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Page Usage in Quadtree Indexes

Mamoru Hoshi Philippe Flajolet

Abstract. This paper provides a characterization of the storage needs of quadtrees when used as indexes to
access large volumes of 2-dimensional data. It is shown that the page occupancy for data in random order
approaches 33%. A precise mathematical analysis that involves a modicum of hypergeometric functions and
dilogarithms, together with some computer algebra is presented.

A brief survey of the analysis of storage usage in tree structures is included. The 33% ratio for quadtrees

is to be compared to the figures for binary search trees (50%), tries (69%), and quadtries (46%).

De Poccupation des pages dans les arbres Quad
utilisés comme index

Résumé. Cet article propose une caractérisation des besoins en mémoire d’arbres Quad lorsque ceux—ci sont
utilisés en tant qu’index afin d’accéder de grandes quantités d’informations en 2—-dimensions. L’on montre
que le taux d’occupation des pages, pour un modéle d’ordre aléatoire des données, avoisine 33%. En est
présentée une analyse mathématique précise qui met en jeu quelques fonctions spéciales, hypergeométriques
et dilogarithmes, ainsi que ’utilisation du calcul formel.

L’artice conclut par un bref survol de la consommation mémoire des structures d’arbres. Le taux de 33%
pour les arbres Quad est & comparer aux chiffres des arbres binaires de recherche (50%), des treilles digitales
(69%), ou des treilles Quad (46%).
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The quadtree structure is a fundamental hierarchical representation of point data in higher
dimensional spaces. It was invented by Finkel and Bentley in 1974 [6], and it is a natural
generalization of binary search trees to multidimensional data. Under one form or the other,
it has surfaced in many different fields, like data bases, geographical data processing, graphics
and image processing. A comprehensive treatment of this area of algorithmic design is to be
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A brief survey of the analysis of storage usage in tree structures is included. The 33%
ratio for quadtrees is to be compared to the figures for binary search trees (50%), tries
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This paper provides a characterization of the storage needs of quadtrees
when used as indexes to access large volumes of 2-dimensional data. It is shown that
the page occupancy for data in random order approaches 33%. A precise mathemat-
ical analysis that involves a modicum of hypergeometric functions and dilogarithms,
together with some computer algebra is presented.



We discuss here the (point) quadtrees, for data in 2-dimensional space. More precisely,
we concentrate on quadtrees that depend on an integer parameter b > 0 representing a page
capacity, sometimes also called a bucket capacity; small subfiles (i.e., with size < b) are
represented sequentially into a page instead of being split recursively.

The paged quadtrees that we consider will thus naturally occur if one needs to maintain
large collections of data on external storage using the quadtree principle. They can also be
useful even as direct (in core) data structures since they build a hierarchical cell decompo-
sition: If b is large enough, nearest neighbours of a point are very likely to be found in the
same cell (page); in this way nearest neighbour queries can be answered by a simple local
search which is fairly efficient and adaptive. '

Our major results characterize the expected storage occupancy of quadtrees. For data in
random order, we establish that the filling ratio of pages is approximately 33%, in the sense
that the number of pages necessary to store a file of n points with b the page capacity is

about
3n

T

Our precise results are the following.

Theorem 1 Given a page capacity b > 1, there exists a constant vy, such that the expected
number of pages for a paged quadtree with page capacity b built on n random points satisfies

PY =9, -n + O(logn), (1)
where v, 1s 4
1 L (1—t? , ft(1+2v), .
—yy = d
37" 3/0 t(1 + 2t)?2 dt/o (1 —v)2E”(v) v @)
with .

_ zbl +b(1—2)+b(b+1)(1 - zjz
(1 —2)? '

Ey(z)

From this theorem, we can determine the values of the constant ;.. (We also give the

values of bys.)



