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Algorithmes de points intérieurs

par suivi de chemin avec perturbations
Résumé : Les algorithmes de suivi de chemin de type prédicteur correcteur se sont avérés
tres efficaces pour résoudre des problemes d’optimisation linéaire. Cependant, ['hypothése
du calcul exact de la direction de Newton (correspondant & un pas affine ou de centrage)
est peu réaliste. En effet, dans le cas de problémes de grande taille, il peut étre nécessaire
d’utiliser des algorithmes itératifs.

L’article présente une étude de ces algorithmes prenant en compte une erreur dans le
membre de droite. On donne des estimations précises et explicites de ’erreur permettant de
préserver la complexité algorithmique du cas non perturbé. On calcule aussi des estimations
explicites permettant de garantir un taux de convergence linéaire donné. Finalement, nous
présentons des résultats numériques encourageants.

Les résultats sont obtenus dans le cadre de problémes de complémentarité linéaire mo-
notone. Ils s’appliquent donc aussi a I’optimisation quadratique convexe.

Mots-clé : Programmation linéaire, complémentarité linéaire monotone, perturbation,
décomposition, calcul paralléle, problemes de grande taille, méthodes de points intérieurs,
complexité polynomiale, algorithme prédicteur correcteur algorithmes non réalisables.



1. Introduction.

In the last decade, a new generation of polynomial algorithms, based on the idea of com-
puting a sequence of interior points, brought a revolution in the field of linear optimization
[3, 4]. In the past few years, some algorithms that follow the central path, using Newton di-
rections on the equation of the central path, focused the attention of the community because
they both reach the optimal complexity known until now, while converging quadratically
[7, 6, 8]. Most implementations actually available of interior point methods are of this type.

For very large scale problems it may be useful to compute the Newton step by an ite-
rative algorithm. It is often observed that iterative algorithms compute at a small cost a
rough approximation of the solution, while it may be much more expensive to obtain a
precise value of the solution. Therefore a question arises: will the good convergence proper-
ties of path following algorithms remain if the Newton direction is computed approximately?
This question is meaningful in the general framework of linear complementarity problems, in
which linear optimization problems can be embedded (this also allows us to embed quadratic
programming ). Our concern is when the linearization of the complementarity condition is
solved approximately, that is to say we consider the usual linear equations corresponding to
the complementarity condition with a perturbation in the right-hand-side; we assume that
the equations of the Newton step corresponding to the linear equations of the complemen-
tarity problem (i.e., in the case of linear optimization, the primal and dual linear feasibility
constraints) themselves are not perturbed, but they can have a non-null right-hand-side if
the starting point is infeasible.

In that framework, we are able to give explicit estimates on the precision with which
the Newton step is computed, in order to keep complexity at the same order as for the non-
perturbed case, or an asymptotic linear convergence rate at an arbitrary rate. We give such
estimates for two algorithms of predictor corrector type, in small and large neighborhoods,
respectively.

The paper is structured as follows. Section 2 presents the main results for the perturbed
predictor corrector algorithm in small and large neighborhoods. The proofs are given in
Section 3. Finally some numerical results are reported in the last section.

Conventions Given a vector z € IR" the relation z > 0 is equivalent to z; > 0, i =
1,2,---,n, while z > 0 means z; > 0, i = 1,2,---,n. We denote IR} = {z € IR" : 2 > 0}
and IR} | = {x € IR" : x > 0}. We write ||.|| instead of ||.||2. Whenever we use other norms
like ||.||cc We use the corresponding symbol.

Given a vector z, the corresponding upper case symbol denotes as usual the diago-
nal matrix X defined by the vector. The symbol 1 represents the vector of all ones, with
dimension given by the context.

We denote component-wise operations on vectors by the usual notations for real num-
bers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will denote the vectors
with components u;v;, u;/v;, etc. We denote the null space and range space of a matrix M

by A (M) and R(M) respectively.
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The notation ¥ = O(ux) means that there is a constant K (dependent on problem
data) such that for every k € NV, ||z*|| < Kpg. Similarly, if z¥ > 0, 2F = Q(ux) means that
(zF)=1 = O(1/pk). Finally, z* & pj means that ¥ = O(ux) and =% = Q(ug).

We use the same notations for a point z in a set parameterized by u, say £,. We say
that © = O(u) (resp. = Q(u), & p) whenever there is a constant K such that ||z|| < Ku
(resp. 7! = O(1/p), © = O(p) and = Q(p)) for all z € &,, and all small enough u. In
particular, z ~ 1 in £, means that there are constants K5 > K; > 0, such that any z € &,
satisfies Ky < z; < Ko, i=1,---,n.

Given two vector functions ¢ and y, x &~ y means that z; ~ y; fori = 1,---, n, for small
enough p.

2. Main results.
The monotone horizontal linear complementarity problem (LCP) is as follows: to find
(z,8) € IR" x IR" satisfying

xs = 0,
Qx+ Rs = h, (LCP)
x,s > 0,

where h € IR", and @, R € IR"*" are such that for any u,v € IR",
(1) Qu+ Rv = 0 implies uXv > 0.
We denote the feasible set, and the set of solutions of (LCP) as

(2) F:={(z,s) € IR} x IR}; Qx+ Rs = h},

(3) S :={(z,s) € Fyxs = 0}.
Also, we denote the set of strictly complementary solutions by
(4) S :={(z,s) € S;z + 5 > 0}.

