N

N

A Translation of Statecharts and Activitycharts into
Signal Equations
Jean-René Beauvais, Roland Houdebine, Paul Le Guernic, Eric Rutten,

Thierry Gautier

» To cite this version:

Jean-René Beauvais, Roland Houdebine, Paul Le Guernic, Eric Rutten, Thierry Gautier. A Trans-
lation of Statecharts and Activitycharts into Signal Equations. [Research Report] RR-3397, INRIA.
1998. inria-00073292

HAL 1d: inria-00073292
https://inria.hal.science/inria-00073292
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073292
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A trandlation of Statecharts and Activitycharts
Into Signal equations

JR Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

N° 3397
Avril 1998

THEME 1

apport
derecherche

% I N RIA

RENNES

A translation of Statecharts and Activitycharts into
Signal equations *

J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautierf

Théme 1 — Réseaux et systémes
Projet Ep-Atr

Rapport de recherche no 3397 — Avril 1998 — 56 pages

Abstract: The languages for modeling reactive systems can be divided in two
styles: the imperative, state-based ones and the declarative, data-flow ones. Each of
them is best adapted to a given application domain. This paper, through the exam-
ple of the languages Statecharts and Signal, shows a way to translate an imperative
specification (Statecharts) to a declarative, equational one (Signal). This translation
makes multi-formalism specification possible, and provides a support for the interop-
erability of the languages. It gives access from a Statecharts specification to the DC+
exchange format between the tools implementing the synchronous technology, using
e.g. the clock calculus available in Signal. Statecharts specifications can thereby be
applied functionalities of verification, validation, compilation, optimization, efficient
and compact code generation, distributed and execution architecture-dependent code
generation. The results presented here cover the essential features of StateCharts as
well as of another language of Statemate: Activitycharts.

Key-words: Signal, Statecharts, Activitycharts, DC+, reactive & real-time sys-
tems, synchronous languages, interoperability, code generation

(Résumé : tsup)

* The work described in this paper is partly funded by the CEC as Esprit Project EP 20897
SACRES (SAfety CRitical Embedded Systems: from requirements to system architecture).
' email: {Beauvais| Thierry.Gautier|Roland.Houdebine|Paul.LeGuernic|Eric. Rutten }@irisa. fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Teéléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Teélécopie : 0299 84 71 71 - International : +3329984 7171

Une traduction de Statecharts et Activitycharts en
équations Signal

Résumé : Les langages de modélisation des systemes réactifs peuvent étre di-
visés en deux styles : les langages impératifs ou a états et les langages déclaratifs
ou & flots de données. Chacun est plus adapté & un domaine d’application donné.
Ce rapport, au travers des langages Statecharts et Signal, montre une méthode de
traduction d’une spécification impérative en une spécification déclarative (équatio-
nelle). Cette traduction rend possible la spécification multi-formalisme, et fournit un
support & 'interopérabilité des langages. Elle donne acces depuis une spécification
en Statecharts au format DC+ d’échange entre les outils mettant en ceuvre la tech-
nologie synchrone, et utilisant le calcul d’horloges de Signal. Des spécifications en
Statecharts peuvent ainsi se voir appliquer des fonctionnalités de vérification, valida-
tion, compilation, optimisation, génération de code efficace et compact, génération
de code distribué et dépendant de I'architecture d’exécution. Les resultats présentés
ici couvrent les aspects essentiels de Statecharts, ainsi que d’un autre langage de
StateMate: Activitycharts.

Mots-clé : Signal, Statecharts, Activitycharts, DC+, systemes réactifs & temps
réels, langages synchrones, interopérabilité, génération de code

A translation of Statecharts and Activitycharts into Signal equations 3

1 Introduction

1.1 Context and objective

Different languages exist for the design of reactive systems: the languages Lustre
[8] and Signal [6],[3] are declarative and equational data flow languages, while Es-
terel [5], Statecharts [9] and Argos [15] are imperative sequencing languages. The
choice between the declarative and the imperative approach has an influence upon
facility to handle a given application area. For instance, declarative languages easily
handle signal processing while imperative formalisms are often used for sequential
control systems. The need for a control mechanism such as task management for
example appears in application domains involving the control of physical processes.
For complex systems involving the two aspects, a multi-formalism specification can
be useful.

This paper is a proposal to give a translation from the essential features of Statecharts
and Activitycharts to the equational language Signal. Among the different semantics
of Statecharts [13], the translation proposed here follows the Statemate one [11].

1.2 Motivations

Signal being a representative of the class of declarative synchronous languages, this
translation:

e provides a way to merge imperative and declarative synchronous languages by
simply composing equations (composition of Signal processes),

o fulfills the lack of imperative features of Signal,
e gives a compositional definition of the considered Statecharts semantics,

e opens a direct connection from a Statecharts design to the synchronous tech-
nology tools of the Signal environment, but also of those compatible with the
DC+ format: compilers, simulators, verification systems,

e one of these tools is a code generator that can produce efficient and compact
code from a Statecharts specification, using the clock calculus available in Si-
gnal. It can also generate distributed and architecture-dependent code.

We believe that the graphical readability of Statecharts makes it a good candidate
for the design of an imperative specification. The Signal language, using an elaborate
clock calculus makes it a good choice to extract clock properties from a specification

RR n3397

4 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

in order to get efficiency in code generation and in verification. Moreover, keeping the
structural information through the translation and not simply coding is a key issue
for understanding interactions between components from different sources. Taking
care of the traceability between the initial specification and the generated code allows
to route information extracted from the verification tools back to the specification for
user feedback (diagnostic, counter-example). The other way, from the specification to
the generated code, traceability may be used to add, at specification time, directives
for thee partitioning into tasks or distributed processes.

A concrete motivation and application of this work takes place in the context of the
Sacres programming environment [7]. The purpose of the Esprit project SACRES
(SAfety CRitical Embedded Systems: from requirements to system architecture) is to
integrate into a unified and complete environment a variety of tools for specifica-
tion, verification, code generation and validation of the code produced. Among the
application domains targeted are avionics and process control. The question of cer-
tification and validation is integrated into the environment. Member partners of the
SACRES project are: British Aerospace (UK), aircraft builder; i-Logix (UK), who de-
velop and distribute STATEMATE, the environment for designing in STATECHARTS;
INRIA (France), a research institute where new technologies are defined and deve-
lopped around the synchronous language SIGNAL [6]; OFFIS (Germany), research
institute bringing verification technology; Siemens (Germany), where controllers for
industrial processes are developped; SNECMA (France), builder of aircraft engines;
TNI (France), who develop and distribute the SILDEX tool and the SIGNAL language;
the Weizmann Institute (Israel), as regards semantic aspects and the validation of
code. Figure 1 illustrates the architecture of the SACRES toolset. It shows informa-
tion flows between the elements of the toolset, and the central position of the format
between the tools of the environment. Translators to and from DC+ are developed
in the framework of the project, and enable the connection of all the representa-
tions specific to the different tools, using the common format. The translation from
Statecharts to DC+ is one of them.

DC+ is an exchange format which supports the representation of Signal; as such,
they are quite in nature: both are defined in terms of systems of equations over
flows or signals. Signal being a programming language, it is prefereable to use it
for readability purposes, hence this paper presents the translation in terms of Signal
rather that DC+.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 9

Specification tools
" Timing
SateMate Sildex SSL Diagrams
Code Generation Verification
(optimisations, DC+ common format (components,
distribution) systems)
Proof Scripts
Code Validation

C, Ada

Figure 1: Global architecture of the SACRES environment.

