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Résumé

Ce rapport étudie la planification de trajectoire pour un véhicule de type
voiture—c.a.d. un véhicule non holonome a rayon de giration borné—dans
un environnement statique et structuré. En ce qui concerne la structure de
I’environnement, nous supposons l’existence de voies de circulation naturelles
a lintérieur desquelles le véhicule peut se déplacer. La contribution de ce
rapport est un algorithme de planification de trajectoire qui, a partir de la ligne
polygonale S représentant I’axe de la voie de circulation que le véhicule doit
suivre, engendre une trajectoire C qui évite les obstacles de ’environnement,
qui est sans manceuvre et qui est exécutable par le véhicule compte tenu de
ses contraintes cinématiques. En outre, C est “topologiquement équivalente”
a4 S; autrement dit, C demeure dans la voie de circulation définie par S. C
est composée de segments de droite et d’arcs de cercle tangents d’un rayon r
donné. Le principe de base de ’algorithme consiste a rechercher le centre de
chaque arc de cercle dans un domaine particulier appelé “espace des centres
de courbure” [9]. Cet algorithme est efficace; sa complexité est O(nm) ol
n représente le nombre d’obstacles dans I’environnement et m le nombre de
segments dans S. Cette efficacité est obtenue aux dépens de la complétude. En
effet, I'algorithme utilise une heuristique qui n’est pas compléte. Cependant,
de nombreux tests en environnement de type réseau routier se sont révélés
concluants.

Mots clés: robots mobiles, planification de trajectoire, non holonomie, tra-
jectoire sans manceuvre.



Abstract

This report aims at studying the trajectory planning for a car-like vehicle
—i.e. a non-holonomic vehicle whose turning radius is lower bounded—in a
static and structured world. As for the structure of the world, we assume
the existence of natural lanes within which the vehicle is able to move. The
contribution of this report is a smooth trajectory planning algorithm which,
when given the polygonal line S representing the spine of the lane that the
vehicle has to follow, generates a trajectory C which avoids the obstacles of
the world and which is smooth—i.e. without backing up manceuvres—and
executable by the vehicle according to its own kinematic constraints. Besides
C is ‘topologically equivalent’ to S; in other words, C must remain in the lane
defined by S. C is made up of straight segments and tangential circular arcs
of a given radius r. The basic principle of the algorithm is to search for the
centre of each circular arc in a particular domain called ‘curvature centres
space’ [9]. This algorithm is efficient; its computational complexity is O(nm)
where n is the number of obstacles in the world and m the number of segments
in S. This efficiency is obtained at the expense of completeness because the
algorithm makes use of a heuristic which is not complete. However tests in
roadway-like environments have proved successful.

Key words: mobile robots, path planning, non-holonomy, smooth path.
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1 Introduction

1.1 General presentation

This report aims at studying the trajectory planning for a car-like vehicle—i.e.
a non-holonomic vehicle whose turning radius is lower bounded—in a static and
structured world. As for the structure of the world, we assume the existence of
natural lanes within which the vehicle is able to move. These lanes are defined
by the intrinsic structure of the world. Such a lane is represented by its spine.
Given the spine S of a lane, we are interested in planning a trajectory C which
avoids the obstacles of the world and which is smooth—i.e. without backing
up manceuvres—and executable by the vehicle according to its own kinematic
constraints. Besides C must be ‘topologically equivalent’ to S; in other words,
C must remain in the lane defined by §. The framework of this study is the
European Prometheus Eureka project whose purpose is to design new cars and
new road infrastructures. The road network is obviously a highly structured
environment. It is designed to ease the traffic; for instance, when a vehicle
intend to cross an intersection, it is supposed to follow a particular lane. Our
contribution to this project is to build software tools to guide several car-like
vehicles moving in subsets of the road network (3, 4].