It is well known that if (LCP) represents a linear programming problem, then if &
is nonempty so is S°. This is not true in general, since it is easy to construct a quadratic
program with nonempty S and empty 8°. The existence of a strictly complementary solution
will be an essential assumption in points 3.2, 3.3.2 and 3.4.2.

Let (2°,s%, po) € IR} x IR} x IR44 be given. Set

g=(h—Qz"— Rs")/po.
Then (2°,s°, po) is an element of the set

(5) F9:={(x,s,p) € IR} x IR} x IR41; Qr+ Rs=h — pug}.
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If in addition 2%s° = pol, then (2°, 5% uo) belongs to the infeasible central path pinned on
g, defined as

xs ul,
(6) Qr+Rs = h—pg,

We consider algorithms for solving (LCP) that follow approximately this infeasible cen-
tral path, which whenever ¢ = 0 (feasible case) coincide with the (usual) central path.
We assume that the algorithms under consideration generate points (z, s, i) belonging to a
“small” neighborhood of the form

zs
Vg = {(;E,SHU) € fg; H? - 1” <a, p < uO}:
where o > 0 and po > 0 are given constants, or to a “large” neighborhood
zs _
N i={(z,s,p) € F¥; v1 < — < v 'L, p < o}
I

where 0 < v < 1 and pp > 0 are again given constants. It is easily seen that

(7) VICNS forall0<v <1 —a,

(8) NJ Ve forallaZﬁ(%—l).

The algorithms studied in this paper start each iteration from data (z,s,u) € V9 (or
Ng) and then compute an approximate solution of (6) with y replaced by yu where v € [0, 1].
The Newton direction (u,v) is solution of the following perturbed linear system:

(9) su+zv = —zs+yul 4+ un,
Qu+Rv = (1—7)ug,

where 77 is a perturbation taking into account the error in the computation of the Newton
step. (As the unperturbed right-hand side is of order u, we may expect to deal with pertur-
bations of order y, i.e. n of order 1.) Note that the second equation is not perturbed. The
new point, obtained by taking a steplength 6 € (0, 1] along this direction is

(10) el = x4 0u, ' = s+ 0v, py = (1—0+0y)p,

where gy is such that py < p < g, and the new point (zF, sﬁ,,uu) belongs to V4 (or to NY),
provided the “centering parameter” v € [0, 1] and the steplength 6 € (0, 1] are chosen such
that the new point belongs to a certain neighborhood of the central path.
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Let us note that under the monotonicity assumption (1) the system (9) has a unique
solution. Note also that the system (9) can be written as

(11) sutav = (1—7)(-zs+pn) +y(—zs + pl + pn),
Qu+ Rv = (1—7)ug,
and therefore
(w,v) = y(u %) + (1 —y)(u*,v")

where (u°,v®) is the solution of (9) with v = 1, called centering step, and (u?,v*) is the
solution of (9) with v = 0, called affine-scaling step.

Now we are ready to state a generic perturbed predictor corrector algorithm (GPC),
in which the set G denotes V¢ or N¢ depending on the algorithm:

Algorithm GPC Data: po, >0, (2°,5%, o) €G. k:=0
REPEAT

o x:=2F s:=s" pi=p;

e Corrector step: Compute (u¢, v°) solution of (9) with y = 1.
z(0) := x4 0u®, s(0) := s+ Hv°.

Compute 6° €]0, 1] such that (z(0°), s(8°), u) € G.
z = x(0°), s = s(0°).

e Predictor step: Set v = 0. Compute (u®, v?) solution of (9) with v = 0.
z(0) == x4 0u?, s(0) :=s+ v, p(d) =1 —-0)p .
Compute 6%, the largest value in ]0, 1] such that
(2(0), 5(0), u(6)) € G, ¥ 0 < 0°.

il = 2(09), 81 = 5(07), pryr = (1 — 0%) g,

e k:=k+1.

UNTIL g < floo-

In the following we consider two particular algorithms of the above general scheme and
we state our main results in both cases.

The perturbed predictor corrector algorithm in small neighborhoods is defined as follows:

Algorithm SPC
Fix €. > 0, ¢4 > 0, @ €]0,1/2] and G = V4.
Specialize Algorithm GPC to this case with ||n|| < ea, where € < €, during the
corrector step and € < ¢, during the predictor step, and 6° = 1 at each iteration.

Note that in GPC we require that the point obtained after a restoration step is in the
neighborhood G, whereas we fix here §¢ = 1. We check below that when ¢, is small enough,
then the point obtained in a corrector step with ¢ = 1 belongs to Vg/2. In addition, we give

an explicit estimate of the size of errors for which the complexity of O(y/nL) for the feasible
case (resp. O(nL) for the infeasible case) is preserved. Assuming the strict complementarity
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hypothesis, we also compute a tighter bound under which a given asymptotic linear rate
may be observed.