1.3 Related work

Differents attempts have been made to mix imperative and declarative synchronous
languages. In [15], the authors present a way to compile Argos (a hierarchical concur-
rent automata language, which can be considered one of the Statecharts variants)
into a Mealy machine implicitly represented by a set of boolean equations in the
declarative code DC [20]. Each state of the hierarchical automaton is associated
with a boolean signal being frue when the state is active and false otherwise. This
boolean signal is updated when, in the Argos hierarchy, the state to which it belongs
is activated. The configuration of a Statechart (the list of its active states) is hence
represented as a tree of booleans. Mixing these equations with DC equations genera-
ted from other languages (e.g. Lustre), provides a way to mix imperative/declarative
formalisms. The translation covers some basic features of the Statecharts: hierarchi-
cal parallel automata with event sending for actions. Then, using the semantics of
both languages, the authors prove that the translation preserves the behavior from
the point of view of trace. However, the semantics adopted is the Argos one which is
a kind of purely synchronous semantics of Statecharts different from the Statemate
one [11]. Also, a lot of features of the languages of Statemate are absent from Argos.
In [4], the author gives a semantics of the ESTEREL synchronous language in terms of
electric circuits. First, the substatements of a ESTEREL statement are individually
translated into circuits, then, the obtained circuits are combined using appropriate
auxiliary gates and wiring. Some aspects of the translation reveal to be close to the

RR n3397

6 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

one presented here: particularly the subcircuit interface which is close to the one of
Section 4.1 and the wiring of the controls signals between the subcircuits.

A tool for the integration of different synchronous languages is being developed in the
SYNCHRONIE project [14]. SYNCHRONIE is a workbench for synchronous program-
ming. It provides compilation, simulation, testing and verification tools for various
dialects of the synchronous programming paradigm. In the first instance ESTEREL,
ARGOS and LUSTRE compilers are being developed and integrated. The integration
is made through a common semantical representation: synchronous automata which
are essentially Mealy machines. The equational translations of StateCharts into a
synchronous model presented here might be supported also by SYNCHRONIE.

An attempt using the declarative Signal language has already been done in [16].
This is an extension of the Signal language called Signal GTi with constructs for
hierarchical task preemption. In the declarative synchronous language Signal, a
process defines a behavior of an unbounded series of instants. However, there are no
explicit language constructs handling the termination, interruption or sequencing of
processes, that is to say the limitation of behaviors to a slice of this series of instants.
In Signal GTi, tasks are defined as the association of a data-flow process with a time
interval on which it is executed. Both data-flow and tasking paradigms are available
within the same language-level framework. An implementation of Signal GTi as a
preprocessor to the Signal environment [17] consisted in the generation of equations
for activity management, using additional control signal similar to the reactive box
model of Section 4.1.

1.4 Organization of the paper

This paper extends a shorter presentation [2] with a wider coverage of Statemate
actions, as well as a management of activities. After a description of the Signal and
Statecharts formalisms in Sections 2 and 3, it presents the translation of the major
constructs of the Statecharts in Section 4. Then a translation is given in Section 5,
with some examples to illustrate it. It covers the essential features of a Statecharts
and Activitycharts; it concentrates on the behavioral aspects, in the framework of
the step semantics; Other aspects like elaborate data-types, the superstep semantics,
some particular aspects of actions, ..., are part of the perspectives. Section 6 describes
the translation schemes for Activitycharts. In Section 7 describes how Signal can be
used to model nondeterminism, and indicates how the translation can be modified
accordingly.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 7

2 Signal: a declarative synchronous language

Signal is a synchronous real-time language, declarative, data flow oriented and built
around a minimal kernel of operators [6, 3]. It manipulates signals, which are un-
bounded series of typed values (e.g., integer, logical). They have an associated
clock defined as the set of instants where values are present. Given a signal X, its
clock is CX obtained by CX := event X, giving the event present simultaneously with
X. The constructs of the language can be used to specify, in an equational style, rela-
tions or constraints of clock inclusion or clock equality between signals, and functions
of values. Systems of equations on signals are built using composition. This compo-
sition is strictly synchronous, meaning that it constructs the system of equations on
signals, describing the relation between all of them at the same logical instant. In
particular, this involves that inputs and outputs of an equation are present at the
same instant, and that composed equations share signals within that same instant.
The kernel of Signal comprises the following primitive processes:

Functions Y := £(X1, X2, ... , Xn) e.g.,, boolean negation: Y := not E.
Delay ZX := X$1 init VO gives the past value of X (with initial value V).
Selection Y := X when C according to a boolean condition C.

Deterministic merge Z := X default Y (with priority to X when both are pre-
sent).

Parallel composition (| P; | P, |) union of the systems of equations.

The following table illustrates each of the primitives with a trace:

n 4 3 2 1 0 4 3 2 1 0 4
zn := n$1 init O 0O 4 3 2 1 0 4 3 2 1 0
p := zn-1 -1 3 2 1 0 -1 3 2 1 0 -1
fill := true when zn=0 t t t
empty := true when (n=0) f t f t
default (not fill)

The rest of the language is built upon this kernel. Derived operators have been
defined from the primitive operators, providing programming comfort. E.g., X "= Y
constrains the signals X and Y to be synchronous, i.e. their clocks to be equal. A
structuring mechanism is proposed in the form of process schemes. The process
CB := when B gives the clock CB of occurrences of the logical signal B at the value
true. The ~0 signal is the null clock ie. a signal that is never present.

RR n3397

8 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

The Signal compiler performs the analysis of the consistency of the system of equa-
tions (absence of causal cycles), and determines whether the synchronization cons-
traints between the signals are verified or not. The compiler synthesizes control
through a clock hierarchy based on instant presence inclusion. A clock calculus
using algorithms on BDDs may reorder the clock hierarchy [1]. In the course of
development, a program can also be checked for real-time properties through timing
analysis [12]. Eventually, executable code can be produced automatically (in C,
FORTRAN or ADA). The compiler is being re-designed as a virtual machine for the
transformation of a hierarchical conditioned-dependencies-graph representation of
programs, for which an external exchange format is DC+ [18]. The SACRES project,
mentioned earlier, is the context of an application of this design.

process tank = {integer capacity;}

(? event fill;
! boolean empty;)

(| when(zn=0) ~= fill
| zn :=n $1 init O
| p:=zn -1
| n := (capacity when fill) default p
| empty := when (n=0) default (nmot fill)
1

where integer n, zn, p;

end;

Figure 2: A refillable tank

Figure 2 shows an example of a Signal program describing a refillable tank. This
process named "tank" has a constant parameter capacity, an input signal: f£ill

0 0 0 0
T T Y T By
0 0 0 0
T T T R
x x x x fill

tf tf ot f tf
H T - empty

Figure 3: The clocks of the tank process

INRIA

A translation of Statecharts and Activitycharts into Signal equations 9

(pure event), an output signal empty (boolean) and a list of equations defining the
body of the process. The behavior described in this process is the following: whenever
the tank is filled, with input signal £ill set, the level of water in the tank starts to
decrease (n) until the level reaches 0. At this time, the output empty signal is set to
true. Then, the next £ill can refill the tank and set the empty signal to false.

The presence instants (clocks) of the signals in this program are illustrated in figure
3. One can notice that clocks of local (internal) signals is faster (i.e., includes) than
that of inputs and outputs: in that sense it is possible to specify oversamplings in
Signal, i.e. processes which are not necessarily strictly reactive to their inputs.

3 Statemate: Statecharts and Activitycharts

Overall organization. The Statecharts formalism has been introduced by Harel
[9]. It is a graphical language based on automata. It is integrated in the Sta-
teMate environment, along with another language called Activitycharts, which is
block-diagram oriented. It is implemented in the tool Magnum, designed by i-Logix.
The specification of a model in Statemate is composed of charts. To each chart
is associated the declaration of data-items (i.e. variables with a given type) and
events, hence defining their scope: these are known inside the chart. Other data-
items and/or events can be exchanged with the environment. The chart is further
defined by either an Activitychart or a Statechart, which can be itself decomposed
hierarchically into sub-charts. The entry point for a model is an Activitychart, which
describes a structural decomposition by being divided into sub-activities, recursively.
Some sub-activities, called control activities, can be defined by a Statechart.

Hierarchical parallel automata. A Statecharts design essentially consists of
states and transitions like a finite automaton. In order to model depth, a state
can be refined and contain sub-states and internal transitions. Two such refine-
ments are available: and and or states, that give a state hierarchy. At the bottom
of the hierarchy, Basic-states are not further refined. If the system specified by a
Statechart resides in an or state, then it also resides in exactly one of its direct
sub-states. Staying in an and state implies staying in all of its direct sub-states
and models concurrency. When a state is left, each sub-state is also left, thereby
modeling preemption. Sub-states of an and state may contain transitions which
can be executed simultaneously. The configuration of a Statechart is defined by the
hierarchy of states and sub-states in which it stays. The different and parts of a
state may communicate by internal events which are broadcasted all over the scope

RR n3397

10 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

of the events. For instance, the emission of an event on a transition may be sensed
somewhere else in the design and trigger a new transition.