1.2 Related works

Trajectory planning is certainly one of the most studied problems in robotics.
The well-known ‘piano mover’ paradigm, in which the trajectory planning
problem for any mobile is turned into the trajectory planning of a point in some
space called the configuration space!, brought about lots of papers proposing
general or specific, exact or approximate, and efficient or inefficient, methods
to solve this problem (see [15] for a recent overview). With this formula-
tion, the existence of a collision-free trajectory for the mobile is characterized
by the existence of a connected component in the admissible—i.e. collision-
free—configuration space. However many classical methods prove inadequate
when the mobile is subject to a non holonomic kinematic constraint—i.e. a
constraint expressed as a non-integrable equation involving the derivatives of
the configuration parametres. Since this equation is not integrable, there are
constraints in the tangent space at each configuration (i.e. on the allowable
velocities). The main consequence of a non-holonomic constraint is that an

1The configuration of a body A is a set of independent parametres that characterize the
position and orientation of every point in A. Let k be the number of parametres required
to specify the configuration of A. The configuration of A can be regarded as a point in a
k-dimensional space. This k-dimensional space is the configuration space of A.



arbitrary path in the admissible configuration space does not necessarily cor-
respond to a feasible trajectory for the mobile.

Dealing with non holonomy in trajectory planning is relatively recent. But
it has already produced some important theoretical and practical results. [§]
studies the problem for a car-like mobile and give the condition of existence
of a trajectory for such a mobile. This first result is implemented in [12].
Other contributions are also presented in [1, 14] and [17]. Important results
have been obtained by attacking the problem with tools from non-linear con-
trol and differential geometry (see [11] for a presentation of these tools). The
most important result is the ‘controllability’ theorem; it states that for a non-
holonomic mobile which is ‘controllable’, the existence of a collision-free trajec-
tory is characterized by the existence of a connected component in the free—i.e.
collision-free and contact-free—configuration space. As a consequence of the
controllability theorem, a collision-free trajectory for a non-holonomic con-
trollable mobile can be derived from a solution for the associated holonomic
mobile. This idea is the basis of the planners presented in [6], [13] and [7].

More interesting for our problem are the approaches aiming at planning
smooth—i.e. manceuvre-free—trajectories. This problem appears to be more
difficult than the case in which manceuvres are allowed. Indeed there is no
such controllability result. [2] presents a decision algorithm which decides if a
smooth path exists but this algorithm is not constructive. Various planning
algorithms are proposed in [5, 9] and [18]. All these methods generate trajec-
tories made up of straight segments connected with tangential circular arcs.
The methods described in [5] and in [9] deal with a circular mobile while the
approach presented in [18] consider a mobile which is, this time, rectangular
but compelled to follow some predefined straight lines.

1.3 Contribution of the report

The contribution of this report is a smooth trajectory planning algorithm for a
rectangular car-like vehicle which, when given the polygonal line S representing
the spine of the lane that the vehicle has to follow, generates a trajectory C
made up of straight segments and tangential circular arcs which meets the
constraints mentioned earlier. Let us notice that unlike [18], the vehicle is not
compelled to follow the spine of the lane. The basic principle of the algorithm
is to search for the centre of each circular arc in a particular domain called
‘curvature centres space’. Computingand searching this bidimensional domain
is carried out by using a method derived from the one described in [9} and
adapted according to the characteristics of our problem—i.e. dealing with a
rectangular vehicle and satisfying the ‘topological equivalence’ property. This
algorithm is efficient, its computational complexity is O(nm) where n is the



number of obstacles in the world and m the number of segments in the spine
S. This efficiency is obtained at the expense of completeness because the
algorithm makes use of a heuristic which is not complete—i.e. it may fail to
find a solution even if there is one. However tests in roadway-like environments
have proved successful.

The report is organized as follows: §2 presents the description of the en-
vironment and the modelling of the vehicle. §3 briefly outlines the algorithm
which is completely presented in §4. Finally experimental results are presented

in §5.

2 The world model

2.1 The environment

The natural workspace W of a car-like vehicle is the roadway. Since this
roadway is made up of smooth bidimensional surfaces, it is possible to map
these surfaces on a plane when reasoning on the vehicle’s motions. Therefore,
we consider W to be the plane R%. W is cluttered with a set O of static
obstacles representing the limits of the roadway (verges, pavements, central
reservations). Each obstacle o € O is represented by a generalized polygon i.e.
by a polygon whose edges are either straight segments or circular arcs [10].