We say that (2°,s%) dominates (z*,s*) if 2° > z* and s° > s*. Similarly, we say that
(2°,s%) dominates a solution of (LC'P) if there exists (z*,s*) € S which is dominated by
(

sY).
THEOREM 2.1. Let L := log,(po/teo). We assume that e < 1/12 (e, < 1/4 whenever
a < 1/4), and that (z°,s°) dominates a solution of (LC P) whenever it is not feasible. Then
Algorithm SPC has the following properties:
(i) (Feasible case) Assume (2°,s°) to be feasible. If ¢, < 1/4, then the algorithm finds
a feasible point such that pi < poo in at most 3v/n/al iterations.
(ii) (Infeasible case) If ¢, = O(n), then the algorithm finds a point such that pp < peo

in at most O(nL) iterations.
(111) (Asymptotic rate of convergence) Assume S # 0. Let 8 € (0,1) and €, be such that

z0,
z0,

(12) 1+ (1-5) 4—}—i <L
ca 2] S 201-p)

Then lim sup pgy1/px < B. In particular, if e, < 1/5, then pg41 < pg/2 for k large

enough.

We now state the perturbed predictor corrector algorithm in large neighborhoods.

Algorithm LPC
Fix e > 0, ¢, > 0, v €]0,1/2] and G = V7.
Specialize Algorithm GPC to this case with at each iteration [|n||co < €. when com-
puting the centering direction and |[|n]|cc < €4 When computing the affine direction,
and

(13) o= min {1 g (G il ) |-

This choice of 8° implies, as we will see, that the point obtained after a corrector step
belongs to the interior of the large neighborhood, so that the algorithm is well defined. The
theorem below also gives an explicit estimate of the size of errors for which the known com-
plexity of the algorithm with i = 0, which is now O(nL) for the feasible case and O(n\/nL)
for the infeasible case, is preserved. Assuming the strict complementarity hypothesis, we also
compute a tighter bound under which a given asymptotic linear rate may be observed.

THEOREM 2.2. Let L = logy(pto/teo ). Assume that e, < 1/4 and that (2°, s°) dominates
a solution of (LC'P) whenever it is not feasible. Then Algorithm LPC has the following
properties:
(i) (Feasible case) Assume (2°,s%) to be feasible. If e, < 1/4, the algorithm finds a
feasible point satisfying p < poo in at most 16nL/v3 iterations.
(ii) (Infeasible case) If ¢, = O(\/n), then the algorithm finds a point satisfying pu < fico
in O(n\/nL) iterations.
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(111) (Asymptotic rate of convergence) Assume S® # 0. Let B € (0,1) and €, be such that
vig

40v2(1 — B)n

€q <
Then limsup pig1/px < 5.

3. Proof of main results.

3.1. Preliminary results. In this section we start by recalling some known technical
results and deriving an easy consequence of them. These results will be used for the analysis
of both algorithms. Set

, , dv _
qS::,/E; d:.= ,/@; Ti=d tu; 7= —v; Q:=QD; R:=uRD™".
M s M

Multiplying the first equation in (9) by 1/,/uzs, we obtain

s 1 x zs
1/—u—l——,/—'u v:—,/——i—’h/—u‘F\/—uU
J1z7 7 s 7 s s

Therefore (u, ) is solution of the scaled equation

u+v —¢+767" +67n,
(14) {aﬂ—i—ﬁi = (I =7)ug.

From (9) and (10) it is easily seen that

f P w
L 0+07" " 10107

(15) zhst 1-6 (,1:5

= ——-1)+1+
pg  1=0+0y \ p )

The first statement of the lemma below is due to Mizuno ([5], Lemma 1), and the second
statement is due to Mizuno, Jarre and Stoer ([6], Corollary 1).

LEMMA 3.1.
(i) If y,z € IR" satisfies y' z > 0, then ||yz|| <
(ii) Let (4, ) be solution of

1

+ 2z 2,
ﬁlly |

)

v = ,
v

i+
Qu+Ri =

>

bl

and &, 5 such that Qz + Rs = g. Then
llall < [IF1]+ 1121 + 1131,

[ol] < 11+ D&l + 1131
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The following technical estimates will be useful in the sequel.
LEMMA 3.2. Let (2%, 5%, po) and (z,s, p) be two elements of Ng such that (2°,s°) do-
minates a solution (z*,s*) of (LCP). Set (%,5) = (z* — 2°,s* — s%)/u®. Then

2T+ 6720 < 4;10%,
QI+ Rs = g,
ds 4n
&+l < —=.
Iz var

Proof. The first statement follows from Theorem 2.2 of [2], while the second is obvious.
Let us prove the last one. We have

1s ¢ P 8 oy o 167 oo 1||oo s 197 o 1||oo

ld=" 2] = |—s|| < llszl < llszl, = sT|&],

I
and similarly

d3 9! 6™ Moo o o 187 o 6™ llo 1||oo

=l = [[—23|| < =———||25]| < =——||=3]|» = 23],
T 1 T T

As (2%, s%) dominates (2*,s*), we obtain
. Yoo 20— z* s0 —s* Yoo
1 fto fto fifto

Combining with ||¢7!||cc < 1/4/V and the first statement, the result follows. O

The next lemma gives upper bounds for the term ||uv||/p of (15). Part i will be used in
the centering step and in the feasible affine-scaling step, while part ii will be useful in the
infeasible affine-scaling step.