IR [o |
0 |3
1
2
3
4
5

1.564747 | 1.56475
1.041362 | 2.08272
0.776966 | 2.33090
0.618679 | 2.47472
0.513623 | 2.56812
10 | 0.277208 | 2.77209
15 | 0.189691 | 2.84537
20 | 0.144151 | 2.88302
251 0.116237 | 2.90593
30 | 0.0973780 | 2.92134
35 [ 0.0837832 | 2.93241
40 | 0.0735188 | 2.94075
45 | 0.0654947 | 2.94726
50 | 0.0590496 | 2.95248

It may be of interest to note that the table above does not result from straight numerical
integration, which would be conducive to various numerical difficulties. Its derivation was
first based instead on symbolic integration performed by the Maple system [3]: For values
1-10 and 15(5)50, the computation took a little over 600 seconds of CPU time (on a Sun3
machine). For instance, we have for b = 50, the verbatim form of +,,

3159614683170552814765839048751265660686349 2
------------------------------------------- - 390150 Pi
820545673826076765176005607309978880

The first values are given below.

| b | pl)
0 (3
1 |120 - 1272
2 | 534 — 54r?
3 | 1422 — 144x?
4 | 82 _ 30072
5 55%:1 54072
10 2—%;‘97 363072

All these numerical data suggest definite patterns: -, is a rational function of 7, the coefficient
of 7% has a simple form, and v, & 3/b for large b. In effect, we have:

Theorem 2 (i). The coefficient 4, is a linear function of 72,

1 1
3 = 667+ 9b+ 1 - 6b(b + 1)? %- ij (3)



(i1). Asymptotically, for large b, we have!
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On the practical side, we would like to comment on this 33% page filling ratio. Often,
for a data structure, a relatively low filling ratio can be obviated by a suitable allocation
policy. Assume for instance, that we choose to implement a paged quadtree structure which
we design with a parameter b = 60; the pages created are called “logical” pages. If we
allocate physical pages of capacity § = 20, the quadtree structure built with logical pages
with parameter b = 60 will have each of its logical pages spread over 1, 2, or 3 physical
pages. Our analysis (see Section 4 and Theorem 5) enables us to quantify precisely what
happens: In that situation, the number of disk accesses increases slightly and it is on average
1.421145; in counterpart, the (physical) filling ratio improves appreciably and becomes close
to 0.67273. In summary we more than double the occupancy rate at the expense of an
increase of less than 50% of the access time.

Thus, the analysis techniques developed here are of some level of generality, since they
apply to a fairly general class of additive cost measures on quadtrees: Theorem 4 discusses
statistics on arbitrary node types in quadtrees; as a particular application, we are able to
characterize the expected number of pages containing k elements (0. < k& < b), and thus
attain a precise evaluation of the page occupancy profile in paged quadtrees.

The evaluation of filling ratios is useful in order to assess and possibly optimize various
allocation strategies. In this spirit, the paper concludes with a brief survey of analytical
results available for tree indexes of various sorts.

To a large extent our Theorem 2 owes its existence to the integration capabilities of the
Maple system for computer algebra (3] which first revealed the unsuspected occurrence of
closed form expressions involving dilogarithms and made it possible to carry out easily rather
intensive computations.

2 Paged Quadtrees

Our data model assumes data in random order. Without loss of generality, we take them
independently and uniformly distributed over the unit square @ = [0,1] x [0,1]. Given a
sequence S = (51, 952,...,5,) of points, S € Q", we form a tree, called a b-quadtree, by the
following rules:

o If |S| < b, then the tree consists of a single external (page) node that contains S itself.

o If |S| > b, then the first element S; of S partitions the other elements (S,,...,S,)
into four subsequences, based on the four quadrants (North-West, North-East, etc.)
determined by S;, namely Syw, Sng, Ssw, Ssg. The tree associated to S is composed

1The absolute errors provided by the approximate formula obtained by dropping the O(.) error terms are
of order respectively 10~3,10-%,10-8 for b = 2,4, 8.



of a root which contains S; and of the four subtrees formed recursively from the four
subsequences Syw, Sng, Ssw, SsE-

The standard quadtree of Finkel and Bentley appears when b = 0, and one singles out
the external empty nodes. A b-quadtree can be alternatively viewed as a standard quadtree
in which maximal subtrees of size < b arc grouped into individual pages. With this view,
the number of pages or the number of internal nodes of a paged b-quadtree are simple
parameters of the underlying standard quadtree. Qur paper is in fact a paper on cost
measures on standard quadtrees applied to paging.

Notations. Given a sequence of numbers {f,}n>0, its generating function (GF) is
z) =) fa"
n>0

We also use [2"] f(z) in order to represent the coefficient of 2™ in f(z), that is [2"]f(z) =

Additive functions over quadtrees. We consider here a general additive funciion
over standard quadtrees

flt] e + ; flt5) (4)
flB] = e,

with ¢, 15, t3,¢4 the root subtrees of t; there e, is a sequence of numbers, called the “tolls”.
Thus f[t] represents the total cost associated to a tree, when there is a toll (depending on
subtree sizes) at each node in the tree.

