvertes.fr

Structuring distributed applications as
fragmented objects

Structuration d’applications réparties en
objets fragmentés

Rapport de Recherche INRIA 1404

Mesaac Makpangou
Yvon Gourhant
Jean-Pierre Le Narzul

Marc Shapiro

INRIA, projet SOR

January 1991

Abstract

Most distributed systems offer only primitive communication objects (e.g.
channels). Their undisciplined use obscures, and exposes the implementation
of, higher-level concepts.

We propose instead a high-level, structured approach, called Fragmented
Objects. A Fragmented Object is a distributed shared object. Clients see a
fragmented object as an ordinary object. The implementor of a fragmented
object decides of its interface and representation, including (if necessary)
aspects such as placement of data items, communication between fragments,
protocol layering, and binding. The fragmented object model provides a
common framework for different distribution mechanisms, such as client/
server stubs, replication, cacheing, and data partitioning.

We present the basic fragmented object concepts and a full example, the
SOS Naming Service, layered into Name Space and Naming View objects.
Each of these layers is implemented as fragmented objects; we point out
specific benefits of the fragmented object approach.

We have defined a fragmented-object language called FOG, a compiler,
and a toolkit of primitive fragmented objects. The compiler enforces encap-
sulation, checks interface consistency, and generates hooks to the toolkit. The
compiler and the toolkit facilitate the most common distribution policies.

Résumé

La plupart des systemes répartis offrent des objets de communication de
bas niveau (p.ex. des canaux). Leur utilisation indisciplinée obscurcit la
réalisation de concepts de plus haut niveau et expose leur implémentation.

Nous proposons une approche structurée de haut niveau : les objets frag-
mentés. Un objet fragmenté est un objet partagé réparti; il apparait a ses
clients comme un simple objet. Le programmeur d’un objet fragmenté décide
de son interface et de sa représentation, y compris, s’il le désire, du placement
des données, de la communication entre les fragments, de la décomposition
des protocoles et du mécanisme de liaison.

Le modele d’objet fragmenté fournit un cadre commun a différents mécan-
ismes de répartition tels que les talons client /serveur, la réplication, I'utilisation
de caches et le partitionnement des données.

Nous présentons les concepts de base des objets fragmentés, ainsi qu’un
exemple d’application, le service de nommage du systeme SOS. Celui-ci est
structuré en deux niveaux: les objets “espace de noms” et les objets “vue
de nommage”. Chacun de ces niveaux est réalisé par des objets fragmentés.
Quelques avantages de ’approche par objet fragmenté sont exposés.

Nous avons défini un langage a objets fragmentés appelé FOG, un compila-
teur, et une boite a outils d’objets fragmentés de bas niveau. Le compilateur
assure l'encapsulation, vérifie la cohérence des interfaces et génere le code
d’ acces a la boite a outils. Le compilateur et la boite a outils facilitent la
réalisation des politiques de répartition les plus courantes.

Contents

1 Introduction

2.1 Client accesstoa FO

2.3 Connective objects

3.1 Object structuring of the SOS Name Space
3.1.1 Distribution of function within SOS.NS

3.1.2 Discussion,

3.1.3 Distribution of function within SOS_NS_Tree

3.1.4 Discussion

3.2.1 Naming view fragmented object

3.2.2 Discussion,

2 Fragmented Objects
2.2 Interfaces . .
2.4 Binding . . .

3 Structuring a naming service as FOs
3.2 Naming views

4 Tools for fragmented objects

4.1 Toolkit of low-level fragmented objects

4.2 FOG language
4.3 FOG compiler

5 Related work

6 Conclusion

10
10
11
13
13

15
15
18

19
19
21
22

25

27

Chapter 1

Introduction

The object-oriented programming methodology is increasingly recognized of
primary interest for structuring large, extensible, flexible, long-life software.
It could be extended to structuring distributed applications; yet, existing
object-oriented programming languages or systems do not take distribution
into account.

In the object-oriented approach, two objects may communicate via the
interface of a third, shared object. In a distributed object-oriented system,
this would naturally extend to a distributed shared object.

For instance, one may consider a communication channel as a distributed
object, with two interfaces, one for each endpoint: send(bytestream) at one
end, and receive(bytestream) at the other. However, it is not satisfactory to
support only a fixed collection of low-level communication objects (such as
channels): firstly, because the data they carry is untyped; secondly, because
the object-oriented approach is chiefly concerned with designing high-level
object types, with an interface and semantics appropriate for the application
at hand.

We remark that the fragmentation of a single logical entity across several
locations is useful in many distributed applications. For instance, all the
replicas of a replicated file logically form a single file. Its interface hides the
existence of multiple replicas, and of internal communication to maintain
consistency. The replicated file is a shared distributed object.

We propose the uniform concept of a fragmented object (FO) for design-
ing and building distributed applications. As is usual in object-oriented
approach, a FO has two aspects, external (or “abstract”) and internal (or
“concrete”).

Abstractly, a FO appears (to its external clients) as a single entity. It is
accessed via a programmer-defined interface. Its components, and in partic-

2 CHAPTER 1. INTRODUCTION

ular their distribution, are not visible.

Internally, the FO encapsulates a set of cooperating fragments. FEach
fragment is an elementary object (i.e. with a centralized representation). The
fragments cooperate using lower-level FOs, such as communication channels.
The programmer of a FO (its implementor) controls the location and the
communication between the fragments. This addresses distribution issues
(such as where to place a particular data element, or how to handle failures)
according to the semantics, and expected usage pattern, of the FO.