2.2 The vehicle
2.2.1 Kinematic characteristics

Let M be a car-like vehicle. Such a vehicle has two rear wheels and two
directional front wheels. M is modelled by a bidimensional rigid rectangle
translating and rotating in the plane. A configuration of M is defined by the
t-uple (z,,yr,0) of R? x S1—S* is the oriented unit circle—where z, and y,
are the coordinates of the rear axle midpoint R and # is the orientation of
M—i.e. the angle between the z axis of the cartesian frame embedded in the
plane and the main axis of the vehicle (figure 1).

Let us consider that M is front wheel driven and that the associated velocity
vector is applied at the front axle midpoint F'. Then the control parametres of
the car are the module v of the velocity vector of F' and the steering angle ¢
measuring the orientation of the velocity vector of F with respect to the main
axis of M. The motion equations relating the control parametres (v, ¢) and
the configuration parametres (z,,y,,8) of M are:



¥, = vcosfcos¢
y» = wvsinfcos¢
§ = vsing/l,

where [, is the wheelbase of the vehicle i.e. the distance between R and F.
From this set of equations, we can easily deduce the following relation:

0 = arctan(y,/<,) (1)

This non-integrable constraint involving the derivatives of the configuration
parametres is non-holonomic. It states that the vehicle can only move in a
direction tangent to its orientation. Therefore it prevents M from executing
some particular trajectories (a pure rotation for instance).

Figure 1: a car-like vehicle

Besides M is designed so that, during a turn, the axles of the front wheels
will intersect the rear axle at a particular point G. This point is the instanta-
neous gyration centre of M and the distance from R to G is the instantaneous
curvature radius of the executed trajectory (figure 1). This curvature radius is
lower bounded by a certain value r depending both on the maximum steering

7



angle and the maximum centrifugal acceleration tolerated by the vehicle when
in motion (this acceleration must usually be limited to the order of magnitude
1g). Let vmqsz and @pac be respectively the maximum velocity of the vehicle
and the maximum steering angle, r = min(vZ .., l,/tan ¢maz)-

2.2.2 Trajectory characteristics

The trajectory planning of a rigid body in Euclidean space is classically turned
into the trajectory planning of a point in some space called the configuration
space’. In our context, planning a trajectory for M in W = R? is equiva-
lent to planning a trajectory for its reference point R in its associated three-
dimensional configuration space CS = R? x S*. Such a trajectory computed
in C'S must meet the kinematic constraints mentioned in §2.2.1 in order to be
executable by M in W.

However the relation (1) shows that there is a one-to-one correspondence
between a trajectory in C'S and its projection in W. Therefore any bidimen-
sional curve C of W defines a particular trajectory for M completely. In order
to represent a trajectory which is executable by M, C must meet the two
following properties:

1. C is piecewise of class C?*—a curve is of class C™ if it is differentiable n
times and if its n** derivative is continuous—(non-holonomy constraint).

2. The curvature in each point of C is less than 1/r where r is the minimum
gyration radius.

Besides since we are interested in finding smooth trajectories i.e. without
backing up manceuvres, C must also meet the following property:

3. Cis of class C!.

3 Outline of the trajectory planner

3.1 General presentation

The inputs of the trajectory planner are:

1. The geometric.description of the static obstacles of W i.e. the set O of
generalized polygons.

2. The geometric description of the vehicle M.



3. The minimum curvature radius r of M. As mentioned in §2.2.1, r is a
function both of the vehicle maximum steering angle and of the maximum

speed allowed.

4. The spine S of the lane that M has to follow. & is a polygonal line
represented by an ordered set of points (py,p2...p,). S is assumed to
meet the following properties:

(a) Voe O,Vi=1...n—1, the segment p;p;4; does not intersect
G(o,w/2) where G(o,w/2) represents the obstacle o isotropically
grown of the half width w/2 of M. In other words, M can follow
any straight segment p;, pi41 of S with the orientation p;p;3; without
generating any collision (except maybe at the ends of the segment).