For instance, if the toll is e, = 1, then f[t] is the total number of nodes in the tree; if
e, = n, we get the path length of the tree. Given the paging parameter b, the number of
internal nodes in the associated b-quadtree, corresponds clearly to the toll function

en=11fn>b e =01f0<n<b. (5)

In this case, the number of external nodes (i.e., pages) is 3f[t] + 1, because of the general
conservation law on quaternary trees.

In the sequel, we keep f[t] in order to denote a generic tree cost, we reserve I[t] and
P[t] = 3I[t] + 1 for the number of internal and external nodes, when the parameter b has
been fixed.

If f[.] is a cost, we let f, be its expectation, when taken over all randomly built quadtrees
over n data items. The generating functions of the sequences {e,} and {f,.} are thus

e(z) =Y ez f(2) =) fa2"
n30 n>0

Lemma 1 Let {e,} be a toll sequence with e = 0; let f, be the expectation of the corre-
sponding cost as defined by Eq. (4). Then the associated GF’s e(z) and f(z) are related

by
_(1+22) (1-1¢)3 +2v
f(z)_(l—z) o t1+2t dt/ (v) dv (6)
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where E(2) is the modified cost generating function,

E(2) = %z(l - z)%e(.z).

PROOF. Let 7, denote the probability that a quadtree of size n has its first (e.g., NW)
subtree of size k. We have [4, 8, 16]

1o

Tk =— ) —.
* T Z;c £+1
An informal interpretation is that each of the n possibilities, {0,1,...,n—1}, for the number

of elements going to West is equally likely and has probability 1/n; if £ elements are located
West of the root, then each value K € [0..] of the number of elements residing North-West
is equally likely and has probability 1/(€ + 1). (We refer the reader to the cited publications
for more convincing arguments!)

With this form of the =, s, the standard recurrence for costs is

n-1
fn =en+4z7rﬂ.kfka (7)
k=0

where we have taken advantage of obvious symmetries.
Thus, if we go to the realm of generating functions, we find the integral equation that
corresponds to (7),

z dt t du
= — —_— 8
@) =) 4 [ gy [ Fe Ty (8)
By differentiations, we get the equivalent differential equation,

d 4

21 = 2) 1) 4 (1 = 22)- 2 f(2) = ——f(2) = E(:), (9
where g J
E(z) = E;z(l - z)a—;e(z).

First, one looks at the homogeneous equation defined by setting E(z) = 0 inside (9).

One method? consists in solving this equation by reducing it to a degenerate hypergeo-
metric equation, as was done for similar problems in [8]: We look for an approximate solution
of the form (1 — 2)°, find the indicial equation a® ~ 4 = 0 so that a = £2, try a solution

2t is interesting to note that the equation is now in principle solvable by general purpose algorithms that
determine rational solutions to linear ODE’s, see e.g. [2]. Some amount of human interaction is however
still needed since we impose additional analyticity requirements around 0. Also, the general reduction of
a quadtree analysis to hypergeometric equations is an especially effective and general tool [8], so that we
have decided to reduced ourselves to this treatment instead of directly invoking a deus ez machina formula,

#(z) = (1 +22)/(1 - 2)%.



of the form f(z)(1 — z)=2, and observe that f satisfies a standard hypergeometric equation

(25],

A=) ) + (14 22) o) - 2f() =,

which admits the special (hypergeometric!) solution f(z) = (1 + 2z2).
The whole process thus provides us with the particular solution

f(2) _1+2z

¢(2) = G-z (-2 when L(z)=10,

another independent solution being discarded as it has a logarithmic singularity at 0.

Returning then to the inhomogeneous equation, we proceed by the variation of constant
method. We seck a solution of the form A(2)-¢(z) = A(2)(1 +22)/(1 — 2)%. By construction,
N'(z) satisfies an ODE of order 1, hence, we recover the solution to the original equation by
two quadratures, the result being as stated above. B

Paging. If we specialize to the case of the number of pages in a b-quadtree, we get:

Lemma 2 The generating function for the ezpected number of pages in a b—quadlree is

1 3(1422) 2 (1=t [t(1+20)
P) =1+ (1 z)? /o 11+ 2t)2 dt/o (1—0)2E(”)d”’ (10)

with

_plEbl-) +bb+ D1 -2)?