LEMMA 3.3. Let (z,5,p) € N¢ and (u,v) be solution of (9). Then

i. IfuTv >0, then

(16) ¢ + 41 +1|>.

-
1 \/—
4. If (2°,5%) dominates a solution of (LCP) and p < po, then the affine direction

satisfies

a,a 2
[|uv®| < <M+ 5n )
g T\ v v\/v

(17)
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Proof. i. Using Lemma 3.1i and (14) we get

[Jwvl]

= [[uv]| < I* = $+707" + o7 |,

flluﬂ’ \fll

from which the result follows.
ii. Applying Lemma 3.1ii and Lemma 3.2 to the scaled equation (14), and using ||¢™!||

1/y/v and ||¢|| < y/n/v, we have whenever v = 0

IN

il

INA

-1 _1s ﬁ
=6+ n||+u(||d "””*'U”)’
_lnll, 5
Tea+lnl +a e < Iy 2

The same estimate holds for 7. Using |[uv|| < [[u||||7]|, the result follows. O

INA

3.2. Asymptotic analysis. We now prove a general result that will be used for the
study of the rapid asymptotic linear convergence in Section 3.3.2 and 3.4.2. Here, as in
those sections, we assume (LCP) has a strictly complementary solution, i.e. 8% # §. It is
well known that in this case there is a unique partition

BUN ={1,2,---,n}, BNN =10,

such that for any (z,s) € S° we have zg > 0,sp = 0,2y = 0 and sy > 0.
Following Bonnans and Gonzaga [1] we rename the variables in the following way

z < (zp,sy) and s« (zn,sB).

Algorithm GPC is invariant with respect to the permutation, whose advantage is just
to simplify the analysis by assuming that N = (). Therefore in points 3.3.2 and 3.4.2 we will
always refer to z as the vector of large variables and to s as the vector of small variables.
Of course this change of variables can only be done in the analysis, it cannot be used by
algorithms since B and N are unknown.

The following lemma indicates what are the order of magnitudes in the vicinity of the
infeasible central path.

LEMMA 3.4. ([2], Lemma 4.1) If (x,s,p) €G, thenz = 1, s~ p and d = 1.

Define the scaled variables

T:=d 'z, 5:= —s.
This scaling transfers z and s to the same vector Z = d~'z = ¢ = ds/u = 5. This scaling
allows us to represent the solution of (9) as O(p) perturbations of quantities that are easily

analyzed. In order to do so we represent the solution of the scaled equations (14) in terms
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of orthogonal projections. Given M € IR™*", ¢ € IR™ and the affine space defined by
Mz = q, we define the projections operators Pyr 4 and Py by

& — Py gz = argmin{||w — z|| : Mw + ¢ = 0},
and Pyr := Py 0. Similarly, we denote ]SM = I — Py the orthogonal projection on R(MT)
It is easily checked that Py gz = Py + Par g0 for any « € IR" and ¢ € IR™.

LEMMA 3.5. Let (z,s,pu) €G.
. (Feasible case) If (x, s) is feasible, then the solution of the scaled system (14) satisfies

U = yPgé' + Py(¢™ n) + O(n).
T = —6+7Pg07" + Pg(é7n) + O(n).

5. (Infeasible case) Let (&, §) be such that Q&+ RS = g. Then the solution of the scaled
system (14) satisfies
T = yPy(¢7" +ds) + Pgle™n) + O(p).
T = —¢+7Pg(e7" + Pa(d)) + Pg(e™'n) + O(n).
Proof. Let us first check that
(18) Qi+ Ri=0= € R(Q).

Indeed, if (a,?) satisfies the above relation, then Q(@ + ') + Ro = 0 for an arbitrary
u' € N(Q). Therefore (4 + u’)T6 > 0. As u’ is an arbitrary element of the vector space
N(Q), it follows that (u')To =0, i.e. v € M(Q)L = R(Q7), as was to be proved.

i. In the feasible case we have Qu + Rv = 0. So, using (18), it follows that v = dv/p €

R@"). Set
fi==6+7¢"" +0 .

Then

(19) . u ¢ f‘|‘R(§T),
Qu+TRv = 0.

This is the optimality system characterizing the orthogonal projection of f over the set
defined by the second relation. Therefore

u= P@va = P@f + P@,RUO'
This expression may be simplified noticing that Paqb = 0. Indeed, let (z*,s*) € S, then
s* = 0 and Q(z—z*)+Rs = 0; and therefore, using (18), s € R(QT) and ¢ = ds/u € R(@T)

Hence, we deduce that

(20) U= Pg(v¢~" +¢7'n) + Pg 0.
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We obtain the desired expression for w by checking that
(21) Py 0= O(1)
Indeed, using n = O(1), |[a +7|| = ||f|| = O(1) and, as w'w > 0, we deduce that ||7]| <
If]l = O(1), whence, using Lemma 3.4, |[v|| = pl|d=1%|| = O(p). Now, let @~ be a right
inverse for . Then Q(D~1Q~ Rv) = Rv, whence

1Pg &, 0ll < 1D7Q™ Ro|| = O(|Jv]l) = O(n).
This proves the formula for w, from which we deduce that

T=[—T=—¢+79"" + 67— Pg0" — Pg(¢™"n) + O(n),

and so the last relation of part 1 follows.
1i. Now let us deal with the infeasible case. Set

<
[l
<
|
—_
—
|
2
=
=
T

Then, by using (14), we get

T = f+1,
(22) {@a+ﬁa = 0.