(b) M is able to make a right-hand (resp. left-hand) turn starting from
p1 without generating a collision with an obstacle located on the
left (resp. right) side of the segment p,p,.

(¢) M is able to reach p, through a right-hand (resp. left-hand) turn
without generating a collision with an obstacle located on the left
(resp. right) side of the segment py,_;py.

The hypothesis (4a) is sensible since p;, p;4+1 represents the axis of a lane
within which M is supposed to be able to move. The purpose of the
hypotheses (4b) and (4c) will be cleared up in §4.4.

As mentioned earlier, the purpose of the trajectory planner is to produce
a trajectory which is collision-free and ‘topologically equivalent’ to S and ex-
ecutable by M. In our context, C is said to be topologically equivalent to S if
and only if it has the same end points p; and p,. the same tangent direction
at p; and p, and if it is homotopic? to S in W. M starts from the position p,
with the orientation p; p; and it is to reach the position p, with the orientation
Pn—1Pn.

The output of the trajectory planner is a geometric trajectory C made up
of straight segments and of circular arcs of radius r tangentially connected so
that the resulting curve will be of class C'. Thus all the kinematics constraints
of M presented in §2.2.2 are met. Let us notice that C is derived from S but
does not necessarily include a subpart of each segment p;p;4;.

2Let f and g be the characteristic representations of two trajectories i.e. two continuous
mappings from [0, 1] into W. f and g are homotopic if and only if there exists a continuous
mapping ® of [0, 1] x [a, ] into W such that ®(t,a) = f(t) and ®(t,b) = g(t).



3.2 Sketch of the algorithm

Vi=2...n—1, each t-uple (pi—1, pi, pi+1) of the path S represents a transition
from one straight segment to the next. Such a transition is called a ‘turn’
and is executed through a mere circular arc allowing M to move smoothly
from the segment p;_1p; to the segment p;pi41. Thus the basic principle of the
algorithm is to find for each turn of S the arc of radius r enabling the vehicle to
execute the turn without any collision with the elements of O. The algorithm
determines the centre of this turning arc by building and searching a particular
domain called ‘curvature centres space’. This domain is built so that if the
centre of the turning arc is picked up in it then the resulting trajectory for the
turn will be collision-free and topologically equivalent to (p;_1, pi, pi41)-

pi+l

Figure 2: linking two consecutive turns

The full trajectory is determined by considering sequentially all the turns
of S from the first to the last and by ‘linking’ together the consecutive turns.
Figure 2 illustrates the linking mechanism. Let (pi_1,p;,pis1) be the t-uple
associated with the ¢** turn and let 4; be its associated turning arc. Linking
together the i** turn with the i + 1** turn is carried out by considering the
t-uple (p, pi+1, Pi+2)—Wwhere p is the point of A; tangential to pp;;,-—as being
the t-uple associated with the : + 1** turn instead of (p;, pis1, Pis2)-

4 The trajectory planner

4.1 Characterizing a turn

Let A be the current turn of S that the vehicle M has to execute. A is charac-
terized by the t-uple (7igi;, nin2, n2ns) where rign, is the turning arc of centre
¢, and of radius r, associated with the previous turn; n;n; and nin; are two
connected segments (figure 3). A is a right-hand turn if nyn,; Anzng < 0 and

10



\ & 'left-hand turn otherwise. Remember that A has been previously computed
so that V o € O, nin; and nanz will not intersect G(o, w/2).

Figure 3: the turn A

Let ', be the nominal trajectory associated with A, I',, is made up of the
arc rign; and of the two segments n;n,; and n;n;. It represents a theoretical
trajectory which is obviously not executable by M. The trajectory planner
has to find a trajectory I' which meets both the topological equivalence and
the constraints expressed in §2.2.2. Thus the general form of I' is a connected
sequence (niolo, tot1, t112, t2n3) of class C! (the arcs are connected tangentially
to their associated segments); 129fp is an arc of centre ¢, and of radius r,, {11,
is an arc of radius r turning to the right or to the left according to A and tot;
and t;n3 are two segments (figure 3).