The link between the external and the internal view is the interface ex-
ported by the FO. One critical observation is that, for a particular client, the
interface is obtained through a particular fragment.

The SOR (Systemes a Objets Répartis — Distributed Object-Oriented Sys-
tems) group at INRIA-Rocquencourt (near Paris, France) has implemented a
distributed object-support operating system, called SOS, based on FOs [19].
In SOS, a distributed object manager [8], communication protocols [13, 14], a
distributed name service [11], and some user-level applications are structured

as FOs.

This paper has two aims. Firstly, it presents the fragmented object con-
cept, and tools to support it. Secondly, it identifies the benefits of structuring
distributed applications as fragmented objects.

The rest of the paper is organized as follows. Chapter 2 defines FOs.
Chapter 3 details the example of a highly distributed, layered, user-centered,
naming service. Chapter 4 presents some tools for FOs. These include a
toolkit of low-level FOs; a language called FOG its compiler. In chapter 5
we compare our approach to related work. Finally, chapter 6 concludes the

paper.

Chapter 2

Fragmented Objects

A fragmented object can be viewed at two different levels of abstraction,
corresponding respectively to the client’s (external, abstract) view, and to
the implementor’s (concrete, internal) view.

For clients (see Figure 2.1), a FO is a single shared object. It is shared
by several client objects, localized in different address spaces, possibly on
several sites. A FO can offer distinct, strongly-typed, interfaces to different
clients.

For the implementor (see Figure 2.2), it is an object with a fragmented
representation. It is composed of:

o A set of elementary objects, its fragments. Each fragment is mapped
within only one of the many address spaces overlapped by the FO.

o A client interface. The FO’s interface is presented to each client via
the public interface of a local fragment.

e An interface between fragments, called its group interface.

o Lower-level shared FOs for communication between fragments, called
connective objects.

In addition, a binding interface allows clients to bind to the FO.

For the operating system, a FO is a group of elementary objects, with
a common inter-address-space communication privilege. The privilege is
checked by the primitive connective objects, implemented by the system:
e.g. communication channels, or shared memory regions.

In the rest of this chapter, we define more precisely the construction of a
FO. First we show how a client accesses a FO (section 2.1). Then section 2.2

CHAPTER 2. FRAGMENTED OBJECTS

@ address space A

foo() bar()

bar()

>

address space B

fragmented
object

address space C

Figure 2.1: A fragmented object as seen from clients

bar()

address space A \(

address space B

connective
object

fragmented

object)

bar()

address space C

Figure 2.2: A fragmented object as seen by its implementor

2.1. CLIENT ACCESS TO A FO d

takes a look at the various interfaces of the FO. Section 2.3 shows how con-
nective objects are used. Finally, we speak a bit about the binding protocol
(section 2.4).

2.1 Client access to a FO

The abstract interface of a FO is provided to some client by a local interface
fragment of that FO. A fragment is an ordinary local object. Its public
interface may be invoked locally. The client can not distinguish between the
interface of the fragment, and that of the FO itself’.

For instance, a mailbox object, implemented by a central mail server, can
be made accessible by proxies exported to users. A mail user with no special
knowledge will bind to a particular mailbox, then call the drop(letter) or
pickup(letter) methods® of his local proxy.

The interface provided to a client of a FO is defined by a contract, ensuring
that every method it will invoke is effectively implemented by the FO. The
client expects a specific interface; the FO provides that client with a proxy
possessing this interface®.

For instance, a fragmented mailbox will export, to its owner exclusively, a
proxy allowing to pickup messages. Other users will get a drop-only proxy. It
is up to the fragmented mailbox to check the identity of the user. Accordingly,
it provides the user with an appropriate interface and implementation of that
interface.

It is up to the compiler and the run-time to verify (as described in sec-
tion 4.3, chapter 4) that the actual interface conforms to the one expected
by the client.

The interface of the fragment offers transparency of the distribution to a
client. A method of the fragment interface can be entirely implemented by
the fragment itself, or it can trigger invocations to other fragments.

L An interface fragment is called a prozy in [17]. It may hold local data, and process
computations locally, or else forward them for processing to remote fragments. Remote
communication entails marshalling/unmarshalling invocation parameters into/from a com-
munication message. A stub is special case of a proxy, performing no local processing, and
reduced to the communication function [4].

2A method is a procedure associated with an object. In C4+4, methods are also called
member functions.

3We allow different clients to see different interfaces to the same FO.

6 CHAPTER 2. FRAGMENTED OBJECTS

2.2 Interfaces

The concrete representation of a FO is fragmented on several address spaces.
The implementor considers criteria such as protection, efficiency and avail-
ability, to decide the distribution of the fragments. The implementor has
full control over the fragmentation of data among fragments, the localization
and movement of fragments (e.g. by migrating them), and the cooperation
protocol (by choosing an appropriate connective object).

A fragment’s interface is divided in three distinct parts:

e the public (or client) interface contains methods accessible by clients;

e the private interface is composed of internal methods, accessible only
from within the fragment;

e the group interface comprises those methods which are internal to the
FO as a whole (i.e. which can be invoked remotely from other frag-
ments).

For instance, consider the implementation of a replicated file file as a
FO. Each replica constitutes a fragment (see Figure 2.3). The client inter-
face to file is record-based: read(out record r), write(in record r), seek(in int
position)*. The group interface is different, being block-based: put(in int bloc-
kNo, in block b)®. Figure 2.4 shows the declarations of this example in the
FOG language. We will explain the syntax of this language in section 4.2,
chapter 4.