Hence, as in the first part of the proof, we have

i = Pg(f+/f)+0Ww),
Py(=¢ —ds+(¢7" +d3) + ¢~ — u(l —7)d™'z) + O(p).

Let us check that P5(¢+d§) =0.Let (z*,s*) € 8, s* =0, then Q(z+puz—2*)+R(s+us) =0

and from (18) we deduce that s+ us € R(QT). Therefore ¢ +d5 = (d/u)(s+us) € R(GT) =
N(Q)*t. Combining with the above display and Lemma 3.4 we deduce

U= yPg(¢™" +d3) + Pg(6~'n) + O(p).

4+ O(p), we obtain the formula for @, from which we deduce the formula for

We will use the above lemma for the affine-scaling step in the rapid asymptotic linear
convergence analysis.
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3.3. The perturbed predictor corrector algorithm in small neighborhoods.
Let us define the centrality measure as the mapping

zs
0z, s, 1) =||— —1]|.
( ) Hu l

If (z,s,p) € F9 and d(x, s, u) = 0, then (z,s) is the infeasible central point associated with
the parameter value p.

3.3.1. Polynomial convergence.
Centering step. We start by describing the effect of a centering step on the centrality
measure.

LEMMA 3.6. Let (z,s, p) be such that §(x, s, u) < a. If e > 0 is so small that

@

5 1
m(l + €c) S

23 c o)
(23) €+ 5
then

P

(z+u)(s+v°) 1” <@
7 -2
This holds in particular if e, < 1/12 whenever a < 1/2, and ¢. < 1/4 whenever o < 1/4.
Proof. From (15) with vy = 6 = 1 we get

x4+ u)(s + v° ucv’
),

(24)

From (7) and (16), using d(z, s, ) < o and v = 1, we have

(25) a+[nl)* < (1+e)’a”.

1 1
< - - -
1 - (1—a)\/§( (1—a)\/§
Combining (25) and (24) and ||n|| < ec.a we deduce

1

(x 4+ u®)(s +v°)
(=)

1+ e 222,
” ( )

- 1” < e+

From (23) we obtain the conclusion. [

Affine-scaling step. We now analyse the effect of an affine-scaling step on the centrality
measure, beginning by considering an upper bound for this measure. From (15) with v =0,
we get

(z 4+ 0u®)(s + v?) | = zs g [ "+ 62 yye ’
My 7 1-6 1-6
xs 6 02 ||uv?||
< 1E |+ = 2 wv
< 2]+ g+
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By Lemma 3.6, the centrality measure after a centering step is at most a/2. Hence we deduce
a

that the point obtained with a value @ of the steplength along the direction (u®, v*) belongs
to the small neighborhood whenever

6 02 |u®?| o
2 < =
(26) Ll + e o
Therefore the main point is to estimate ||u®v?||.
LEMMA 3.7. Let (z,s,pu) € Vg/z Then
i. (Feasible case) If (z,s) is feasible, we have
a,,a 2
o el 0 a(/2+ )
p (1—a/2)V8

If in addition 0 < ¢, < 1/2 and 6< 1/2 verifies

(1 1/2 0))? 1
(28) 2n92( +a(l/2+ c)) §<——ea)a,
(a2 = \2
then §(xz + 0u®, s+ 6v*, (1 —0)p) <o, VOE€ (O,é]. In particular, if ¢, < 1/4 then
1
6* > 3 a/n.
i1. (Infeasible case) Let (2°,s°) dominate a solution of (LCP). If e, = O(n), then
6° = Q(1/n).
Proof.

i. Remembering that d(z,s, u) < /2, and using (u*)T v* > 0, we deduce from (7) and
(16) with v = 0, that

[Juv] 22
I —(1_(1/2)\/§”¢ _77H
Using H¢>2H < \/_H¢2H < /n(l+ a/2), and [|n|] < €qa, we obtain
lue?]) _ [+ alea+ VA2 (L+a(l/2+6))?
T (=a/2VB T (1-e/2)VE

This proves (27).
Using d(x, s, 1) < /2, (26) and [|n|| < €qcr, we deduce that 0 is feasible whenever

6 02 ||uv?||
LA <a/2.
—e“*ti=g 5 =
As the function f:(0,1) — IR defined by
0 0 Jluo?]

6) = .
HO0) = g+ 75—
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is increasing, for obtaining the desired inequality it suffices to show that f(é) < a/2.
| 1
Using # < — and — < 2, we get
guvs 2 I g

f((;) < € a + 252M.
I

Hence using part 1 and (28) we obtain that after a displacement step of value é, the
new point belongs to V4.
For the proof of the last statement, observe that if 6* > 1/2, the result is obvious.