In the Statechart example of figure 4, the basic components are states and transitions,
some states clustered in or composition (Sub_Running_Up is an or state containing
81 and S2) while some other groups in and composition (Running is an and state
containing Sub_Running_ Up and Sub_Running_Down).

When entering a state containing sub-states, different behaviors are possible: when
entering a state by a transition pointing to the boundary of the state, the state
targeted at by the default connector (a transition without origin) is activated. When
reentering a state through a history connector (H), the sub-state activated is the
one that was active when the state was left. When entering for the first time a state
containing a history connector, the transition leaving this history connector is used
to find the sub-state to activate. Finally, deep-history (H*) is a connector that acts
similarly to the history connector but applies to all the sub-states in the hierarchy.
Note that the same state can have all the three ways of being entered, hence the
corresponding mechanisme is applied, according to the transition through which it
is entered.

Transitions and actions in a step. The transitions between states are labeled
by reactions of the form: e[C]/a, where e is an event that possibly triggers the
transition, C is a boolean guard condition that has to be true to pass the transition.
The previous event and the boolean together give the trigger part of the transition
while the right part of the “/” (a) contains the actions that are carried out if and

(Sub_Running_Up h
a -
Sl | o =) e
alb ¢
m m
=
o e GRGEEEEEEEEEEEPEEE
=)
x
Y . N f
E:A VE]
" b/d
_Sub_Running_Down)

Figure 4: A Statechart example

INRIA

A translation of Statecharts and Activitycharts into Signal equations 11

A
SR
Al A2
All >
-
Y
A
Al12
= A3

Figure 5: An activities hierarchy.

when the transition is fired. As a special kind of transitions, Statemate offers the
possibility to associate such labels to a state. Whenever this state is active, the
trigger part of the transition is evaluated and possibly the action is carried out.
Such transitions are called static reactions.

The basic evolution of a Statechart consists in a step, where given the events currently
present and the current values of variables, triggers and conditions are evaluated,
and actions are carried out. In Statemate the effects (event generation, variable
modifications) of the actions carried out in one step are sensed only at the following
step. This makes a difference with other semantics [13], e.g. strictly synchronous as
in ARGOS [15].

The step semantics is the interpretation of a StateMate specification where inputs
from the environment are considered at each step, taking part in the current events
and variables. Another semantics is the superstep intepretation: here, inputs take
part only in the first of a series of steps, called a superstep. There, the following
steps take in consideration only the effects of the previous one (i.e. locally emitted
events and changed values), until there is no transition to take anymore, i.e. no step
to make. This situation, called stable, is the end of the superstep, and inputs are
acquired from the environment anew.

For actions comsisting in assigning values to variables, the same variable can be
referenced in assignments associated with different transitions: each provides with a
contributed value, and the variable takes its values from the action contributing in
the current step.

RR n3397

12 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

Activities. Besides the Statecharts, another language of the StateMate environ-
ment is Activitycharts [10]: it provides the designer with a notion of multi-level
data-flow diagrams, as illustrated in Figure 5. Each of the blocks in the hierarchy re-
presents an activity. The activities can be used to construct a structure decomposed
hierarchically.

At each level, one of the activities, designated in the graphical syntax by a rounded-
cornered box, can be a control activity (e.g. activiy A2 in Fig.5). It is associated
with a Statechart defining its behavior. The latter can start, stop, suspend and
resume the activity, as well as sense its current status.

Actions with a trigger can be associated with an activity, they are called mini-specs,
and have the same form as labels seen associated with transitions or static reactions
with states in Statecharts.

Links between activities represent the data or control exchanges between activities.
They can be augmented with elements called data-stores representing the way data
is kept along steps. This aspect of the language is however based on the fact that
variables and events are known all over a chart (the scope of their definition). There-
fore it will not be handled explicitely in the translation. The representation of data
flow links is but an explicitation of communications existing anyway.

Finally, a concept of ModuleCharts also exists in StateMate, handling the association
of a specification with an execution architecture. This point is not covered by the
present work.

4 Translation principles

First, we introduce a reactive box model, then, in order to simplify and to structure
the translation from Statecharts to Signal, some predefined processes useful for the
translation are given. They correspond to the basic features of the Statecharts.

4.1 The reactive box

As a common framework for reactive specification, we define a model of reactive
box with a normalized interface. Each part of the design to translate will have this
interface scheme represented as a process in Signal. In particular, and-nodes and
or-nodes will each be translated into a process with this structure, hence insuring
the hierarchical propagation of control signals such as clocks and resets.

In the Signal language, an interesting property is that the behavior of the composition
of two processes is the intersection of the behaviors of the constituent processes. This

INRIA

A translation of Statecharts and Activitycharts into Signal equations 13

llrpl‘ﬁs‘ O %Tick %Localclock %Control

[TTTTT]
Outputs

Figure 6: The reactive box model

is similar to the solutions of an equational system. Hence, this reactive box model is
compositional in the same sense and gives a compositional semantics for Statecharts
that may be used to do modular proofs.

A reactive box is a box containing input and output signals. Some of these interface
signals are common to every box:

e Tick is the clock of the whole design. It has been added because in Statemate,
the events generated by a step are sensed only at the beginning of the following
step (generated events are shifted). This signal is the reference clock used for
the purpose of shifting these events and value changes by one instant of the
global clock!.

e LocalClock is the clock of the box. This clock is present whenever the cor-
responding Statecharts component is active.

e Control is an enumerated-typed signal ranging in Start, Stop, Resume,
LocalResume. This type is called tcontrol. It is used inside the box to know
when and how the box is (re)entered. If its value is Start, all the (sub)levels of
the box need to be reset. If its value is LocalResume (e.g. the corresponding
state is activated through a history connector) the box needs to be reset for all
the levels but the level where the LocalResume connector belongs. Resume
means that the box is activated but no reset has to be performed. The Resume
value is useful because for instance in Statemate, a state may contain entering
in the trigger part of a static reaction that enables the static reaction when the
state is entered. Similarly with exiting, the value Stop is used when leaving
a state in Statemate.

!Note that, however, memorization associated to the shifting process will be managed with
optimizations w.r.t inactive sub-statecharts

RR n3397

14 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

In Signal, basic objects are signals which always have a clock while in Statemate,
only events are clocked. Variables in Statemate are of two kind: events or data-items.
Data-items are valued and always present while events are only present or absent. In
order to reach compositionality, during the translation, we need to associate a clock
with each Statemate variable. The clocks of the data-items will be computed from
the signals Tick and LocalClock.

4.2 Testing absence

Whereas in Statecharts conditions are always available, in Signal they have their own
clock. This is why in the translation we mix the event and the condition guard of
the transition in the trigger signal.

e ‘ Statechart not e ‘ Signal not e
t f f
Absent t Absent

Figure 7: Differences between Statemate not and Signal not. In Statechart, not e
means: e did not occur, while in Signal it is a conservative extension of the not on
the booleans

Statecharts offers the possibility to check whether an event is present or not because
it is single clocked while in Signal (multi clocking), asking for absence is with regard
to a reference clock. The not of the two languages have a different behavior (see
figure 7). For a Statechart design using the not feature a Signal process is used:

process not_event =
(? event el, ref_clock;
! logical e2;)
(I e2 := not(el) default ref_clock |)
end ;

This process takes an event el and a clock ref_clock and returns a boolean true
when ref_clock is present and not el. Otherwise, the process returns false.

Note on synchrony: and is the Signal synchronous operator. Because el and
not(el) are synchronous, this process does not generate any clock constraints.

Note on and/or on events: The Statecharts event el and e2 occurs when both
el and e2 occurred simultaneously. It is translated into Signal: el when e2. The

INRIA

A translation of Statecharts and Activitycharts into Signal equations 15

Statecharts event el or e2 occurs when either el or e2 occurred. It is translated
into Signal: el default e2.

Note on conditions: Statecharts uses and, or, not also for conditions. These
ones are translated using the primitives and, or, not of Signal.