4.2 A preliminary remark

A collision occurs if an obstacle intersects the region swept out by the vehicle
M moving along a given trajectory C. In other words, C does not collide with
an obstacle o € O if and only if the distance between C and o is greater than
a certain value d depending on the geometric characteristics of both M and C.
Let w and I; be respectively the width of M and the distance between R and
the frontmost point of the vehicle. If C is a straight line then d = w/2. If C
is a circular arc of radius r then d = w/2 for an obstacle o located inside the
circle supporting the arc and d = F(r,l;,w) = (\/(r + w/2)2 4+ 1;> —r) for an
obstacle o located outside the circle supporting the arc (figure 4). Therefore a
trajectory C is collision-free if and only if it does not intersect G(o,d),V o € O.
Since d is lower bounded by w/2, a necessary condition for C to meet the non-
collision property is to deal with the obstacles of O isotropically grown of w/2.
Let O’ be the set of such obstacles.

11



XYL 3

wf2 F(r )f,w)

Figure 4: the region swept out by a turning vehicle

Note: this notion of ‘swept out’ region may be applied to any kind of vehicles—
i.e. vehicles whose shape is not necessarily a rectangle. The algorithm pre-
sented in this report considers a rectangular vehicle but it could easily be
extended to any polygonal vehicle.

Let us apply this non-collision criterion to the trajectory I'. Let us define
an ‘external’ obstacle as being an obstacle o € O such that o is included in
the concave domain bounded by (tot;, {1¢z, t2n3). An obstacle which is not
external is said to be ‘internal’. Then a sufficient condition for the trajectory
I" to be collision-free with the obstacles of O is that I" should not intersect the
external obstacles grown of F(r,l;,w) and the internal obstacles grown of w/2

(figure 5).

4.3 Building the curvature centres space for a general
turn of S

4.3.1 Defining D, D* and K(D*)

A turn is said to be general if it is neither the first nor the last turn of S—i.e.
it is assumed that there exists a previous turn and a next one as well.
Remember that I', is the nominal trajectory associated with the current
turn A. Let I', be the shortest (according to the Euclidean distance) trajectory
topologically equivalent to I',, and avoiding the obstacles of ¢'. T, is a geodesic
curve i.e. an alternated sequence of contact free segments and contact arcs
belonging to the boundaries of the obstacles of O’ [16]. As the trajectory T’

12



‘external’ obstacles %
Faf,w)

Fn w2

‘internal’ obstacle

Figure 5: the non collision criterion

searched for must start with an arc ngly of centre ¢y and of radius ry, the
disk C, supporting this arc is considered as a virtual obstacle at this step.
Therefore I', is made up of an arc of C, starting from ng, a segment S, a
convex sequence A of segments and contact arcs and a segment S; ending at
n3 (figure 6a).

Let <, be the subpart of I’y made up of S;, A and S;. Let v be the corre-
sponding subpart of I'. I' = noto U ~ where v = (totl,tl/t\g,tgns). According to
our initial hypothesis of topological equivalence, ¥ must be homotopic to 4,.
Laumond shows in [9] that a trajectory homotopic to (51, A4, S2) lies in the con-
cave domain D bounded by A and the half lines supporting S; and S;. More
precisely, if Py is the half plane bounded by the tangent to A whose direction is
A and which do not contain the contact obstacle then D = Ujyeqp,,»,) P Where
A1 (resp. );) is the orientation of Sy (resp. S;). Therefore the subpart v of
the trajectory I' searched for must be located in the domain D (figure 6a). Let
us notice that if I' lies in the domain D then it is collision-free with respect to
the obstacles located in the convex domain bounded by S}, A and S,.