- 1
Otherwise it suffices to prove that 6 := g\/a/n satisfies (28). In fact, as o < 1/2
and 0 < ¢, < 1/4, we have

nA2(1—|—oz(l/2+€a))2 nA2(11/8)2 la 1 «
2n6 1= a/2)v8 §92ﬁ<4—<2 )

ii. Combining with (17) and (26), we deduce that 6 is feasible whenever

ol +07 (s ) < -0

N |2

If ¢ > 1/2, the conclusion is obtained. Otherwise, the right-hand-side is greater
than «/4. Assuming ||n|| < cn, we see that 6 is feasible whenever

=

C 9

(nf)ec + <(1 T a)3/2)2 (n0)? < %

The left-hand-side is null when # = 0. Therefore, the inequality holds whenever nf
is small enough. The result follows.

O
Using the above results we will can easily prove in Subsection 3.3.3 that Algorithm SPC
has polynomial convergence.

3.3.2. Rapid asymptotic linear convergence.
LEMMA 3.8. Let (z,s, p) be such that §(z,s, u) < . Then

a,.a 2
HUMU H SEaCY ,‘4+%1_|_O(M).

Proof. Define u® := d=1u?,v* := d*—. From Lemma 3.5 with v =0 we get
I

(29) u: =07 = (Pgo~'n)(—0 + Pgo™'n) + O(n).
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Using Lemma 3.1 1 , ||¢71||eo < <+V1+aand ||n|| < €, and the fact

\/— [16]eo

that Pg and 156 are contractions, we have

I(Pgo~n) (=6 + g~ n)ll < [I(Pgo~"n)(Pgo~"n)ll + | (P56~ n)éll
< %nas-lnn%nqs- 116l

= ("¢ il ||¢||oo)

V38
< 6 el (11000 g
< i <¢§31a—a +VvI¥a)
)
As the function « E\jg 1 — o2 attains its maximum on [0, 1/2] at \/%, we

have, using (1 — )71 < 2:

IN

[(Pge™"n) (=3¢ + Pgo™ )|

€2 8
e

€2 —|—8 Ve +

= cqa——— = €,a\/ 4 —|— =
\/_ /62 \/_
Combining the above inequality and (29) we obtain the conclusion. O

LEMMA 3.9. Let 8 € (0,1) and (z,s,p) such that 6(x,s,p) < «f2. If there erists a
strictly complementary solution and (12) is satisfied, then 8* > 1 — 3 for k large enough.

Proof. Using the same function f as in proof of Lemma 3.7, it suffices to show f(1—5) <
«/2 to obtain the conclusion. From Lemma 3.8, we get

1-p (1—53)2 [Ju*v|
et T

1;66(1&—}—6&0[%\/4—1—%4—0(#),
1— 2
acq 66 (1+ (1-p)\/4+ %) +0(p).

Hence, using (12) the result follows. O
In the next subsection we will use the previous results for proving the asymptotic rate
of convergence of Algorithm LPC.

f(1—=5)

INA
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3.3.3. Proof of Theorem 2.1 .
i. By Lemma 3.6, we know that the centrality measure after a centering step is at
most a/2. In the feasible case, from Lemma 3.7 i the steplength of Algorithm SPC

k
1 1 1
satisfies ¢ > gx/a/n. Then pi < <1 - = g) po- Using |logs (1 — g\/a/n)‘ >
V n

3

1
gw/a/n we obtain the conclusion.

ii. Similarly, in the infeasible case, from 6* = Q(1/n), obtained in part ii of Lemma
3.7, we deduce that no more than O(nL) iterations is necessary.
iii. This is a simple consequence of Lemmas 3.6 and 3.9.

3.4. The perturbed predictor corrector algorithm using large neighborhoods.

In order to measure how interior is a point (z,s, ) w.r.t. Ng, we will use the distance of
zs/p to the boundary of the set

pCoC 3
(30) dz’gt(‘”: OTY) > 2 V2

(31)

T ={2€IR"; v1 < 2z < v '1}.

3.4.1. Polynomial convergence.
Centering step. Let us denote

2= x4+ 0% °, s =s+0%°.

LEMMA 3.10. Let (z,s,u) € N¢ and v € (0,1/2]. Ife. < 1/4, then (2¢,s¢, u) € N and