4.3 Transition

To check if a transition is triggered, a specific process is designed that is instantiated

for each transition.
c]/a

Figure 8: A transition in Statecharts

Signal encoding:

process transition = {statel,state2}

(? state origin; event trigger;
! state target;)

(| target := state2 when trigger when (origin=statel)
1

end;

Interface: statel is the initial state of the transition (a value of an enumerated
type called state), state2 is the target state of the transition (a value of the same
enumerated type), origin is a signal containing the current active state of the level
where statel belongs (see the section 4.4 about configuration signal), trigger is
the signal which triggers the transition, target gives the new state chosen when the
transition is fired.

Behavior: To use this process, one needs to instantiate {statel,state2} with
the initial and the target state of the actual transition. It outputs a new state value
whenever the transition it describes is fired. Presence of an output means that the
transition is enabled, its walue shows the new state (which is state2) that will be
reached if the transition is actually taken.

RR n3397

16 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

This output signal for each transition is then used to compute the new configuration.
The choice between possibly several enabled transitions handles solving priority bet-
ween conflicting transitions (see section 5.1 and, for the case of non-determinism,
section 7). The result is fed in the new configuration, managed by the predefined
process described next.

4.4 State

The configuration of a Statechart is the list of its active states at a given point in
time. For a n-states flat automaton, the configuration (i.e., which state is active)
is handled by a signal ranging on an enumerated type (state) of n different values:
one value for one sub-state.

For figure 4, if s, t, u are respectively the configuration variables of the top level,
and of sub-states Sub_Running_Up and Sub_Running_Down, then legal configurations
are:

s t u

Idle absent | absent
Running | S1 53
Running | S1 54
Running | S2 53
Running | 52 54

This encoding ensures a basic Statecharts property: A configuration cannot be si-
multaneously in two different sub-states of an or-state. This is ensured by the fact
that configuration at each level of the hierarchy is stored in one signal having at most
one value at each instant.

Because a state could be refined also into sub-states, a new configuration signal
(ranging in a new enumerated type) will be associated with each sub-state. The
states of a Statechart form a tree, hence we have a signal tree. The clock calculus
of the Signal compiler uses this information to produce optimized code: whenever
a state is not active, the signal associated with it is not present and hence all the
sub-states in the tree will not be calculated. The clock hierarchy maps the state
encapsulation.

We aim to get a simple translation from Statecharts to Signal where a Statechart
is just encoded via a Signal process. In particular, the structure of the original
Statechart should be visible in the translated process in order to have traceability,
to use the Signal clock calculus and avoid the computation for any non-active state.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 17

For every level of the Statecharts hierarchy, an instance of the following process is
used to update the configuration variable.

Signal encoding:

process nextstate = {initial_state}
(? event localclock; state new; tcontrol control;
! zconfiguration, configuration;)

(| configuration := new default (initial_state when control=Start)
default zconfiguration
| zconfiguration := configuration $1 init initial_state
| configuration ~= localclock
1
where integer configuration, zconfiguration;
end;

Interface: localclock is the clock at which the state is active, as defined in sec-
tion 5.1.3; it is local to each configuration variable. new is the new value of the
configuration variable computed with processes transition. control is a signal of
type tcontrol as defined in setcion 4.1, and used to reinitialize the configuration
when its value is Start.

Behavior: This process is used to memorize the current configuration of the State-
chart when no transition occurs (or a transition occurs somewhere else in the design).
The parameter initial_state gives the default state of the or-state. When this
process is used, three situations can occur:

e if control=Start, the current state takes the initial value given as the default
parameter initial_state,

e if a new value occurs (new is present), configuration takes it as a new value,

e if localclock occurs alone, configuration remains unchanged (copied from
its previous value).

Extensions: Associated with each state S are some control events, which can be
featured in triggers (see section 5.2.2). They are referring to the current state, and
hence are not shifted to the next step, differently from other events (see section 4.5).
Their definition can be added to the process nextstate and its profile as follows:

RR n3397

18

J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

e in_S is emitted when the current configuration is in state S: the process
nextstate needs to have an output in_s (in the instanciation for state S, it is

linked with in_S). The additional equation is, quite simply:

‘in_s = localclock‘

en_S is emitted when the state S is currently being entered: the process
nextstate needs to have an output en_s (linked with en_S). The additio-

nal equation is:

en_s := when control=Start
default when control=Resume
default when control=LocalResume

ex_S is emitted when the state S is currently being exited: the nextstate pro-
cess needs to have an output ex_s (linked with ex_S). The additional equation

1S:

ex_s := when control=Stop‘

4.5 Shift

The Statemate semantics of Statecharts [11] states that "calculation in one step is
based on the situation at the beginning of the step" and "Reactions to external and
internal events, and changes that occur in a step, can be sensed only after comple-
tion of the step". We hence need to postpone the result of the current calculation
(generated events for instance) to the next "step". The process shift aims at that.

Signal encoding:

process shift =

(

(?x;
event tick;
Lys)
instant_x := event x default not tick
shift_instant_x := instant_x $1 init false
value_x := x default shift_value_x
shift_value_x := value_x $1
value_x ~= event x default tick
y := shift_value_x when shift_instant_x

INRIA

A translation of Statecharts and Activitycharts into Signal equations 19

D)
where boolean instant_x, shift_instant_x;
shift_value_x, value_x;
end;

The initialisation of shift_value_x is irrelevant since it will not be output, because
of the filtering out by shift_instant_x, initially false.

Interface: x is the signal to be shifted, y the shifted signal and tick the clock of
the StateMate step.

Behavior: A trace example with integer values for x is shown figure 9.

Tick e o o o o o o o o o o
X 1 2 3 4 5
instant_x t f ¢t £ £ f ¢t t t f f
shift instant x f t f t f £ f t t t f
value_x 1 1 2 2 2 2 3 4 5 5 5
shift_value_x 11 2 2 2 2 3 4 5 5
y 1 2 3 4 5

Figure 9: Trace of the shift process (Integer values for)

Given a signal and a clock (usually the fastest clock), it shifts the signal to the next
"tick" of the clock. This involves to encode the clock of the signal to be shifted into a
Boolean instant_x, which is shifted in shift_instant_x. The value is also shifted,
and output at the shifted clock.

All variables (except configuration variables) are encoded in signals at the fastest
clock so that their value is always available. Hence shift is with respect to the
fastest clock.

If one wants to have a perfect synchrony hypothesis [13], the shift should be removed
and then input and corresponding output would occur at the same time. Solving
causality cycles would be left (when possible) to the Signal compiler and this would
correspond to a synchronous semantics of the Statecharts.

Extensions:

RR n3397

20 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

Shifting events: For efficiency reasons (code generation, verification...), if shift
is used with events where there is no value to memorize, a specific optimized version
is used instead, called shift_event, where x and y have no value, and corresponding
indtructions have been removed:

process shift_event =
(? event x, tick;
! event y;)
(| instant_x := event x default not tick
| shift_instant_x := instant_x $1 init false
| v := when shift_instant_x
(D)
where boolean instant_x, shift_instant_x;
end;

Here, the shifted event y is present at the shifted clock shift_instant_x.

Additional control events: Associated with each variable X are some control
events, signalling e.g. changes of values, which can be featured in triggers (see
section 5.2.2). For each of them e, its definition can be added to the process shift
and its profile as signal e_e; the shift process already performs a memorization
of value, this is why it is the appropriate place to define these additional events.
However, given that effects of actions can be sensed only at the following step, these
events e_e have to be shifted, using shift_event. In the particular case of control
events for an event F, things are simpler: value changes have no meaning, and rd_F
and wr_F can be defined directly as the shift_event of respectively read_data_FE
and written_data_F; therefore the interface of shift_event does not need to be
changed. Hence, for a variable X and control event e, we will have:
(X urrent,e_e) := shift (X, ep, tick)

| e := shift_event(e_e, tick)
which defines the value of X in the current step (Xcurrent), while accepting the value
to be shifted to the next step (X,ezt); this also defines each control event e by shifting
the intermediary one produced unde the name e_e by the shift of the variable.
Definitions of the various control events are as follows:

e accesses to variables:

— rd_X is emitted when X is read by action read data(X): the process
shift needs to have an input read_data_x (in the instanciation for va-
riable X, it is linked with signal read_data_X) and an output e_rd_x

INRIA

A translation of Statecharts and Activitycharts into Signal equations 21

(linked with e_rd_X, the shift_event of which will define rd_X). The
additional equation is:

‘e_rd_x := read_data_x ‘

— wr_X is emitted when X is written by action write data(X) or by an as-

signment (i.e. union of clocks of contributed values or presence of a new
value x): the process shift needs to have an input written_data_x (lin-
ked with written_data_X) and an output e_wr_x (linked with e_wr_X,
the shift_event of which will define wr_X). The additional equation is:

‘e_wr_x := written_data_x default event x ‘

ch_x is emitted when x changes value: the process shift needs to have
an output e_ch_x (linked with e_ch_X, the shift_event of which will
define ch_X). The additional equation is:

e_ch_x := when not (shift_value_x = value_x)
when instant_x when ((event x)$1 init false)

Regarding the case of the first value received by X, a choice has to be
made w.r.t. whether it constitutes a change or not; given that there is no
initialisation of variables on Statecharts, it seems preferrable to consider
that it is not a change. Hence, the event of the first occurrence of x must
be ignored. This is the motivation for the last under-sampling appearing
in the equation, as only the first occurrence of the delayed event will carry
value false.

e value changes for Booleans:

— tr_C is emitted when the condition becomes true: the process shift

needs to have an output e_tr_x (linked with e_tr_C, the shift_event
of which will define tr_X). The additional equation is:

e_tr_x := when value_x when not shift_value_x
when instant_x when ((event x)$1 init false)

with the same under-sampling as before, regarding the first occurrence of

C.

— fs_C is emitted when the condition becomes false: the process shift

RR n3397

needs to have an output e_fs_x (linked with e_fs_C, the shift_event
of which will define £s_X). The additional equation is:

fs_x := when (not value_x) when shift_value_x
when instant_x when ((event x)$1 init false)

22 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

with the same under-sampling as before, regarding the first occurrence of

C.

5 Translation from Statecharts to Signal

This section introduces the general translation of the main Statecharts features into
Signal, by illustrating them with an example before giving the translation scheme.

5.1 Or-states and And-states
5.1.1 Example

Or-states. For each Statecharts component, a box process as defined above is
created. The structural hierarchy of the Statecharts design is preserved through the
hierarchy of the Signal processes. For the example of figure 4 we define a configuration
signal giving the next configuration (nc) of the Statechart:

tl := transition {Idle, Running} (c, e)

| t2 := transition {Running, Idle} (c, f)

| control "= -0

| localclock := tick

| (c,nc) := nextstate {Idle} (localclock, tl default t2, control)

This process, corresponding to the top level, will compute its internal configuration
(values Running or Idle) at the local clock, which is, at the top level, the clock tick
of the StateMate step.

The signal t1 corresponds to the transition from Idle to Running and t2 to the
transition from Running to Idle. They are of enumerated type and get the value
of the target of the transition when the corresponding transition is enabled. In case
several transitions are enabled, the default between them will make a deterministic
choice. The handling of non-determinism is described in section 7, where Signal is
used to build an explicit representation of the possible cases. The transition taken
is then fed into the process nextstate.

The control input to nextstate is the null clock ~0 because there is no explicit
entering or exiting of the top-level. The parameter Idle of the subprocess nextstate
is given because Idle is the default entrance state of the whole Statechart. To
summarize, at the clock of the step, t1 and t2 are computed from the current value
of the configuration signal ¢ and the result is used in nextstate to compute the next
configuration nc.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 23

History and deep history. After the description of the top level of the design
illustrated in figure 4, we refine the state Running as decomposed into sub-states
sub_running_up and sub_running_down. Both are or-states but the main difference
between them is the way they are entered: through deep-history for sub_running_up
and through the default connector for sub_running_down. When the event f is
generated it preempts the sub-automata of running and the last active state of
sub_running_up will be reestablished whenever event e occurs. In Signal, the $
operator is related to the last present value of a signal. Therefore, keeping the value
of the last active state in this way deals with deep-history in the translation. Indeed,
the suspension of the sub-process is achieved by the absence of the configuration
signal for sub_running_up between f and e. When re-entering Running, the clock
of the configuration signal is present again, and the delayed signal encoding it takes
its values from where it was suspended.

The situation for the default entrance behavior, e.g. sub_running_down, is more
complicated, because the configuration has to be reinitialized to S3 when the tran-
sition from Idle to Running is taken (t1). In order to achieve this, the input signal
control of the process encoding running is set to Start when event ti.

The state Running of the top level is now refined as being the process running. Its
interface is built according to the reactive box scheme introduced in section 4.1. Its
single input variable is a since e and f are not used inside. Its outputs are b and d.
The clock of the configuration variables refining running is defined as follows:

localclock_running := when (nc=Running)

It is defined by the instants when the next configuration is in the state Running. This
way, at the instant of entering a state, its sub-state configuration variable is present,
which is needed in case it has to be re-initialized. On the other hand, the sub-state
variable is not present at the instant when the state is exited. This down-sampling of
the clock of the configuration variable nc into subclocks according to its value is the
way the clock hierarchy of the configuration signals is built. The clock localclock
of the sub-states is less frequent than the clock of the local localclock.

The subcontrol_running signal is used to reinitialize the subprocess to its default
configuration at the instants of entrance. In the case of the example, the sub-node
Running starts again when transition t1 is taken, hence:

subcontrol_running := Start when event tl

We choose to reset an or-state to its default configuration at the instants of entrance
and not at the instants of exit because the semantics offers the possibility to execute

RR n3397

24 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

actions upon entering. Resetting when exiting like in [15] would execute actions at
the wrong instants according to the Statemate semantics.
Putting all these informations together gives the parameters of the box running:

d := running(tick, localclock_running, subcontrol_running, a, b)
s1 a
2 - -
A
2
5| |t6 ~

Figure 10: Three ways to enter a state

More generally, three ways are used to enter a state (see figure 10): Normal (t1),
History (t2), Deep-History (t3). Depending on the entry chosen, the configuration
signal of state S1 must be reset and possibly the configuration signals of the sub-
states S2, S3. The table shown on figure 11 gives the configuration variables that
have to be reset and the value of the enumerated signal control.

Reset S1 7 | Reset S2, S3 7 | Control Signal
t1 | Normal yes yes Start
12 H no yes LocalResume
t3 H* no no Resume

Figure 11: Which configuration variables to reset ?

And-states. From the top level of the automaton we would like to refine the
Running state into the and composition of two or-states (sub_running_up and
sub_running_down). The processes sub_running_up and sub_running_down de-
tailed further can be used to describe the Running state of figure 4 by just using the
composition of Signal:

INRIA

A translation of Statecharts and Activitycharts into Signal equations 25

process running =
(? event tick, localclock; tcontrol control; event a;
! event d;)

(I b := sub_running_up (tick, localclock, control, a)
| d := sub_running_down (tick, localclock, control, b)
D)

where event b;

end;

Sub-states. We obtain the signal equations for the translation of sub_running_up
using the or-state translation scheme except for a few difference with the top-level
example given above. The difference is in the control of sub-nodes and their transi-
tions. The clock of sub-state variables is defined in order to have an instant where
re-initialization can be performed. However, in StateMate, transitions can not be
taken at the instants when entering or exiting the corresponding or-node. The latter
is given by the signal control, as seen earlier. Hence, the configuration input condi-
tioning them has to be restricted to instants excluding the presence of control.
This is done by defining c_t, which is given as the correct under-sampling of the
configuration for transitions.
In fact, the same could be applied for the top-level, with the specificity that at that
level control~="0: i.e. there are no instants to exclude; therefore, the presentation
could simplified by not mentioning the question.
The process sub_running_up encoding the corresponding state is as follows:
process sub_running_up =
(? event tick, localclock; tcontrol control; event a;
! event b;)
(I t3 := transition {S1, S2} (c_t, a)
[t4 := transition {S2, S1} (c_t, a)

| c_t := ¢ when ((not event control) default localclock)
| (c,nc) := nextstate {S1} (localclock, t3 default t4, ~0)
| b :=...(see section 5.2.3)
(D)
where state t3, t4;
end;

Equations for state sub_running_down are looking very similar.