In the file example, all the put methods of the replicas constitute the group
interface of the fragmented object. The type-checking of the group interface
ensures strongly-typed communications between fragments. Communication
between fragments is carried out by connective objects.

2.3 Connective objects

A connective object is just another FO at a lower level of abstraction.

The most primitive connective objects are the communication objects im-
plemented by the system, with a fixed, predefined interface. At instantiation
time, a primitive communication object checks that the connected ends are

*Meaning: read is a method taking no input parameter, and returning a result of type
record; write takes a input parameter of type record, and returns no result; seek takes an
integer parameter called position.

>There is no need for a get() operation if file is fully replicated.

2.3. CONNECTIVE OBJECTS

read) \ \uriteq) read() / Write()
seek() seek()
put()\ put() i pUt()
siteA

siteC

multicast
\ channel

file

seek() / read()

write() SteB

Figure 2.3: The fragmented representation of a replicated file

/] A class group defining the FO type file
group file { replica };

/] the class of file fragments

class replica

{

public: /] the public interface
read (out record r);
write (in record r);
seek (in int position);

group: // the group interface
put (in int blockNo, in block b);

};

Figure 2.4: Declaration of file in the FOG language

8 CHAPTER 2. FRAGMENTED OBJECTS

indeed allowed to communicate directly, i.e. that they are fragments of a

same FO.

Communication objects implement the basic communication facilities,
such as communication protocols (e.g. remote procedure call, asynchronous
remote procedure call, parallel remote procedure call, functional remote pro-
cedure call, etc.), cacheing, replication, or other distribution policies.

The types of parameters in the group interface of the superior FO may be
totally unrelated to the interface of the connective object. This necessitates
“marshalling/unmarshalling” type coercions. Returning to the example of
the replicated file, Figure 2.5 illustrates this issue. The group interface of the
file FO is the put method. Each invocation of put maps onto a send(message)
at one end of the transport communication channel and a recv(message) at
the other end. The (int, block&) parameter list must be coerced into the
message datatype. Conversely, a recv(message) is mapped onto an upcall to

put(int blockNo, block& b).

put (pos,block) put (pos,block)
<

recv(msg)

sendfmsg) endpoint

site A

siteC

recv(fnsg)

/K send(msg) multicast channy
44@0%! ock)

siteB

Figure 2.5: Invocation coercions

Our type-safe treatment of inter-protocol-layer coercion is further detailed
in section 4.3, chapter 4.

2.4. BINDING 9

2.4 Binding

Just as an ordinary object must be instantiated before use, a client must first
bind to a FO. To request access to some particular FO, the client invokes a
binding procedure, associated with the type of the expected interface. This
procedure returns a proxy. The binding procedure is programmer-defined®.
Typically, it will open a connection to other fragments.

The implementor of a FO may rely on a system-defined binder, such as
ANSA’s Trader [9], which maintains mappings of interface descriptions to
servers. The standard binding procedure in ANSA is to contact the trader
with an interface description, which returns a server connection. Thereafter
the client uses a stub encapsulating that connection. This approach fits well
for simple services, which do not require a dynamic selection of the specific
implementation of the interface requested by a client.

In SOS, we generally use a more involved binding procedure, giving the
FO implementor more control. A binding has three steps. In the first step, a
name lookup (similar to ANSA’s Trader lookup) yields a provider object for
the named interface. In the second step, the binding request is forwarded,
by the distributed object manager [8, 19], to a particular method of the
provider. In the third step, this method may dynamically instantiate a proxy
implementation, based (for instance) on the user’s identity, on the binding
request arguments (e.g. type of access required), on the type of the underlying
system or architecture, or on the load of the client’s host.

These two binding approaches are, each, appropriate for certain classes
of applications. None is satisfactory for all. It is up to the implementor to
choose the one which fits its needs best.

6Similar to an instantiation procedure (a “constructor” in C++).

Chapter 3

Structuring a naming service
as FOs

In this chapter, we apply the FO approach to a layered naming service [11],
implemented for the SOS object-support operating system [19]. In the fol-
lowing chapter (chapter 4) we will present various programming tools, used

to build such FOs.

A naming service associates names to objects. The one presented here is
layered according to its two complementary functions:

o the bottom layer is formed of Name Space objects;

e the top layer is made of Naming View objects, each of which presents
a specific view of the underlying Name Spaces.

3.1 Object structuring of the SOS Name Space

A Name Space is a homogeneous set of persistent name/object associations.
Each Name Space may have its own syntax or naming conventions. Some
well-known Name Spaces are a Unix file system, a list of authorized users for
some computer installation, or the Internet host names. Hereafter, we detail

the design of the SOS Name Space.

The SOS Name Space is a tree of names, decomposed into parts main-
tained by separate servers. It is partitioned similarly to the V-System naming
space [6]: each server holds a vertical slice, starting at the root of the tree.
The SOS Name Space implements two complementary functions:

e to receive, and act upon, client requests;

10

3.1. OBJECT STRUCTURING OF THE SOS NAME SPACE 11

e to maintain a consistent image of the tree by peer cooperation between
servers.

The first function constitutes a FO, called SOS_NS, with three kinds
of fragments: sos_clientProxy, sos_.adminProxy and sos_serverStub (associated
with normal clients, administrator clients, and servers, respectively).

The second function constitutes another FO, called SOS_NS Tree; it is
composed of two kinds of fragments: sos_treeStub and sos_treeProxy (both
associated with servers).