E(z) = Ey(2) T

ProoFr. This is a simple application of the previous lemma. The tolls for the number of
internal nodes in a b-quadtree are the e, given above (5), with GF equal to

b+1 b1
e(z) = £ and E(z) = —d—z(l - z)—d— z

T 11—z

We derive in this way I(z) by Lemma 1. By the conservation law of quaternary trees, we
finally have P(z) =31(2)+1/(1-2). ®

This expression would in principle enable us to express in “closed form” the average
number of pages (see [4, 16] for related computations done independently via a recurrence
approach). We prefer however a direct route to asymptotics based on the usual method of
singularity analysis [9)].

Singularity Analysis. The general principle is that the asymptotic behaviour
of coefficients [z"]P(z) can be determined from the asymptotic form of function
P(z) around its dominant singularities. The conditions are based on analytic
continuation. They make it possible to transfer on a term-by-term basis from
asymptotic elements of P(z) to matching asymptotic elements of [2"]P(z).

7



Here, from either the differential equation and general theorems [24], or more explicitly from
the integral representations, we see that P(z) has a unique isolated logarithmic singularity
at z = 1. Thus P(z) is analytically continuable outside of its circle of convergence, say in
|z| < 2,|Arg(z —1)| > 7 /4. Also, from the integral representation, there results that, in this
region,
BL 1 -1
Pz)=—"—F4+0((1-2)"1o z—1).
(2) = (1-z)2+ (I—=2z)""log(1—2)7") ( )

By the techniques of singularity analysis, this local expansion together with the analytic
continuation of P(2) outside its circle of convergence are enough to make legal the term-by-
term transfer to coeflicients, namely

P, =~ -n+ O(logn).

This therefore completes the proof of Theorem 1. B

Leaves in quadtrees. In order to shed some light on the internals of the computa-
tion, we examine the determination of the expected number of leaves in a randomly grown
quadtree. In that case, we have b = 1, and look at internal nodes. With our earlier notations,
the corresponding GF is I(z); the expected number of leaves is then n — [2"}/(z).

The interest of the computations that follow is to introduce a special function, namely
the dilogarithm.

For b = 1, the function E(z) is equal to —1 + 2z 4+ (1 — z)~2. The inner integral [; ... dv
in (10) is then found to be

t(t — 2)(4t® - Tt + 4)
- 8log(1 —t).
Multiplying by (1 — ¢)*¢~*(1 + 2¢)~2%, and integrating, we find a sum of two terms, one
corresponding to the rational part, the other to the logarithm. The part corresponding to
the rational term is a standard elementary function.
Recall the definition of the dilogarithm as

Liy(2 / log(1 —¢t)~ i_": (11)

(We refer the reader to Lewin’s classic treatease for a full exposition of the theory of the
dilogarithm [18] or to Berndt’s review of its main properties in [1, Chap. 9].) A dilogarithm
arises from integration of the logarithmic term, 8log(1 — t), multiplied by the element 1/¢
that comes from the partial fraction decomposition

1-tF 1 1 27

t1+2t)2 ¢t 4 40 +20)?

All computations done, we get



Corollary 3 The generating function for the number of non-leave nodes in a randomly
grown quadtree (b=1) is

_ 2(28+132 —2%) | 20+4z 1422

I(Z) = (1 — 2)2 + 11— > log(l - Z) - SZI_——TVLIZ(Z), (12)

with Li;(u) the dilogarithm function. Thus,

4 4 4 4 4 4
n — — 2 —_ 2 —_— e — —_—
["[(2) = (40 —4m’)n+ 13— on’ + +os — 0 — o gt oo+ oy

+0($).

In particular, the proportion of leaves in a random quadiree of size n is asymptotic to
47? — 39 = 0.47841762.