RR n3397

26 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

5.1.2 Instantaneous States

An instantaneous state may be simultaneously entered and exited (in the same ins-
tant). Figure 12 provides an example where states n1 and n2 are instantaneous. Some
semantics call these states: condition, selection, junction, joint, fork connec-
tors, depending on the number of transitions entering and leaving the connector and
if they apply to and states or not.

t4:04[C4] /a4

t5:e5[C5]/ab
tl:el[Cl]/al
S1

t2:e2[C2)/a2

13:e3[C3]/a3

16:e6[C6]/a6

Figure 12: A Statechart containing instantaneous states nl and n2

In some Statecharts semantics (Statemate for instance [11]), instantaneous states
exist ,and we could handle them in the translation as shown below for the example
of figure 12:

t1 := transition {S1,n1} (c_t, C1 when el)
| t2 := transition {S2,n1} (c_t, C2 when e2)
| t3 := transition {n1,S3} (t1 default t2, C3 when e3)
| t4 := transition {S3,n2} (c_t, C4 when e4)
| t5 := transition {n2,S1} (t4, C5 when e5)
| t6 := transition {n2,S2} (t4, C6 when e6)
| ¢c_t := ¢ when ((not event control) default localclock)
| (c,nc) := nextstate {Sinit} (localclock, t3 default t5 default t6,

control)

We use here the same process transition as the one used between ordinary states.
The difference is in the configuration signal used in the transition process. When
the origin of a transition is an instantaneous state (like the transition t3), ins-

INRIA

A translation of Statecharts and Activitycharts into Signal equations 27

tead of checking on the value of the configuration variable ¢, we use the transi-
tions whose target is the considered instantaneous state. On the exemple figure
12: t1 default t2. Lastly, in the call of the process nextstate, only references
to transitions whose target is a non-instantaneous state are given. In the exemple,
t3 default t5 default t6 gives the value of the nextstate.

It occurs however that the StateMate environment does perform an expansion of
transitions going through instantaneous state into a set of transitions going between
non-instantaneous states, combining triggers and actions accordingly. Hence the
translation of this feature need not be studied specifically.

5.1.3 General translation scheme

The previous example introduced the general translation scheme given here.

Let default(ay,...,a,) defined as: a; default a, default ... default a,.

Signals tick, localclock and control are considered to be contained in the inputs
of the process encoding the state under translation, according to the reactive box
structure described in Section 4.1.

Given a state:

e named statename,
e where OR(statename)=true if it is an or-state (otherwise, it is an and-state),
e with nbss sub-states named Sub;,7 = 1..nbss,

e with nbtr transitions between these sub-states, 1 = 1..nbir, each from state
origin; to state target; with label;,

e with sub-state subdefault as default entrance state (i.e. initial state),
e where H(statename)=true if the default arrow has the H connector for target,

e where H*(statename)=true if the default arrow has the Hx connector for tar-
get,

e where ¢;1,....e;p are the indexes of the transitions with target (i.e., entering)

e where z;1,...,z;q are the indexes of the transitions with origin (i.e., exiting)
S’U,bi.

RR n3397

28 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

e where h;1,...,h;r are the indexes of the transitions with target the H connector
in Sub;.

e where k;1,...,k;s are the indexes of the transitions with target the H* connector
in Sub;,

e input;, output; are the inputs and outputs of the process Sub; as defined in
section 5.3,

The translation of this state in Signal is a process of the same name, made of the
composition of the following equations:

e for each tranmsition t;,7 = 1..nbtr:

t; := transition{orz'gini,targeti}(c_t,a(labeli))‘

where a(label;) is the translation of the trigger and condition of the label of
the transition, as described further (see Section 5.2.2).

e concerning state, in all cases:

‘C_t := ¢ when ((not event control) default 1ocalclock)‘

if H*(statename) or H(statename) then:

(c,nc) :=nextstate{subdefault} (localclock,
default (ty, ... tpr) , ~0)

else:

(c,nc) :=nextstate{subdefault}(localclock,
default(#y,...,tnptr) , control)

o if H*(statename) then Vi = 1..nbss:

‘ subcontrol; := ~0 ‘

else Vi = 1..nbss:

subcontrol; := Start when (control=LocalResume)
default Start when (event default(Z.;1,...,%e;p))
default Stop when (event default(ts,1,...,tz,4))
default LocalResume when (event default(ip;i,...,thir))
default Resume when (event default (ii1,-..,tkis))
default control

INRIA

A translation of Statecharts and Activitycharts into Signal equations 29

e if OR(statename) then Vi = 1..nbss:

‘outputi := Sub;(tick, when (nc=Sub;), subcontrol;, inputi)‘

else (if it is an And-node) Vi = 1..nbss:

‘outputi := Sub;(tick, localclock, control, inputi)‘

5.2 Transition labels: triggers and actions

The general syntax of the label on a transition in Statechart is as follows:
(label) — (Trigger) / (Action)

The trigger as well as the action on a transition are making reference to the value of
variables and events. The way they are handled in the Signal translation is presented
next, before treating triggers, and then actions.

5.2.1 Variables

They are declared at the level of a state statename. They have to be managed in
such a way that they comply with their definition:

e they are assigned their new value (if any)
e their value is carried to the next step coming from different possible actions

The scope of the Statechart variables is the chart where they are defined, as mentio-
ned in section 3. In our translation, each chart is translated into a Signal process,
itself decomposed into sub-processes. All the signals representing variables are given
as inputs to all the sub-processes in order to obtain a broadcasting.

Given a state named statename, as before:

e where variables a1, ..., @ppyar are declared locally,

e where variable a; has qa;,,...q; contributed values,

nbcv

The translation of this state in Signal features the following equations concerning
variables:

Vi = l..nbvar:

‘ai := shift(default(a;,,...a;,,), tick)

The variables is translated into an invocation of the process shift, the input of
which is the merge of all contributed values; If we want to represent explicitely the

RR n3397

30 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

possibility of racing conditions, i.e., presence of two contributed values at the same
instant, it would be possible to apply the techniques described in section 7. The
process shift carries the value to the next step, which is given by the clock tick.
Actually, a less frequent clock might be used, if the chart in question is sometimes
deactivated.

In the translation, the signals carrying the contributed values have names derived
from the variable name a; by adding a suffix j to it: a;;. These names are used in the
translation of the actions producing these values for a;, which is described further.
For this, we use current(a) and next(a), two functions delivering integers associated
to variable a. These are used to have a counter associated to variable a. current(a)
gives the current value of the counter associated to a and nezt(a) the incremented
value of this counter. The counters associated to each variable start at 1. These
functions are used for Zeidt effect purposes?.

Concerning the extension with control events mentioned in section 4.5, we follow the
same scheme, i.e. for a variable a; (with nl the number of contributing sources for
read_data_a;, and n2 the same for written_data_a;):

read_data_a; := default(read_data_a;;, ... read_data_a;,1)

written_data_a; := default(written_data_a;;, ... written_data_a;,s)

5.2.2 Triggers

Syntax of triggers. Triggers of transition label can be of the following form:
(Condition) — (Expressionl)(Rel)(Ezpression2)
| not(Condition)
| (Conditionl)and(Condition2)
| (Conditionl)or(Condition2)
| (Variable)

(Rel) — =|<>|<|>]|<]2

(Ezxpression) — (Ezpression)(Op)(Ezrpression)
| (Variable)
| (Number)

(Op) = +[—=1[x|/

Zalso called “effet de Bohr” in French.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 31

(Trigger) — ¢
| (EventName)

| (Trigger)[(Condition)]

| not(Trigger)

| (Triggerl)and(Trigger2)
| (Triggerl)or(Trigger2)

| in((State))

| entered((State))

| exited((State))

| true({Condition))

| false({Condition))

| read((Variable))

| written((Variable))

| changed((Variable))

General translation scheme. Translating them in Signal amounts to evaluating
the trigger event and condition parts, and feeding them as input to the transition
process defined earlier. The translation function « delivers the Signal expression (of
type event) translating the trigger of the transition label. It is defined as follows:

e in the reactions « handles the translation of the trigger only (see further func-
tion g for actions):
a((Trigger)/(Action)) = | a((Trigger))

e expressions on triggers:

— the empty trigger is satisfied at the global clock:

afe) =
— presence of an event (EventName):
a((EventName)) = ‘ (EventName) ‘

— combined event and condition trigger:
a((Trigger)(Condition)) = ‘a((Trigger)) when a((Condition)) ‘

— logical expressions on triggers:

a(not (T'rigger)) = ‘When not_event (a((Trigger)), tick) ‘

a((Triggerl) and (Trigger2)) = ‘oz((Triggerl)) when a((Trigger2)) ‘

RR n3397

J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

a((Triggerl) or (T'rigger2)) = ‘a((Triggerl)) default «a((T'rigger2)) ‘

e dynamic triggers:

— on variables: for a (Variable) named X:

a(read(X)) = [rd_X|

a(written(X)) = |wr_X

a(changed(X)) =

where these events are produced in relation with the management of the
variable X (see section 4.5).