Let 4* be the dual line associated with y—i.e. the polygonal line linking
the arc centres of same curvature of 4. Laumond also shows in [9] that v is
homotopic to v, if and only if:

1. 4* is contained in the domain D* = Uxgp, »,) Px Where P represents Py

13



translated of the vector (r.cos A, —r.sin ) (figure 6b).
2. 4* intersects the domain K(D") = D* N (Mg, ,2q) Py) (figure 6c¢).

Figure 6: D, D* and K(D*) for a turn

Since 7* is here reduced to the centre c of £;t2, c must belong to K(D*). It
stems from this property that the domain K(D") can be used to characterize
the set of the trajectories which are homotopic to v,. If a centre cis picked up in
the domain K(D") then the resulting trajectory I' is topologically equivalent to
I', and therefore to I',,. Besides I is collision-free with respect to the obstacles
located in the convex domain bounded by S;, A and S,.

4.3.2 Processing the obstacles included in D

The obstacles of O which are partly or completely located in D are still to
be dealt with. Let o € O be such an obstacle. It stems from the topological

14



equivalence property holding between I, and I' that the area located between
the concave domain defined by I', and the convex domain defined by T is free
of obstacles. Assuming that o is located in the concave domain defined by 7,
there will be no collision between 4 and o if the three following conditions are

met:

1. The arc {1¢; must not intersect the obstacle f(o) = G(o, F(r,l;, w))
(cf §4.2).
This constraint can be expressed by removing from K(D*) the domain

G(f(0),r). Indeed an arc of radius r does not intersect an obstacle if the
centre of this arc is located at a distance greater than r of this obstacle.

2. The segment tot; must not intersect G(o, w/2).

As a consequence, the point ¢; must not intersect the domain g,(0) which
can be seen as the shadow of G(o,w/2) when lighted from to (figure 7).
This constraint can be expressed by removing from K(D*) the domain

G(ga(0),7)-

3. The segment t3n3 must not intersect G(o, w/2).

As a consequence, the point t; must not intersect the domain g;(0) which
can be seen as the shadow of G(o,w/2) when lighted from nj (figure 7).
This constraint can be expressed by removing from K(D*) the domain

G(gs(0), 7).

As mentioned earlier, o0 has to be located in the concave domain bounded
by 7. This constraint is met if v lies outside the domain g(o) which is defined
as the convex hull of ¢g,(0) and g;(0)—i.e. the convex domain bounded by the
half line F; supported by the line tangential to G(o,w/2) and passing through
na, a part of the boundary of G(o,w/2) and the half line F; supported by
the line tangential both to G(o,w/2) and C, (figure 7). Therefore the domain
G(g(o),r) is removed from K(D").

4.3.3 Adding existence constraints

Finally, note that 4 will exist if and only if the two segments tot; and t;n3
exist (even with a null length). When C, is located in the convex domain
bounded by nin; and nyng (say, if C, is ‘outside’ the turn A) then tot; always
exists; otherwise ¢; must be located outside the circle C,. In order to meet
this constraint, the domains G(Cy, r) is removed from K(D*). tan; exists if the
point nj is located outside the circle C. In order to satisfy meet this constraint,
the domains G(ns,r) is removed from K(D*).

15



Figure 7: g,(0) and gy(0),0 C D

4.3.4 The final definition of CCS

Now, it is possible to define formally the curvature centres space CC'S for the
turn A:

CCS = K(D*) = U,e0.cp{9(f(0),7),9(g(0),)}
— G(ns,r)
— G(Cyp,r) if C, ‘outside’ A

Figure 8 shows an example of curvature centres space for the turn (rign,,
nina, nynz) among three black striped circular obstacles. The vehicle consid-
ered along with its gyration radius is represented in the lower left window.
The different domains to be removed from K(D*) are represented in the main
window. The thick black line is the limit of K(D*) while the dotted area rep-
resents CC'S for this particular turn. If the centre of the turning arc is picked
up in CCS then the resulting trajectory I' for the turn is collision-free and
topologically equivalent to I',. Let us notice that a sufficient condition for T’
to exist is that CCS # 0.