32n
Proof. From (15) with y =1

c,,C

u-v

¢ xrs
1—09) [ — —1) 41469+ (6°)?
- () srsrns S

c,c

(1— 0922 4 6°1 + 65 + (0°)2 —.
It It

Using (z, s, p) € N and 6° < 1 we get

(v +0°(1—v))l = (1—0)wl+0°1< (1—0)22 46°1 < ((1 _g)l +90) 1,
i v
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we have

dist((1—0°)=2 4 0°1,8T) > 0°(1 — v) >
i

| R

Using (31), the above inequality and 6° > 0, we get

r¢sc

dist(

,0T")

v

3

dist <(1 - 90)% + a%,ar) oo — (02 e : o

v

1 [|uv°loo
05 (= — ||nlles) — (6%)2 1122
(5 = [mlleo) = (%) p

uveo _ 1

< (= llle)/2
,OTY) > (% —|Inllec)/2 > 1/8, and the result

Let us first consider the case when #° = 1. Then, from (13),

rCSC

Using ||n]|ee < 1/4, we deduce that dist(
I

follows. Otherwise

N A 1 7
dist OTY) > (= = 1nllee)? .
EL0m) 2 (o) g
Using (16), (z,s,p) € N2 and [|n||c < 1, we obtain
[Jucv¢|| oo [Jucve|| 1 |lzs 2 n ( zs H 2
— < S—F%=|—-1+n| <——%1|——-1 +lnlle] .
It H AVER BT vWB\| o I

(G- ) ) < 2
/8 v Moo J = V38
Combining with the previous inequality and using ||9|| < 1/4, we obtain the conclusion. O

Affine-scaling step. From (15) with v = 0, denoting by (2*, s*, yy) the point obtained
after a step of value 8, we get

(32) zhst B ;7:3+ 0 n g2 y%y?
o w1010 &

and therefore, by Lemma 3.10,

zl st 32 ] 07 ||Juv?||co
: _ v > o [ — h—|

The following technical lemma is used in the proof of Theorem 2.2.

LEMMA 3.11. Let (z,s,p) € NY.
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Assume that (x,s) is feasible. If €, < 1/4, then

[lu®v[]oo n
3 — < —.
(%) i
, 3./9 _ 3
Moreover ifdist(ﬁ, aT") > i then 0 = —— satisfies
7 32n 16n

(z + 0u®, s+ 0v*, (1 —0)p) e NI, V0e€(0,6].

, 3
If (2°,s°) dominate a solution of (LCP), dist(ﬁ,ﬁ’rl’) > y3;/§ and e, = O(v/n),
I n

then 6° = Q(1/(n+/n).

Proof.

1.

ii.

Whenever (z, s) is feasible, we have (u®)Tv% > 0. Hence from (16) with v = 0, using
(z,s,u) ENJ, e, <1/4and v < 1, we get
[luv] 1

< 2<”<
u - B 77_1/8

. n l+12<n 2 _n
— B \v 4] T u/Rl6v? T v

7

This proves (34). B
It is easily checked that 6 satisfies

n-a 0 1/3\/5
— - < .
(35) 21/36 + 2= 3om
Using (33) and (34) we have whenever 6 < 1/2 and ||| < 1/4
zhst V20 n
dist(——,T") > Y/
s =0T 2 =3 e

In view of (35), the right-hand-side is positive whenever ¢ € (0,8]. The conclusion
follows.

If 6% > 1/2, the conclusion is obtained. Otherwise with (33) and (17), we get

zhst 3./9 2
st 207y 2 S g (Yol 0
My 32n v

vy

Assuming ||n||co < cy/n, we see that 0 is feasible whenever

V32
32

5n \’
— 20en/n — 26%n <ﬂ + ) > 0.
v o ) ~
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Therefore 6 is feasible whenever

32
64

5 \?2
> (0 Ony/n)? [ = .
> c¢(On+/n) + (0ny/n) <1/+1/\/17)
The right-hand-side is null when § = 0. Therefore, the inequality holds whenever
fn+/n is small enough. The result follows.
d
Using the above results we will prove in Subsection 3.4.3 that Algorithm LPC has
polynomial convergence.

3.4.2. Asymptotic rate of convergence.
LEmMA 3.12. Let (z,s,u) € NY. If there exists a strictly complementary solution and
€q <1 then

u?v?|| s 2
le*v*lleo 2, 1 ().
7 v

Proof. Using Lemma 3.5 with y = 0, we get

(36) u = w5 = (P(6~'n))((=6 + Pal6™1n))) + Olu).

Using [|¢7 | < 1/4/7, ||¢]|lec < 1/4/V and the fact that a projection is a contraction,
we have

A

1(Pgo~ n) (=6 + Pgo™ nllee < [1Pg6 ™ nllee (16lleo + | Pgd™ nlle )
16 oo 1nlleo (18l1oe + 116~ oo Ilc)

Combining the above inequality and (36) we obtain the conclusion. O

IN

INA

LEMMA 3.13. Let B € (0,1), 0 < v < 1/2 and (z, 5, ) € N¢ such that dist(~,dT") >
7
32 vig

. If there exists a strictly complementary solution and ¢, < ——————
san - yeomp Y = 40v2(1 - B)n
1— 3 for k large enough.

, then 6°

v

Proof. Tt suffices to show that the right-hand-side of (33) is positive whenever § < 1 — 3,
ie.

18 (=B el _ V2
3 8 po = 32
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By Lemma 3.12, this will be satisfied if

1—6+%(1—ﬁ)2 ENG)
I 32n

1.e.

o p V2 1 vig V2
a 1_ﬁ+%(1_6)232n v+2(1—p) (1 —B)n 32

The conclusion follows. O
The results of this subsection will be useful for obtaining the asymptotic rate of conver-
gence of Algorithm LPC.