— on conditions: for a (Condition) (which can be an expression) computed
in a variable C' (which can be an intermediate variable for computing the
expression):

a(true(C)) =
a(false(C)) =

where these events are produced in relation with the management of the
boolean variable C (see section 4.5).

— on states:

a(in(S)) =
a(entered(S)) =
a(exited(S)=

where these events are produced in relation with the management of the
state S (see section 4.4).

e expressions on conditions:

a((Ezpressionl)(Rel)(Expression2)) =

‘(E:Upressionl) (Rel) <E.’Ep7‘688’i0n2)‘

a(not(Condition)) = ‘not a((Condition)) ‘

(
a((Conditionl)and(Condition2)) = ‘a((Cond’itionl)) and «a((Condition2)) ‘
(
(

a((Conditionl)or(Condition2)) = ‘a((Conditionl)) or a((Condition2)) ‘

a((Ezxpression)(Op)(Expression)) = ‘ (Ezpression) (Op) (Ezxpression) ‘

INRIA

A translation of Statecharts and Activitycharts into Signal equations 33

a((Variable)) =
a((Number)) =

5.2.3 Actions

We present the translation scheme for a sub-set of the actions language of StateMate.
Not covered yet are the notions of context variables (which can take several values
within a step), loops (for or while loops) which would involve the definition of a
microstep, ...

The clock of actions. Actions are activated when the transition is actually taken;
this activation condition defines the clock of the actions.

Given a state named statename, as before, with nbac actions on transitions: i =
1..nbac, uniquely identified by function a(%) (this is to make a difference with static
reactions actions ¢ = 1..nbsr etc, see further), and tr(a(z)) giving the index in 1..nbtr
of the transition t;.(4(;)) of which it is a label. For each action, we defined its clock
by the following equation, with:

e event ty.(4(;)) is the event that the or-state is neither entering or exiting, and
that the trigger event and condition of the transition are satisfied, and that
the current state is the origin of the transition

o (nc=target(q(;))) tell us that the transition is actually taken as the next state
is its target; this is necessary in order to insure that this transition is the one
that was actually chosen in case several were enabled (see section 5.1 and, for
the handling of non-determinism: section 7)

i.e., Ve = 1..nbac :
clockaction,(;) := event ty(4(;)) when (nc=targettr(a(i)))

Syntax of actions. Transition label actions can be of the following form:

RR n3397

34

J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T.

Gautier

(Action) —

General translation scheme.

€
(EventName)

(Variable) := (Ezxpression)

read_data(X)

write_data(X)

make_true(C)

make_false(C)

when(Event)then(Actionl)|else(Action2)|endwhen
if(Condition)then(Actionl)[else(Action2)]endif
(Actionl); (Action2)

equations for each action, Vi = 1..nbac:

B({Action),clockaction,;)

where:

e in a reaction, 8 handles the translation of the actions only:

B((Trigger)/(Action), Clk) = ‘ﬂ((Action), Clk) ‘

e basic actions:

— empty action: (e, Clk) is void.

— event emission: if the (EventName) is a:

B({EventName), Clk) = |apeqya) = Clk

The translation of actions amounts to generating

where next(a) is the function introduced in section 5.2.1 for the purpose
of naming signals carrying contributing values for a.

— variable assignment:
B((Variable) := (Ezpression), Clk) =

Anest(a) ‘= @((Erpression)) when Clk

where a is the name of the variable, and nezxt(a) is used as explained in
section 5.2.1 in order to manage names of signals carrying contributed
values.

— variable access:

B(read _data(X),Clk) = |read_data_X,cqt(read_data_x) := Clk

B(write_data(X), Clk) = |written_data_X,cp¢(uritten_data_X)

= Clk

INRIA

A translation of Statecharts and Activitycharts into Signal equations 35

e action expressions:

— B(when (Event) then (Actionl) [else (Action2)] end when,Clk) =

B((Actionl), Clk when (Event))
[l B((Action2), Clk when not_event ((Event),tick))]|

— B(if (Condition) then (Actionl) [else (Action2)] end if,Clk) =

B({Actionl), Clk when a((Condition)))
[l B((Action2), Clk when not «((Condition)))]

— B((Actionl);(Action2), Clk) =
(I B((Action1),Clk) | B({Action2),Clk) 1)]

Static reactions The labels attached to a state are called static reactions. They
have the same syntax as labels associated with transitions. The general static reac-
tion construct makes it possible to define the reaction of the system to a trigger when
a particular state is active. As long as the state is active, except when entering or
exiting, the trigger part of the static reaction is evaluated and the action part possi-
bly carried out. The fact that the state is active can be constructed from the clock
localclock and the signal control, both featured as an input in the interface of the
Signal process encoding the state in question, as described in section refreactivebox.
In particular, in the case of an empty trigger (i.e., the left part of the “/” is empty),
actions are to be carried out at each step when the system is in the state in question.
Performing the action is done whenever the trigger part of the static reaction is
enabled and the state associated with the static reaction is active.

For static reactions SR;,7 = 1..nbsr:

clockaction,, ;)
a(SR;) when ((not event control) default localclock)
| B(SRi,clockactiong, ()

where sr (i) uniquely identifies static reaction 4.

The possibility exists in Statemate to carry out actions upon entering or exiting
a particular state. This is done by associating special static reactions with the
state S, triggered by en_S and ex_S events. Firing these special static reactions in
the translation is done using signal control from the interface of the state being
translated (as described in section 4.4).

RR n3397

36 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

5.3 Profile

Given a state:
e named N,
e with declvar the set of variables declared in this node,
e with sub-states N;,7 = 1..nbsn,

e with actionvar the set of variables modified in an action (whether associated
with a transition label or a static reaction) of this node. If an action contains
read_data(x) or write_data(x) then rd_X or wr_X is added to actionvar.

e with transitionvar the set of variables used (all except actionvar) in a trigger
or an action on a transition label or a static-reaction. of this state.

local(N) = declvar

input(N) =
{z/z € transitionvar\local(N)} U {z/3i € (1..nbsn),z € input(N;)\local(N)}

outputsc(N) =
{z/z € actionvar\local(N)} U {z/3i € (1..nbsn), z € outputsc(N;)\local(N)}
output(N) = |J local(N;) U outputsc(N)

1€(1..nbsn)
Standard inputs for every node are, as described in the reactive box of section 4.1
(and in this order in the interface): tick, localclock, control.

6 Translation from Activitycharts to Signal

6.1 Status of an activity

The hierarchical structure of activities is translated by following the hierarchical
structure and generating one Signal process for each Activity, following the reac-
tive box principle described in section 4.1, with control signals tick, localclock,
control in the inputs of the interface.

Each activity can be controlled (started, stopped, suspended, resumed, and sensed
for status) in response to events emitted by a control activity, itself defined by a
Statechart. The status of an activity follows a behavior illustrated by a Statechart
in Figure 13, which shows how an activity A commutes between the states active,

INRIA

A translation of Statecharts and Activitycharts into Signal equations 37

hanging and inactive, according to events st_A, sp_A, sd_A, rs_A. The suspen-
sion and resuming can occur only from the active status; if stopped by st_A while
in the hanging status, an activity goes in status inactive.

1

Inactive st Alstarted A

sp_A/stopped_A

Alstopped_A
o V

rs Aandnotsp_A

Figure 13: States of an activity.