PROOF. (Sketch) Here we obtain directly the asymptotic form I, ~ ~in, with 97 =
lim,—; (1 —2)2I(2) = 40 —4x2. (We have also 4 = 7,/3 in terms of our standard notations.)
The result for leaves follows by complementation to n of the number of non-leaves. B

An entirely similar process applies to the problem of estimating the number of pages for
an arbitrary b. The occurrence of the dilogarithm which satisfies

2

1 d X1 .d
i = 1-t) 1 == —_ = —
Lis(1) = [logl -0 T =3 55 =%,
“explains” the presence of 72 in the explicit forms of 4; given in the introduction. We shall
see that such a treatment can be extended to arbitrary node types.
From the exact form of I(z), we also observe that the coeflicient [2"]I(z) is expressible
in terms of the harmonic number (,(1) and the generalized harmonic number (,(2), where

"1
als) = "gl o

Such expressions were obtained by Laforest et al. {15, 16] using a direct theory of quadtree
recurrences from [4] which constitutes an alternative to our Lemma 1.

We are going to elicit the finer structure of 4, as a function of b in the next section.

3 The occupancy constants v,

Our approach now consists in computing the generating function of the numbers v,. The
following lemma provides a more direct access to the numbers 4, that avoids integration,
and also proves that 4, has a rational expression in terms of 72, Analysing the singularity
of the GF of the «, further provides detailed asymptotic informations on these coefficients.



Lemma 3 The generating function v(u) of the numbers 7, defined by v(u) = Y25 vsub is
given by

7(u) = m . [(—4’(1 - 2u2)7r2 + (1 + 30u — 27u2 bt 4u3)

+(—=6 — 24u + 30u®)log(1 — u) + (24u + 12u®)Liy(u)|.

PROOF. Define the basic integrals

_ A=t ot (14+20) dv
J"(“)_/o t(l+2t)2dt/o (1 =)= (1 —uv)

These serve as the basis in which to express the generating function y(u). From the sum-
mations

S =
m

and the integral representation of v, we find that

1 3 " m d 1
m-u"v™ = u—
o YTl w

> 1
}: m m __ _.2
’ mm(m—l)-uv _uml_—uv’

1 —w’

%7(11) = Jo(u) + u:i%.]l(u) + u2(%J2(u) + Qu%Jg(u).
Our problem is thus reduced to computing the quantities Jo, Ji, J2.

In principle, the problem resembles the computation in our earlier section, see for instance
the particular case of counting leaves. It is however complicated by the extra factor (1 —uwv)~!
that introduces an additional singularity in the computations.

Preliminary investigations performed with the Maple system first revealed the possibility
of an explicit solution that involves dilogarithms. Once this has been recognized, it is possible
to carry out the double integration. Minor computer algebra difficulties arise from several
sources: certain normal forms provided by integration routines sometimes introduce trans-
formations of the form log(1 — t) — log(t — 1) + log(—1); the solutions, though representing
generating functions, may have apparent singularities at 0 that need to be eliminated; finally,
some of the expressions obtained involve the dilogarithm under a form that is singular at 0.

We dispense ourselves from giving here all the explicit forms of the J, and the partial
integrals involved. Once found by whatever means, they are all that is needed in order
to reconstruct a complete proof of the expression given for vy(u), since the correctness of
integrals can always be established by differentiation. We only indicate in the appendix a
sequence of steps needed to obtain Jo(u) using the Maple system.

In passing, the solution there is expressed in terms of Maple’s version of the dilogarithm

function
(1 —u)f
k2

dilog(u) = Liz(1 —u) = ki_o:

10



The reduction to a standard dilogarithm, evaluated near 0, is achieved via the well known
transformation formula (whose proof is a single integration by parts):

2
Li2(1 — 2) + Liy(2) = % —log zlog(1 — 2). (13)
From this, the proof of the lemma follows. B

From Lemma 3, explicit forms of the <, are derived. The principle is to express the GF
v(u) in the basis of functions

log(1 — u)™! Lia(u)
(1-v) (1-u)’

where 0 represents the differential operator 8{f(u)} = ﬁ{uf(u)}, the coeflicients of these
functions involving generalized harmonic numbers, since

hyj(u) = @ and  hyj(u) =6

1

1— L12 Z Cn

n=0

We find 14 13u — 2u? (2 + u)
~7(U) = 6(0° — 0°|{ ;—Liz(w)} + TP ran vy

It is an easy matter to expand v(u) from this form. This completes the proof of Part (i) of
Theorem 2.