Furthermore, each server instantiates a sos_partMgr object, which manages
its own part of the naming tree. The sos_partMgr objects accomplish all
the server’s management activities of the naming tree; the other objects
(sos_serverStub, sos_treeStub and sos_treeProxy) only deal with distribution.
In this article, we will not detail the sos_partMgr object because its role is
not central to the FO-oriented features of the SOS Name Space.

Sections 3.1.1 and 3.1.3 present the SOS_NS and SOS_NS_Tree FOs. The
corresponding declarations in the FOG language are presented later, in Fig-
ure 4.2, and, are explained in section 4.2, chapter 4.

3.1.1 Distribution of function within SOS_NS

Let us now describe in more detail the fragments of a SOS_NS and their
cooperation (see Figure 3.1).

The FO type SOS_NS is composed of fragments of type sos_clientProxy
and sos_serverStub, connected by a multicast channel connective object.

When a server boots, it binds to SOS_NS, which instantiates a sos_server-
Stub. The requests in its group interface, groupAddName and groupLookUp
are simply passed on to the local sos_partMgr object.

A client of the SOS_NS (i.e. a naming view object) binds to SOS_NS
with the result of instantiating a sos_clientProxy. This object type, with
a public interface allowing to add and look up names (addName/lookUp),
manages a local cache of name prefixes. Each entry associates a prefix with
the server, or set of servers, known to manage the corresponding subtree. For
administrator clients, the sos_adminProxy object type inherits from sos_client-
Proxy. It extends its interface with the addNode operation for controlling the
mapping of nodes to servers.

An execution of the lookUp method of a sos_clientProxy first looks up
the argument in its cache. The longest matching prefix corresponds to a
remote subset of sos_serverStubs. Their groupLookUp method is invoked (by

12

CHAPTER 3. STRUCTURING A NAMING SERVICE AS FOS

client 1

lookUp()

addName()

100KIPO feiavocid)

addName()

sos_clientProxy
1

sos_serverStub
A

name server A

SOS NS

multicast
channel

SOS NS Tree

2

addName()

B)

lookUp()
addNode()

client 2

addName() addNode()
lookUp()

name server B

Figure 3.1:

Distribution of function in SOS_NS

3.1. OBJECT STRUCTURING OF THE SOS NAME SPACE 13

a multiple RPC on the multicast channel); their replies are collected and
returned to the client.

Similarly, an execution of a sos_clientProxy’s method addName looks up,
from the cache, the longest matching prefix of the name. This time however,
the groupAddName method of a single sos_serverStub is invoked remotely (by
a selective RPC on the multicast channel). Its reply is then returned to the
client.

3.1.2 Discussion

The flexibility of the FO approach is helpful for SOS_NS. It would not be

available with a standard stub generator.

The SOS_NS FO offers two different interfaces to clients: sos_clientProxy
for a normal client, and sos_adminProxy for administrators. Externally, the
latter differs from the former only by having the additional addNode method
to administer the mapping of nodes to servers. Delivery of these proxies
is controlled by the SOS_NS binding protocol; a provider object decides,
depending on the rights of the requester, to deliver either a sos_clientProxy
or a sos_adminProxy.

The implementor of the SOS_NS fragmented object controls the distri-
bution of data within the different fragments. A sos_clientProxy has client-
specific data (the local cache), whereas a sos_serverStub doesn’t have any.

There is a clear distinction between the client interface, implemented by
the sos_clientProxy objects (through which a naming view object accesses
to the SOS Name Space), and the group interface, implemented by the
sos_serverStub objects. A sos_clientProxy offers forwarding methods to invoke
the fragmented methods of the group interface.

3.1.3 Distribution of function within SOS_NS Tree

Let us now describe in more detail the fragments of a SOS_NS_Tree and
their cooperation (see Figure 3.2).

The FO type SOS_NS_Tree is composed of fragments of type sos_treeProxy
and sos_treeStub, connected by a multicast channel connective object.

When a server boots, it binds to SOS_NS_Tree (in addition to SOS_NS as
explained in section 3.1.1), which instantiates a sos_treeStub and a sos_tree-
Proxy. The requests in the sos_treeStub group interface, groupVerify and
groupAdd, are simply passed on to the local sos_partMgr object.

When a sos_partMgr receives an addName request, two cases may occur :
either, it holds the vertical slice in which the name must be registered, or

14 CHAPTER 3. STRUCTURING A NAMING SERVICE AS FOS

server A

add()
verify()

f—

multicast channel]

_ SOS NS J veifyg
verify() sos_treeStub

add()

\SOS NS Tree /

server B

Figure 3.2: Distribution of function in SOS_NS_Tree

3.2. NAMING VIEWS 15

it doesn’t manage it. In the first case, the sos_partMgr has to verify if the
name is not already registered in another name server!. In the second case,
it has to forward the request to a server managing the vertical slice. For both
cases, the sos_partMgr calls the appropriate method of the sos_treeProxy client
interface which, in turn, invokes the group interface (groupVerify/groupAdd)
of the sos_treeStub objects.

3.1.4 Discussion

The impacts of the FO approach for designing the SOS_NS _Tree FO are the

following.

It hides the distribution of the naming tree to a particular sos_partMgr.
A sos_partMgr object only knows that it manages itself a part of the naming
tree, and that the rest of the tree is managed somewhere else.

The implementor defines a static binding protocol instantiating a sos_tree-
Proxy and a sos_treeStub at the server’s boot time.

There is a clear distinction between the client interface, implemented by
the sos_treeProxy objects and the group interface implemented by the sos_tree-
Stub objects.