4.4 Building the curvature centres space for the first
and the last turn of S

The method presented above deals with a general turn—i.e. it is assumed that
there exists a previous turn and a next one as well. Dealing with the first or
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the last turn is slightly different because these turns must meet an additional
orientation constraint (see §3.1).

tuw*  world

Figure 8: an example of curvature centres space

Let us consider the first turn case. A first turn is characterized by the
t-uple (nynz, nons), there is no previous turn and M starts from the position
n; with the orientation nyn,. The method operates in two steps:

1. It generates a trajectory with the general method considering that ¢, =
n; and that r, = 0. It provides us with a trajectory I' = (nyty, 23, tan3).

2. It substitutes the segment n;t, for the sequence made up of the arc n;t,
of radius r tangential to n;n; at point n; and the straight segment tot,
connecting this arc to #,t, (figure 9).
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Figure 9: a first turn

One problem arises from this method: is the new sequence (nify, tot)
collision-free? It is if we assume that the hypothesis (4b) of §3.1 is true. Let
us consider figure 9, the hypothesis (4b) states that M is able to make a left-
hand turn starting from n; without generating a collision with an obstacle
located on the right side of the segment tot;. In other words, there is no
obstacle in the shaded region R. It can be easily shown that the new sequence
(n1to, tot1) is collision-free with respect to the obstacles of O.

Besides the problem of the existence of the arc n;fy lead us to modify
slightly the definition of the curvature centres space CCS for a first turn.
Indeed, in the case illustrated by figure 9, the arc n;t, exists if and only if
{11, is located outside the circle Ctirs—i.e. the circle of radius r tangential
to nyng at point n; and located in the concave domain bounded by nyn; and
nans. Therefore and in order to guarantee the existence of nyp, the domain
G(Clyirstyr) is removed from K(D*). The curvature centres space CCS for a
first turn is then defined as:

cCS = K(D*) - u((,eo,ogp{G(f(o),r),G(g(o),r)}
- gn3,r
- g(cjirshr)

Dealing with a last turn is done in a similar fashion. The same two-step
method is applied. Hypothesis (4c) of §3.1 guarantees that the new sequence
is collision-free. The definition of the curvature centres space is adapted in the
same way.
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4.5 Searching the curvature centres space

In the previous sections, we have shown how to build the curvature centres
space CCS for any turn A. we have also shown that a sufficient condition to
generate a trajectory I' satisfying all the constraints presented in §3.1 is that
¢ € CCS. Then the next step consists in exploring CCS in order to find such
an appropriate centre c.

Let us notice that CCS is not necessarily connected and that its connected
components are not necessarily simply connected (there may be holes). There-
fore the full exploration of CC'S is a very costly task (this point is emphasized
in [9]). Hopefully this full exploration is not necessary to solve our problem.
Indeed the vehicle is assumed to follow a trajectory somewhat close to the
theoretical trajectory represented by I', (remember that T',, is a subpart of the
spine S which captures the structure of the world). Since the easiest way to
perform A with a circular transition of radius r is to follow the arc tangential
to the segments n n, and nyna, it seems natural to expect ¢ to be in the neigh-
bourhood of the centre g of this particular arc. Therefore a good heuristic is to
restrict the exploration of CCS to the disk C, centered in g and whose radius
ry is a function of r (e.g. ry = 2r).

In practice, the domain C, is discretized and then explored. If the search
fails then it is assumed that the vehicle cannot perform A with the given radius
of gyration. Since CCS is not fully explored, The algorithm is not complete
and so is liable to fail to find a solution for some turns.

Different heuristic strategies may be used to explore C, depending on the
turn A considered. In the current implementation, we have considered two
different cases:

1. The default case. If g belongs to CCS then ¢ = g. Otherwise C, is
explored using circles centered in g and of growing radius (figure 10).