(14)

The asymptotic form of 4, next results from singularity analysis. There is a full asymp-
totic expansion of 4(u) around u = 1. The term Li,(u) is expanded using the basic functional
equation (13). In this way, we find

1 . 1 4 . 17
§'y(u) = [Liy(u) + ﬁ] +(1 - u)[gLu(u) + 75] + (1 —u)? [ =Liy(u) + 100] + - (15)
where Li;(u) = log(1 — u)~!. Using the identity
, —1)*k!
™)1 = u)Lir(w) m(m—-1)(m-2)---(m—k)’
we map the singular expansion (15) into a matching expansion for ¥, = [u™]y(u), the

conditions of analytic continuation being clearly satisfied here. In this way, we get

11 4 3 2!

which can be normalized into a standard expansion into descending powers of 1/m. This
completes the proof of Part (ii) of Theorem 2. B

11



4 Node types

The same methods make it possible to analyze the number of occurrences of nodes of arbitrary
composition in quadtrees. Assume we look for the expected number of nodes v in a random
tree of size n such that the subtree rooted at v has a fixed shape w. This corresponds to
a toll secquence é, such that é, = 0 for all values of n # |w|. For p = |w|, é, is a rational
number equal to the probability that the trec shape w occurs as randomly built quadtree
on p clements. That probability is computable inductively over subtrees using the form of
splitting probabilities {8]

1 (1 + n2)! (n3 + ng)! (n1 + n3)! (n2 + ny)!
n-n! Tl]!TlQ!Tlg!TM!
which represents the probability that the (NW, NE, SW, SE) root subtrees have respective

sizes ny,ng, n3,nq. If w = (r;t;,1t2,13,14) is a tree with root r and the ¢,’s as root subtrees,
we have

7l'm M2,N3,0¢ T

b

€w = Tty ftal ltal lta] * €wn Cwz €wy Cuys
together with the initial conditions ¢, = 1 if |Jw| < 1.
Thus, we find the toll generating function é(z) = ¢,2?, with p = |w|, where ¢, is an
easily computable rational number. If we compare this to the toll GF considered earlier in
connection with paging, e;(z) = 2°*'/(1 — z), we see that

&(2) = eufepl-1(2) — e (2)]-
By linearity of the cost transform (Lemma 1), we get:

Theorem 4 Consider an arbitrary node type defined by a tree shape w. The expected number
of nodes of type w admits the asymptotic form

n. 2 ]
3 YNwl-1 Nwlls

where €, € Q is the probability of tree shape w amongst all quadtrees of size |w|.
The coefficients are therefore Q-linear combinations of 1 and n2.

This generalizes results of Laforest et al. [16, 15) who studied nodes having a single child.
(Full asymptotic expansions for the number of nodes of a given type could also be obtained
in the style of Corollary 3.) As a check, we can also retrieve the expected number of leaves,
corresponding to |w| = 1, which leads to the asymptotic form %(yo — 7).

The 4, thus appear as fundamental constants in the analysis of quadtrees. From them,
one can determine the profile of page occupancy.

Theorem 5 In a paged b-quadtree, the expected number of pages containing k elements,
0 < k <b, is of the asymptotic form vy - n, with

o 2 by +2m—6

where Hy, = (a(1) =14+ 3+ -+ 1 is the standard harmonic number.

12



PROOF. As an application of Theorem 4, we first count the expected number of pages that
satisfy the conditions: (i) they are leftmost child; (ii) they contain k elements; (iii) their
father is the root of a subtree with m elements for some fixed m > b. Using the form of the
splitting probabilities 7, x = (H, — Hi)/m, we find that the asymptotic proportion of such
pages is
H,. — H;
Im
The constant -, is obtained by multiplying by 4 (to take care of all four child nodes)
and summing over all values of m from b+ 1 to co. In this way, we sce that

[Ym-1 = Ym]-

> 4H, = 4
e = A— BHg, A= —[m-1 = Yml, B= Y. —[¥m-1 = Iml)- (16)
m=Xb:+1 3m m=b+1 3m

The constants A, B could probably be found by direct summation. It is however simpler,
once their existence has been recognized, to identify them by means of conservation laws for
nodes. We have

3

The first relation expresses that a page contains a certain number k& of elements for some
k € [0..b]; the second relation consists in estimating the proportion of elements contained in
pages either as non-internal elements (whose proportion is 1 — 4,/3) or based on the size of
the page that contains them.