3.2 Naming views

A Naming View is a window into a selected set of (portions of) Name Spaces.
Whereas Name Spaces reflect administrative management constraints, a Nam-
ing View represents the naming configuration choice of a user.

We call our name service user-centered because each user accesses names
via one or more specifically tailored views, which are guaranteed to keep the
same meaning even as the user moves around the system. Some examples of
useful views are: the set of binaries for the current machine architecture; the
view of the company-wide information files; the user’s current working set.

3.2.1 Naming view fragmented object

In SOS, a Naming View is a tree, local to a client, in which leaves are Name
Space proxies (see Figure 3.3). Clients of a Naming View submit requests to
different Name Spaces through its client interface.

!Due to the partitioning feature of the naming tree, a name may have several authorities
distributed among name servers.

16 CHAPTER 3. STRUCTURING A NAMING SERVICE AS FOS

unix_clientProxy

sos_clientProxy

acdName() SOS NS

lookUp()

addDir()
connect()

aNaming View

internet_clientProxy

client

Figure 3.3: A naming view

The Naming View itself is not fragmented. Fragmentation arises when
several users share a common Naming View (for instance, a company-wide
view shared by its members).

The sharing of a Naming View constitutes a FO, called NAMING_VIEW,

composed of viewReplica fragments (see Figure 3.4).

A shared Naming View is replicated in several address spaces. When a
client modifies the viewReplica object, the modification must be propagated
to all replicas through the group interface. To ensure consistency, replicas
are connected by an atomic multicast channel primitive FO.

When a client user process logs in, it binds to NAMING_VIEW, which in-
stantiates a viewReplica, based on the request arguments provided by the
client (the symbolic name of the requested Naming View?) and on the user’s
rights. The public interface of this object allows to connect (connect) Names
Spaces (i.e. their proxies), to modify the Naming View by adding directo-
ries (addDir) in the local tree, and to add and look up names (addName/
lookUp) in the connected Name Spaces.

An execution of the connect method of a viewReplica first multicasts the
groupConnect method on all viewReplicas. Then, each viewReplica receiv-
ing the request binds to the right FO implementing the requested Name

?Naming Views are registered, i.e. named, in a predefined Name Space.

3.2. NAMING VIEWS 17
(] T \
- 'Ooz(l;po / viewReplica atomic meica I lookUp()
Nam viewReplica
\ multicast / Me()
addDir() ; channel : addDir()
connect() connect()
\ / !
_ NAMING [VIEW)
client 1] client 2

Figure 3.4: The NAMING_VIEW FO

18 CHAPTER 3. STRUCTURING A NAMING SERVICE AS FOS

Space (for instance, the SOS_NS as explained in 3.1.1) and adds the map-
ping in its local tree.

An execution of the addDir method of a viewReplica first multicasts the
groupAddDir method on all viewReplicas. Each viewReplica receiving the re-
quest modify its local tree by creating the directory and adding the mapping.

The lookUp and addName method are simply forwarded to the underlying
Name Spaces.

An atomic ordered multicast is made on the connective FO to avoid incon-
sistency between the viewReplicas in case of concurrent execution of connect
or addDir methods.

3.2.2 Discussion

The main advantages of the FO approach for designing the NAMING_VIEW
FO are the following.

The clear separation between client interface and group interface of the
NAMING_VIEW FO allows to hide the replication of the viewReplica object

to the clients.

The uniform support for communication should allow to easily exchange
the basic FO used for a more sophisticated one, with better replication man-
agement policies.

Chapter 4

Tools for fragmented objects

The fragmented object concept encompasses the specification of a group of
fragments, of internal cooperation, of the different interfaces and of a mech-
anism for binding fragments to clients.

A specialized language is helpful to write these specifications. Its compiler
will check the correctness of the specification (e.g. type-compatibility of the
group interface) and automatically generate code for common cases (such
as marshalling/unmarshalling parameters). The language is complemented
by a toolkit of low-level FO types, which we present first. Then section 4.2
presents the language and section 4.3 the compiler.

4.1 Toolkit of low-level fragmented objects

Basic FOs like communication channels, semaphores, and mutex locks are
used by several distributed applications. To assist the implementor of FOs,
we provide a toolkit of such general-purpose low-level FOs. Future extensions
of the toolkit include support for distributed shared virtual memory, and for
multiple replication and cacheing policies.

For a FO implementor, the toolkit will offer a set of predefined low-
level FOs for communication, synchronization, concurrency control, fault-
tolerance, etc.

Currently, our toolkit contains essentially communication channels [14].
We distinguish two families of communication channels: point-to-point and
multi-points communication channels. The former is a FO connecting two
fragments, and the latter a FO interconnecting a set of fragments. The two
basic communication channels are defined as follows.

Simple communication channel type. A simple communication channel

19

20 CHAPTER 4. TOOLS FOR FRAGMENTED OBJECTS

FO has two kinds of fragments: a channel object and a channelStub
object associated respectively with the caller and the callee fragment.

The rpc and send methods of channel constitute the client interface
of this FO (see Figure 4.1). The rpc (resp. send) method implements
remote procedure call (resp. asynchronous remote procedure call).

Upon invocation, each of these two methods invokes its remote coun-
terpart (a member of the group interface of this FO) implemented by
channelStub. The role of these counterparts is to invoke the appropri-
ate method, belonging to the group interface of the superior (i.e. the
callee) fragment.