Figure 10: the default case
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2. The ‘close’ turn case. This heuristic is applied when the turn following A
is ‘close’. The next turn is said to be close if g belongs to the half plane
P that contains n3 and whose boundary is the bissector of the segments
ning and nzng (figure 11). A U-turn is a typical close turn case. In
this case, the previous strategy is not appropriate because it generally
produces a turning arc for A which overconstrains the next turn and
forbid to find a solution for it. To get round this problem, we make use
of an alternative strategy: the subpart of C, outside P is explored first
along lines parallel to the boundary of P. Eventually the subpart of C,
inside P is explored in the same way.

n0

n4

Figure 11: the ‘close’ turn case

Note: when two or more consecutive right-hand (resp. left-hand) turns are
close. It is possible to extend the concept of turn as defined earlier in §4.1 in
order to consider simultaneously the consecutive turns and to merge them into
one single turn to be executed through one single turning arc. For example,
let us consider the U-turn case depicted in figure 12. The current turn A is
characterized by the t-uple (rigiy, ninz, nan3). So far the next turn A, is
characterized by the two segments nin; and n3ns. A and A, are both right-
hand turns and A, is close to A. In this case, A and A, can be merged into
one new turn At characterized by the t-uple (rigny, nins2, nang, nang). The
definition of CCS for At remains the same and the trajectory I't searched for
is a connected sequence (ngto, tot1, t1iz, t2n4).

5 Experiments

A prototype of the trajectory planner was implemented in Lucid Common Lisp
on a 3/60 Sun workstation. The algorithm was successfully tested on several
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Figure 12: merging turns

examples of subsets of the road network (mainly intersections) and on more
complex environments (figure 14 and 15). '

These experiments have shown that the algorithm works fairly well as long
as the environment is not too tricky. This is obviously the case when one deals
with subsets of the road network since this environment is especially designed
for car-like vehicles.

These experiments have also shown that the set of solutions for a particular
turn is generally limited. In other words, the curvature centres space CCS is
a very restricted area. However it appears that a significant part of this area
is generally located in the neighbourhood of g. This validates the general turn
strategy used to explore CCS. Figure 13 illustrates this: the left hand screen
shows the environment, the spine S of the lane that the vehicle has to follow
and the resulting trajectory computed by the algorithm. The striped areas are
obstacles. The thin polygonal line represents S while the thick line is the final
trajectory. The radii of the circular arcs of the trajectory are displayed). The
right-hand screen shows the curvature centres space for the second turn of S.
CCS is represented by the black area.

Figures 14 and 15 show several results of the trajectory planner. The left-
hand part of figure 14 illustrates the U-turn case. The algorithm is able to
find a trajectory in this much constrained situation thanks to the ‘close’ turn
strategy used to explore CCS. The situation of the right-hand part of figure 14
corresponds to a parking trajectory (without manceuvres). This is also a very
constrained situation.

As for the complexity issues, the overall algorithmic complexity is O(nm)
where n is the number of obstacles in the world and m the number of segments
in the spine S. The use of heuristic strategies to explore CCS spares us the
cost of having to represent CCS explicitly and explore it thoroughly.
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6 Conclusion

In this report, we have presented an algorithm aimed at planning smooth
trajectories for a car-like vehicle—i.e. a non-holonomic vehicle whose turning
radius is lower bounded—in a static and structured world. As for the structure
of the world, we assume the existence of natural lanes within which the vehicle
is able to move. The planning algorithm, when given the polygonal line S
representing the spine of the lane that the vehicle has to follow, generates a
trajectory C verifying the following properties: (1) C is collision-free, (2) C
is smooth—i.e. without backing up manceuvres, (3) C is executable by the
vehicle according to its own kinematic constraints and (4) C is ‘topologically
equivalent’ to S; in other words, C must remain in the lane defined by S. The
generated trajectory C is made up of straight segments and tangential circular
arcs of a given radius r. The basic principle of the algorithm is to search
for the centre of each circular arc in a particular domain called ‘curvature
centres space’ [9]. The characteristics of the problem to be solved enable our
planning algorithm to operate within the workspace of the vehicle rather than
within its configuration space. This accounts for the efficiency of our planner.
However this efficiency is obtained at the expense of completeness because
the algorithm makes use of a heuristic which is not complete. But tests in
roadway-like environments have proved successful.
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