3.4.3. Proof of Theorem 2.2 .
i. From Lemma 3.10, we get

z¢sc 32
oT") > ;
0T") 2 32n '

hence from Lemma 3.11 i the steplength of Algorithm LPC satisfies ¢ > v3/16n.
We obtain the conclusion following the same argument as in proof of part i of
Theorem 2.1.

ii. Similarly, in the infeasible case, from ¢ = Q(ﬁ), obtained in part ii of Lemma

dist(

3.11, we deduce that no more than O(ny/nL) iterations are necessary.
iii. This is an immediate consequence of Lemma 3.13.

4. Numerical experiments. In this section we present some numerical results that
strongly support the theoretical estimates obtained in the preceding sections. These experi-
ments are limited to the large neighborhood predictor corrector algorithm, choosing the size
of the neighborhood v = 0.01. The algorithm is the one described in this paper, in which the
stepsize for the centering displacement is as follows: starting from a unit step, we divide the
step by two until the new point belongs to the large neighborhood. This is a rather rough
linear search. Because it proved to be efficient, we content of it. We apply this algorithm to
a family of linear programming problems in standard form, i.e.

(37) Mincle ; Az =b; x>0,

where x € IR" and b € IRP. The necessary and sufficient optimality conditions for this
problem are

xs = 0,
Az = b,
c+ ATXA = s,
x>0, > 0,

bl
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and may be formally reduced to the linear complementarity format by writing the third
condition in the equivalent form BT¢ = BTs, where B is a matrix whose colums form a
basis of the kernel of A. The associated perturbed Newton step (u,v,dA) is solution of

su+zv = —xzs+yul 4+ un,
Au = (1=7)ugp,
AToA—v = (1—-v)ugp,

where gp and gp depend on the starting point.

In order to test numerically the robustness of the Newton direction, we choose to ge-
nerate some perturbations of the right-hand-side of the corresponding linear system in a
random way. Then we compare the number of iterations to the one obtained without per-
turbation.

We generate the data of the problem to be solved as follows. Given an even value for n,
we fix p = n/2. Then the matrix A is randomly generated (we performed all computations
and generations of random numbers using the standard MATLAB functions). We randomly
generate two nonnegative vectors & and §. Then we take b = Az and ¢ = s. In that way, z
and (8, A= 0) are primal and dual feasible, and therefore the linear problem has solutions.
The starting point is 2% = s = 1 and pg = 1. The algorithm stops when p < 10710,

The perturbation 7 is chosen so that it satisfies at each iteration

plinll = €[l £1I;

where f = —zs 4+ yul is the right-hand-side of the equations of the Newton step corres-
ponding to the linearization of the complementarity condition. That is, the perturbation
parameter ¢ is the ratio (measured in the L? norm) between the perturbation and the right
hand side. It varies between 0 and 0.25. Note that n = eu~?||f||z, where z belongs to the
unit sphere of IR™. One difficulty is that we do not have a direct mean for generating an
element of the unit sphere of IR™ with uniform probability. Therefore we propose two ways
for generating z.

The first method consists in generating at random each component of a vector z. Then
we obtain z by changing to 0 half of the components of z, i.e. we have either z; = z; or
zi=0,1=1,...,n.

Our results are a mean over ten runs except for n = 10000 where we perform only three
runs. Using this first method for generating z, we obtain the results of tables 1 and 2.
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nje 0 0.05 | 0.1 | 0.15 | 0.2 0.25
10 93 | 127 | 155 | 165 | 214 | 24.9
30 10.9 | 14.9 | 16.7 19 22 24.3

100 15 | 17.1 | 192 | 21.2 | 23.7 | 26.7
300 175 19.2 |1 21.8 | 23.7 | 26.1 | 28.8
1000 | 17.9 | 199 | 21.8 | 24.7 | 276 | 304
3000 20 | 229 | 25 274 1 30.1 | 33.3
10000 | 27 29 29 | 32.67 | 36 | 37.67

Table 1: mean value of the number of iterations

n/e 0 1005]01]015]0.2]0.25
10 10| 15 18 | 21 | 25 33
30 13 | 17 18 | 20 | 23 26
100 171 19 | 20 | 22 | 24 27
300 191 20 | 23 | 27 | 27 30
1000 |21} 22 | 23 | 29 | 31 32
3000 | 24| 24 | 28 | 30 | 33 37
10000 | 29 | 31 30 | 34 | 44 39

Table 2: number of iterations in the worse case
We now consider a second method of generating the direction z where we choose to
concentrate the perturbation in one component; i.e., all components of z are 0 except one,
taken at random. We test this perturbation method only in the case n = 10000. We perform
three runs for each value of €. We obtain the following tables:

e | 0.05 0.1 0.15 | 0.2 | 0.25
54.34 | 62.67 | 64.67 | 68 | 52.67

Table 3: mean value of the number of iterations

e 0.05]01]015]0.2]0.25
62 | 83 | 76 | T4 | T4

Table 4: number of iterations in the worse case
From these results, we may conclude that, at least for randomly generated problems, the
large neighborhood predictor corrector algorithm described in this paper is both rapid and
very robust with respect to perturbations in the computation of the Newton step.
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