Multicast communication channel type. A multicast communication ch-
annel FO has two kinds of components: a multicastChannel object and
a multicastChannelStub object, associated with each fragment of the
interconnected set.

The class multicastChannel (resp. multicastChannelStub) inherits from
channel (resp. channelStub).

In addition to the methods inherited from channel, the client interface
of multicastChannel offers two new methods, parpc and multisend. parpc
implements a parallel remote procedure call to the components of a
fragmented method'. multiSend is the non-blocking version of parpc.

Upon each invocation of the parpc or multiSend method, the multi-
castChannel object forwards this to the group of multicastChannelStub
objects associated with the set of interconnected fragments.

For brevity we omit the description of channelStub and multicastChannelStub.
Internally, each low-level FO is built by, plugging together, elementary pro-
tocol objects. Each protocol object implements a specific function (e.g. mes-
sage fragmentation/reassembling, ordering, synchrony, or multiplexing and
dispatching). A family of related objects (i.e. implementing the same type
of function) are organized in a class hierarchy, with the same interface [14].

This building block approach, plus the object-orientation, facilitate the
extensibility of the toolkit. For instance, one can define a new protocol object
by inheriting, redefining or composing existing protocol objects. Once new
protocol objects are available, one will define easily new low-level FOs.

Future extensions of the toolkit include support for distributed shared
virtual memory, and for multiple replication and cacheing policies.

LA fragmented method is a set of methods implemented by several fragments of a FO.
They have the same behavior, and execute in parallel part of client requests.

4.2. FOG LANGUAGE 21

// point—to—point communication

class channel {

public:
rpc (in message im, out message rm);
send (in message m, out result r);

b

/] group communication

class multicastChannel : channel // inheritence

public: // in addition to the interface inherited from channel
parpc (in message m, out multiRes r, in reference callee);
multiSend (in message m, out multiRes r, in reference callee);

}’.

Figure 4.1: FOG declarations of communication channels

4.2 FOG language

We have defined a language extension to C4++ [20], called FOG (Fragmented
Object Generator) [7]. It provides features for the implementor to specify
class groups, group interfaces, client interfaces, and accesses to connective
objects.

Just as an elementary object is an instance of a class, a FO is an instance of
a class group. The class group defines the behavior and representation of the
FO by listing the classes of the fragments. These in turn specify the public,
private and group interfaces, as well as the component objects (fragments
and connections). Just as there can be several instances of a class, several
fragmented instances can be instantiated from the same class group.

Figure 4.2 presents a part of the FOG declarations for SOS_NS (as de-
scribed in section 3.1.1, chapter 3 and Figure 3.1). The class group SOS_NS
is composed of three fragment classes: sos_clientProxy sos_adminProxy and
sos_serverStub.

The group interface of SOS_NS is made of three methods: groupLookUp,
groupAddName and groupAddNode. These are all declared in class sos_server-

Stub.

The remote methods of the group interface are invoked by forwarding

22 CHAPTER 4. TOOLS FOR FRAGMENTED OBJECTS

«y»

methods® of sos_clientProxy and sos_adminProxy, signaled by the syntax.

A client invokes SOS_NS via the public interface of its local instance of
sos_clientProxy or sos_adminProxy.

These three interfaces are related as follows. Consider for instance that a
client wants to look up a name. First, it invokes the lookUp method. This
method is part of the client interface of a clientProxy. The lookUp method, af-
ter checking the cache, invokes the private forwardLookUp forwarding method.
The second argument of forwardLookUp is preceded by the keyword future,
a syntax for multiple incremental results. Its third argument is passed to the
communication channel object; it designates the subset of servers to which
this group invocation is addressed. Finally, this forwarding method forwards
the invocation, through the multicast channel (mchan), to the remote grou-
pLookUp method.

Chapter 3 faithfully described the Name Service currently in use in SOS. It
was written (in a slightly extended version of C4+) before the FOG compiler
was available. The fragmented objects described there were therefore written
by hand in C++. The design of FOG draws upon this experience and other
distributed applications written for SOS. FOG remains to be tested on a
large-scale application.

4.3 FOG compiler

The FOG compiler verifies the correctness of the group and client interface
declarations.

First, for each method of the group interface, there must exist at least
one forwarding method implemented by a member of the class group. Also,
for each forwarding method, there must exist a corresponding method in the
group interface. Their signature must match.

Second, it checks that the public interface of the FOs, as proxies delivered
to some clients, conforms to what the client expects. Fragments are located
in different address spaces, compiled separately, and instantiated at different
times. Therefore, in addition to the compile-time checks, run-time checks
are needed. Interfaces are checked (i.e. that fragment classes belong to a
common class group) at fragment instantiation time, either compile time or
run-time. The FOG compiler generates a 32-bit key [18] for the interface
expected by the client and for the interfaces, checked for compatibility based
on the inheritance mechanism. Communication privileges (i.e. that fragment

2A forwarding method is similar to the traditional RPC stub method: its role is to
forward the invocation to its corresponding method(s) of the group interface.