We use the easy relations

b b
Z‘Yb’k =" and zk"n,k =1- k (17)
k=0 k=0

1 1
Y He=(b+1)(Hpya —1), Y kHp= 500+ 1) Hypr — 20(b+ 1),

k<b k<b

and then solve for A and B the system (17). In this way, we obtain the values of A, B and
the statement of the theorem follows. W

For instance for b = 10, we find the following proportions

Too = 0.06034, Y101 = 0.04294, v102 = 0.03424, 7105 = 0.02844,
o4 = 0.02409, 70,5 = 0.02061, vi06 = 0.01771, 7107 = 0.01523,
Tos = 0.01305, 110 = 0.01112, 71010 = 0.00938.

All these constants have again exact forms that are expressible as functions of x2. It is from

them that we can analyze arbitrary page allocation strategies (see, e.g., the example given
in the introduction with b = 60 and 8 = 20).

5 Conclusions

We conclude this paper with a brief overview of some major algorithms for maintaining
dynamic tree structures in a paging environment. There are two major categories since
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structures are built either based on order properties of the data—the comparison based data
structures—or on digital propertics. Some of the trees are of fixed degree (2 or 4 depending
on the dimension of the data space: binary search trees, tries, quadtrees, etc); others have a
branching degree that varies with b (e.g., for B-trees it varies between b/2 and b; for m-ary
search trees, it is equal to m with m = b+ 1, etc.). We refer to either Sedgewick’s book [22]
or to Gonnet’s encyclopedia [12] as general sources on the algorithmic aspects. Average case
analysis techniques are reviewed in [23].

Each analysis of storage occupancy normally poses an interesting mathematical problem.
In this quick review, we also mention the major mathematical techniques at stake.

Comparison-based structures. Binary search trees [14, Sec. 6.2.2] are the simplest
structures to analyse. We consider the strategy already discussed for quadtrees whereby a
maximal subtree of size < b is stored into a single page. It is then found that the expected
number of pages is asymptotic to 2n/(b+2). In other words, storage occupancy is near 50%.
The generating function equations are simpler in this case. The main equation is of the form

dt
1—-t

1@ =ez)+2 [ )

This reduces to a differential equation of order 1 that can be solved by quadratures. Many
parameters can be analyzed in this way by varying the “toll” GF. The model is the same as
the one underlying Quicksort, see Knuth’s book {14, p. 121] and Hennequin’s thesis [13]. In
particular, we find that the number of pages containing r elements is ~ 2n/((b+ 1)(b + 2))
for r € [0..5]: In other words, pages with filling type 0/b,1/b,...,b/b are all equally frequent.

The storage occupancy of search trees whose degree is m = b+ 1 (a node contains b
keys and b+ 1 pointers) is investigated extensively by Mahmoud and Pittel [19]. The cost
generating function satisfies a linear differential equation of order b — 1, namely

d (b+1)!

Tl (2 =e(z) + mf(z)-
The analysis is made possible because there is a regular singularity at z = 1. It is found (see
also [14, Ex. 6.2.4.10]) that the number of nodes in the tree is on average

n 1 1 1
Nm where Hm—1+§+§++7—7-1,
a harmonic number: Storage utilization tends to 0 as b get large! In fact Mahmoud and
Pittel obtain asymptotic distribution results, a rather remarkable fact, since this requires
analyzing a non-linear difference differential equation of high order.

The efficiency of m-ary search trees (m = b+ 1) gets quite low as b becomes large.
Balancing is however a good solution with guaranteed worst case performance (at worst
50%). Yao has shown that for balanced B-trees of large order the storage occupancy rate
approaches log 2, and the number of nodes is approximately @. Yao’s paper [26] is well
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| ] Comparison based ] Digital |

[-dim Binary search tree, [0.5] Binary digital trie, [0.69]
2n/(b+2) n/(blog2)
m-ary search tree, [0.0] Paged b-digital tree, [0.69]
(m=b+1): n/(2(Hn-1)) ~ n/(blog2)
Balanced B-tree, [0.69]
n/(blog2)
Extendible Hash directory, [0.0]
P 4b—]n1+l/b
9. dim Quadtree, [0.33) Quadtrie, [0.46]
~ 3n/b 3n/(2blog 2)
Grid file directory, {0.0]
n1+1/(25+1)

Figure. A summary of some major paging strategies for trees and their expected perfor-
mance in asymptotic form. There n is the file size, and b represents the page capacity in
terms of records that a page can contain. The number in brackets, [p], represents a numer-
ical aproximation of the filling ratio p such that the expected storage occupancy varies like

n/(bp).

known as the source of so-called fringe analyses that are based on Markovian approximations
and matrix analysis.