4.3. FOG COMPILER 23

/] The SOS_NS FO type
group SOS_NS { sos_clientProxy, sos_adminProxy, sos_serverStub };

/] The fragment classes

class sos_serverStub

{

group: // group interface
groupLookUp(in String name, out reference obj);
groupAddName(in String name, in reference obj);
groupAddNode(in String name, in reference node);

b

class sos_clientProxy

{

public: // client interface
lookUp (in String name, out reference obj);
addName (in String name, in reference obj);

protected: // private data and methods
cache tableOfPrefixes; // the prefix cache
multicastChannel mchan; // a multicast channel FO

// multicast to many servers
forwardLookUp(in String name, future reference obj [], in reference callees)
I mchan.parpc (callees) ! sos_serverStub::groupLookUp(name,obj);

/] rpe to single server
forwardAddName(in String name, in reference obj, in reference callee)
I mchan.rpc (callee) ! sos_serverStub::groupAddName(name, obj);
b

class sos_adminProxy : sos_clientProxy // inheritence

{

public: // local interface
addNode (in String name, in reference node);
protected: // private interface

// in addition to the interface inherited from sos_clientProxy
addNode (in String name, in reference node, in reference callee)
I mchan.rpc (callee) ! sos_serverStub::groupAddNode(name,node);

Figure 4.2: Declaration of a class group

24 CHAPTER 4. TOOLS FOR FRAGMENTED OBJECTS

instances belong to a common FO instance) are checked at binding time by
the binding method of the primitive (system-defined) communication FOs
based on a common capability.

The FOG compiler also plays the role of a stub generator in traditional
RPC packages: it generates the code and structures necessary to marshal/
unmarshal parameters of group interface invocations. It also generalizes tra-
ditional stub generation to handle parallel and/or asynchronous invocations,
handling of exceptions, and so forth.

The FOG compiler can generate marshalling/unmarshalling coercion meth-
ods based on different interfaces of communication objects. The FOG stub
generation allows flexibility and extensibility of interfaces: it automatically
provides a glue between forwarding methods of an FO and the interface of-
fered by its connective object.

For instance, the parameters (string, reference), of the forwardLookUp
method of the sos_clientProxy object, are coerced into a message (see Fig-
ure 4.2). This message is then passed to the parpc method of the multicas-
tChannel object, which in turn, invokes the set of sos_serverStub objects. At
the reception side, this message is coerced into the types expected by the
groupLookUp method of the sos_serverStub objects, also (string,reference) (see
Figure 4.1). These two coercions are handled automatically by the FOG
compiler.

Currently, coercions are done according to a hardwired external represen-
tation of data. As an extension, we plan to replace this with programmer-
defined coercions. These are guaranteed to be type-safe, because the compiler
has checked the group interface.

Chapter 5

Related work

Our approach could be compared with standard RPC stubs, e.g. Birrell and
Nelson’s work [4]. A stub is a placeholder object for a remote server, au-
tomatically generated from an interface desciption. It carries no local data
or processing, having only the capability to marshal/unmarshal arguments
and forward invocations to the server. A stub remotely extends access to the
server object, but does not offer the flexibility of a fragmented object.

Several projects have proposed distributed extensions of the object para-
digm: e.g. Orca’s shared objects, Gothic’s Fragmented Objects, Emerald,
Amber, Comandos, and Topologies.

In Orca [1], shared objects are dynamically replicated under the control
of the Orca run-time. For its clients, a shared object is a single object. Orca
ensures transparent access to the replicas and guarantees their consistency.
Orca’s run-time decides to create new replicas, or to migrate the object on
to the sites where the object is frequently used, based on statistics of recent
access.

Orca hides distribution to both the clients and implementors of a shared
object. This simplifies their task. However this fully automatic approach
has drawbacks. For instance, it is not appropriate to applications such as
system services for two reasons. First, replication and migration are just
specific fragmentation policies. Second, a specific type of consistency is not
suitable for all applications. In our model, the implementor considers criteria
such as protection, efficiency and availability to decide what is partitioned or
replicated and the number of replicas. Asin Orca, distribution is transparent
to a client of a fragmented object. We can also provide automatic mechanisms
similar to Orca.

Gothic’s fragmented objects [3, 12] are based on the “multi-functions”
[2], a parallelized generalization of procedures to N callers and P callees.
Multi-functions are powerful for expressing parallel computing because syn-

25

26 CHAPTER 5. RELATED WORK

chronization is implicit. However, they do not address the issues of sharing
objects between applications in a distributed system.

Although we use the same name, our FO model differs from Gothic in three
ways. Firstly, we focus on distributed, rather than parallel, computations.
Secondly, we give the implementor the full control over the distribution,
rather than only the automatic mechanisms provided by the Gothic system
(such as automatic creation and placement of fragments, and the choice of
a communication protocol). Thirdly, we support multiple client interfaces,
whereas Gothic enforces a single global interface to a fragmented object.

The Comandos [15] approach is opposite to ours. In Comandos, shared
objects are not fragmented. Instead, address spaces are fragmented across
sites. When an activity requests access to a remote shared object, its address
space “diffuses” over to the site of this object. The simplicity of this approach
has drawbacks similar to Orca.

In Amber [5], a single address space is fragmented on several sites. Each
object is referenced by a unique virtual address and is localized on a single
site. As in Emerald [10], the sharing of an object is implemented either by
migrating the object or by diffusing the execution.

Topologies [16] bear some similarities to our FOs. They allow program-
mers to define distributed shared objects on a message-passing multicom-
puter. Topologies bear a close resemblance to the communication objects of
our primitive FO toolkit. [16] describes only communication-oriented Topolo-
gies, and seems to lack our general concept of fragmented objects. Their im-
plementation concentrates on high-performance communication on a Hyper-
cube, based on kernel-level Topologies. Consequently, they restrict Topology
interfaces to send and receive operations, instead of allowing programmer-
defined interfaces.

Chapter 6

Conclusion

This article defined the Fragmented Object concept, an extension of objects
to the distributed environment. Its main strength is that it provides the
appropriate level of distribution visibility to the implementor of a distributed
service, while hiding the distribution of fragments from its clients.