Our results regarding quadtrees are based on an integral transform (Lemma 1) that
permits to resolve algebraically a class of cost functions on quadtrees; they further rely on
singularity analysis and on special functions (the hypergeometric equation, the dilogarithm).
Quite clearly, the approach taken here is general and applies to almost any conceivable
additive parameters on quadtrees.

Digital methods. Digital methods use a separation principle based on bits of records
(or their hashed values). The paging of small subfiles is analyzed by Knuth using methods
partly suggested by de Bruijn, see Section 6.3 of [14] and the methods of pages 131ff. there.
The equations are difference equations of the form

£(2) = e(z) + 272 f(2]2).

The treatment relies on iteration and Mellin transforms. The number of pages in a trie
involves some small oscillating terms, and neglecting them, it can be approximated by @,
refer to Exercice 6.3.20 of [14], and read between the lines. The analysis is also relevant to
dynamic hashing schemes [5, 17]. The same analytic principles apply to quadtries whose
evaluation is isomorphic to that of m-ary tries for m = 4.
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The digital tree structure can be extended by letting nodes contain up to b elements,
but still retaining the binary branching principle. The correspondmg equation becomes a
difference-differential equation

db
5 /(2) = e(2) + 272 f(2/2).

Mellin transforms and singularity analysis are the main ingredients of that analysis Apart
from fluctuations, the number of pages is found [11] to be of the form ;2. Thus, the ratio
of 69% strikes again here.

For completeness, we have also tabulated some of the formulz for extendible hashing and
grid files access methods. They concern the size of the directory which exhibits a non-linear
growth of the form n®, 8 > 1. However, the non-linearity factor is of the rough form n'/%, so
that the observed behaviour is practically linear provided small values of b are avoided. The
estimates are due to Flajolet [7] and Régnier [20]. They are based on occupancy statistics,
saddle point estimates and Mellin transforms.

Results in this paper indicate that, under paging conditions, trees of low degree (bi-
nary search trees and tries, quadtrees and quadtries, generalized digital trees) compare very
favorably to trees with high branching degree, except when balancing can be maintained.
A variety of methods from discrete mathematics have surfaced in the analysis of storage
occupancy for tree data structures. The methods employed here constitute yet another
illustration of the power of differential equations in conjunction with singularity analysis
techniques in the area of the average case analysis of algorithms which were introduced in

[10].
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APPENDIX
Computation of Jo(u)

We present extracts from a Maple session leading to the determination of the generating
function 7(u) of the 4. We concentrate here on the determination of the function Jo(u)
defined in the text.

We need to compute a double integral. Set

I(t) = /ot(l+2v) dv

(1-v)*1—-uw’
L(z) = /z _(t_tijo(t)dt.
o t(142t)?
The Maple instructions are
> I0:=int ((1+42%v)/(1-u*v)/(1-v)"4,v=0..t); # result has size 738

> I1:=factor(int (T0*(1-t)~3/t/(1+2%t)~2,t=0..1)); # result has size 438

One must estimate I;(1) by an indirect use of limits, in order to avoid an apparent singularity.
It is also necessary to select appropriate branches of the log “by hand”. (At one stage,we
have to do a substitution /=1 — 0, whose “validity” needs to be checked independently by
series expansions!)

> J0:=1imit(I1,z=1);

# Clean this expression with 1n(-1)=I*Pi ==> 0 and ln(u-1) ==> 1ln(i-u).
# I.e., choose appropriate branch of the logarithms.

> JO:=subs({I=0,1n(u-1)=1n(1-u)}, JO);

# Correctness may be verified via series expansions.

> series(J0,u=0);

2 2 2 3 4
1/3 + 1/12 u + (10/3 - 1/3 Pi ) u + (89/6 - 3/2Pi ) u + 0Cu)

The form of Jy that was found is literally

-1/12 (- 4 + 24 1n{1 - uw) u + 15 u + 6 1n(1 - u) u

2 2 2
+ 24 In(1 - uw) u 1ln(u) + 24 u dilog(u) - 54 u

3 3 3
+ 12 1In(1 - u) u 1n(u) + 43 u -301n(1 -u) u

3 / 4
+ 12 u dilog(w)) / (u - 1)
/
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