We presented our fragmented object model, which makes a clear distinc-
tion between distribution mechanisms, and policies. Policies are programmer-
defined. For instance, the model requires a binding procedure for interfaces
exported by a fragmented object; it does not impose a specific binding pro-
tocol.

Our model, and its implementation in SOS and FOG, offer the following
desirable features:

1. Programs communicate via distributed shared objects, i.e. high-level,
programmer-defined abstractions.

2. A clear distinction is made between public (“client”) and internal
(“group”) interfaces; both are are strongly typed.

3. Distinct interfaces can be given to different clients.
4. Distribution is transparent for clients.

5. The implementor has full control over the abstract view and the con-
crete representation of a fragmented object. The representation of data
items, their location, and all aspects of communication between them
are (if desired) under implementor control.

6. Multiple protocol layers are supported.

7. The compiler supports type-safe “marshalling/unmarshalling” coercions
between protocol layers.

27

28 CHAPTER 6. CONCLUSION

8. Uniform support for multiple communication paradigms, such as client-
server, peer-to-peer, group communication, multiway rendez-vous, etc.

9. Uniform support for multiple binding paradigms.

We related our experience designing a complex distributed application,
the SOS naming service, based on fragmented objects.

We listed some tools available to the fragmented object programmer: a
library of primitive fragmented objects, and the FOG language and its com-
piler. The design of FOG draws upon the experience of the SOS Name
Service, and of other distributed applications written for SOS.

Future work includes the support of programmer-defined coercions, and an
extended library of primitive communication-oriented FOs, with support for
distributed shared virtual memory, and for multiple replication and cacheing
policies.

Bibliography

[1]

Henri E. Bal and Andrew S. Tanenbaum. Distributed programming with
shared data. In Proceedings of ICCL, pages 82-91, Miami, FL, October 1988.
IEEE, Computer Society Press.

Jean-Pierre Banitre, Michel Banatre, and Florimond Ployette. The concept
of multi-function: a general structuring tool for distributed operating system.
In The 6th International Conference on Distributed Computer Systems, pages
478-485, Cambridge, Mass. (USA), May 1986. IEEE.

Jean-Pierre Banitre, Michel Banatre, and Florimond Ployette. An overview
of the Gothic distributed operating system. Rapport de recherche 504, INRIA,
March 1986.

A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Programming Languages and Systems, 2(1), February 1984.

Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy,
and Richard J. Littlefield. The Amber system: Parallel programming on a
network of multiprocessors. In Proceedings of the 12th ACM Symposium on
Operating Systems Principles, pages 147158, Litchfield Park, Arizona USA,
December 1989. ACM.

David R. Cheriton and Timothy P. Mann. Decentralizing a global naming
service for improved performance and fault tolerance. ACM Transaclions on
Computer Systems, 7(2):147-183, May 1989.

Yvon Gourhant and Marc Shapiro. FOG/C++: a fragmented-object genera-
tor. In C++ Conference, pages 63-74, San Francisco, CA (USA), April 1990.
Usenix.

Sabine Habert. Gestion d’objetls et migration dans les systémes répartis. PhD
thesis, Université Paris-6 Pierre-et-Marie-Curie, Paris (France), December
1989.

Dr. A. J. Herbert and Prof. J. Monk, editors. ANSA Reference Manual.
Advanced Networked Systems Architecture, Cambridge (United Kingdom),
June 1987.

29

30

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

Norman C. Hutchinson. Emerald: An object—based language for distributed
programming. Technical Report 87-01-01, Department of Computer Science,
University of Washington, Seattle, WA (USA), January 1987.

Jean-Pierre Le Narzul and Marc Shapiro. Un service de nommage pour un
systeme répartis a objets. In Séminaire Franco-Brésilien sur les Systémes In-
formatiques Répartis, pages 127-133, Florianopolis (Breésil, September 1989.
LAAS (Toulouse), I'UFSC.

Philippe Lecler. Une approche de la programmation des systémes distribués
fondée sur la fragmentation des données et des calculs, et sa mise en cuvre
dans le systéme Gothic. These de doctorat, Université de Rennes I, Rennes
(France), September 1989.

Mesaac Makpangou and Marc Shapiro. The SOS object-oriented communica-
tion service. In Proc. 9th Int. Conf. on Computer Communication, Tel Aviv
(Israel), October-November 1988.

Mesaac Mounchili Makpangou. Protocoles de communication el programma-
tion par objels : Dexemple de SOS. PhD thesis, Université Paris VI, Paris
(France), February 1989.

Comandos Project. Comandos — construction and management of dis-
tributed office systems. Final report on the global architecture, Esprit project
834, September 1987.

Karsten Schwan and Win Bo. Topologies—distributed objects on multicom-
puters. ACM Transactions on Computer Systems, 8(2):111-157, May 1990.

Marc Shapiro. Structure and encapsulation in distributed systems: the Proxy
Principle. In The 6th International Conference on Distributed Computer Sys-
tems, pages 198-204, Cambridge, Mass. (USA), May 1986. IEEE.

Marc Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and
migration for C++ objects. In EFCOOP’89, Nottingham (GB), July 1989.

Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruf-
fin, and Céline Valot. SOS: An object-oriented operating system — assessment
and perspectives. Computing Systems, 2(4):287-338, December 1989.

Bjarne Stroustrup. The C++ Programming Language. Number ISBN 0-201-
12078-X. Addison Wesley, 1985.