The translation of each activity hence involves the generation of a Signal process en-
coding this behavior: only in its state active will the activation clock be transmitted
to its actions and/or subactivities, thereby implementing the control of activities.
Given an Activity:

e named A,
e with sub-activities Subact;,i = 1..nbac
e with mini-specs M S;,7 = 1..nbms

the translation follows a scheme similar to that for an or-state (see section 5.1); one
difference is that activation of sub-activities can occur at the same instant as the
activation of their parent activity: hence it is ¢c_A which is given as input to the
transition process instances. The management of the status is as follows:

RR n3397

38 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

:=transition{inactive,active}(c_A,st_A)
:=transition{active,inactive}(c_A,sp_A)
| _3:=transition{hanging,active}(c_A4,

rs_A when not_event(sp_A,tick))
| t_4:=transition{active,hanging}(c_A4,

sd_A when not_event(sp_A,tick))
| t_5:=transition{hanging,inactive}(c_A,sp_A)
| (c_A,nc_A) := nextstate{inactive}(localclock,
default(t_1,t_2,t_3,t_4,t_5),control)

ct ot ot
w N -

| started_A :
| stopped_A :

shift(event t_1,tick) when (nc_A=active)
shift(event default(t_2,t_5), tick)
when (nc_A=inactive)

where events st_A, sp_A, rs_A, sd_A can be received from a Statecharts defining
control activities, and events started_A and stopped_A are produced for them.
For sub-activities, the translation is as follows, with input; and output; representing
respectively the lists of inputs and outputs of the sub-activity i: Vi = 1..nbac:

localclock; := when nc_A=active
subcontrol; := Start when st_A4
| default Stop when sp_A
default Resume when rs_A
| output; := SubA;(tick, localclock;, subcontrol;, input;)

where they are transmitted a clock which is a sub-sampling, in the active status, of
the local clock of activity A.

For mini-specs associated with that activity, we have, for each M S; of them, Vi =
1..nbms:

clockaction,,s(;)
a(MS;) when ((not event control) default localclock)
| B(MS;,clockaction,,)

where ms(i) is an absolute identification of mini-spec number i, and function «
defined for transition labels is reused.

6.2 Triggers and actions related to activities

A number of triggers and actions related to activities are featured in the language.
Therefore we extend the definitions of functions a and 3 in order to encompass them.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 39

6.2.1 Triggers on activivites

For each of these dynamic triggers of event or logical type, we give its definition:

e active(A), ac(A): activity A is in the active state.

a(active(A)) =

e hanging(A), hg(A): activity A is in the suspended state.

a(hanging(A)) =

e started(A), st(A): activity A is started. This event is issued as a result of action
start (A4).

afstarted(A)) =

e stopped(A), sp(A): activity A is stopped. It is issued as a result of action
stop(4).

a(stopped(A)) =

where these events are produced in relation with the definition of the status of activity
A:

ac_A := when (nc_A
hg_A := when (nc_A

active)‘

hanging) ‘

6.2.2 Actions on activities
The actions related to activities concern the control of their status, i.e. starting,

stopping, suspending (putting in hanging status) or resuming an activity:

e start(A) puts an activity A in status active:

Bstart(4), Clk) = St—Anemt(st_A) := Clk

where next(st_A) updates the counter of contributing values to variable st_A.

e stop(A) puts an activity A in status inactive:

B(stop(A), Clk) = SP—Anewt(sp_A) := Clk

e suspend(A) puts an activity A in status hanging:
ﬂ(suspend(A), Clk) = Sd—Anezt(sd_A) := Clk

RR n3397

40 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

e resume(A) puts an activity A in status active:

B(resume(A), Clk) = rS—Anezt(rs_A) := Clk

6.3 Profile

The signals related to activities also contribute to the computation of profiles: w.r.t.
the one described in section 5.3, if an action on a transition, in a static reaction or in
a mini-spec contains start(A), stop(A4), suspend(A) or resume(A) then st_A, sp_A,
rs_A or sd_A is added to actionvar. Also, variables used in a mini-spec (except if
already in actionvar) are to be added to transitionvar. Events ac_A and hg_A are
featured in the outputs of the activity A.

7 Modelling non-determinism

This section deals with the fact that it is possible to use Signal to model non-
determinism, in the sense that it can be used to define processes with a set of pos-
sible behaviors. Hence, this can be applied to the modeling of non-determinism in
Statecharts.

7.1 Conflicting transitions

One

11

Three

Figure 14: conflict

INRIA

A translation of Statecharts and Activitycharts into Signal equations 41

Example. For the Statechart of the figure 14, if the configuration is (S1, S6)
and t1, t2, t3 and t4 are enabled transitions, the maximal non conflicting sets of
transitions are:

o {t4, t1}
o {t4, t2}
o {t4, t3}

Here, t3 has higher priority over t1 and t2 (Statemate semantics) and t3 is chosen.
This is preserved in the Signal translation since the clock of substates depends on
the transitions of the higher state, where the triggers to the transition labels are
computed before. t3 is chosen as an enabled transition and then, the process Three
will not sense any inputs because the active state is S4.

When t1 and t2 are enabled but not t3, we need to choose one to fire. There is a
non-deterministic conflict and any one of the two transitions could be chosen. If it
is preferred to encode an arbitrary choice, as the Magnum simulator can do, then in
the example, to take t1 preferably to t2 in all the cases is what the translation of
previous sections does:

| (c,nc) := nextstate {S1} (localclock, tl1 default t2, ~0)

This the translation scheme that was developped in this paper. In this section, we
describe how it is possible to represent non-deterministic choices explicitely in Signal.

Non-conflicting sets. Here we want to deal with situations where more than one
transition are enabled at the same instant. Following [11]:

e Two enabled transitions are in conflict if there is some common state that
would be exited if any one of them were to be taken.

e A set of transitions is non conflicting if no two transitions in the set are in
conflict.

e Being mazimal for a non-conflicting set of transitions means that each enabled
transition not included in the set is in conflict with at least one transition that
is included in the set. Otherwise, this transition may be added to the set.

RR n3397

42 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

At each step, Statemate fires a maximal non-conflicting set of transitions. When
there is more than one such a set enabled, a non-deterministic choice is performed.
The maximal is reached in the Signal translation because whenever one transition
is enabled in an Or-state, in the corresponding call to the nextstate process, the
default on the transitions will choose one. Not taking a maximal non-conflicting set
in the Signal translation would be to have an enabled transition with its associated t
signal present. The default on the list of ti signals is hence present and at least one
transition is taken. The translation shown in the previous sections does a default
on the t; signals; this way it chooses arbitrarily between the non-deterministic pos-
sibility.

Representing non-determinism explicitely. The non-determinism may be re-
presented explicitely by adding a boolean K to the Signal equation choosing between
the different enabled transitions:

| (c,nc) := nextstate {S1}(localclock, t, ~0)
| t := t1 when (K default true) default t2
| “t1 when ~“t2 ~= ~tl1 when “t2 when “K)

~

The equation on clocks featuring a ~= is used to avoid situations where t1 and t2
are both present and K is absent because these situations could lead to the choice
of transition t1 when no particular (explicit) decision has been made to remove the
non determinism. This way, when K is true, t1 is chosen and when K is false, t2 is
chosen. If the signal K is not present, the t1 when (K default true) default t2
rewrites into t1 default t2 that is the behavior of a deterministic process.

At this stage, we have an exact model of the non-deterministic behavior of this part
of the specification. What it can then happen in order to handle the non-determinism
is the following:

e this process may be composed with other processes that make K useless (e.g.
composed with a process where t1 and t2 are exclusive),

e the signal K could be explicitly given as an input of the process and the envi-
ronment may choose between t1 and t2, hence moving the resolution of the
non-determinism to the environment.

Firing the right actions. There are cases for which the above scheme is not
sufficient to uniquely determine which actions are actually executed as was proposed

INRIA

A translation of Statecharts and Activitycharts into Signal equations 43

in section 5.2.3. Figure 15 illustrates this with an example, where, if el[c1] and
e2[c2] are not exclusive, then it is possible that both transitions are enabled, with
the same target state. Hence, the latter is not a sufficient discriminating criterion,
notably when it has to be decided whether action al or action a2 is executed.

elfcl)/al

e2[c2]/a2
Figure 15: Conflicting transitions in Statecharts

This requires additional information identifying the transitions: if each of them is
given a name or index i;, an equation similar to the previous one has to produce the
identity of the one actually chosen:

i := il when (K default true) default i2

The definition of the clock of the actions associated to a transition then becomes:
clockaction,;) := when (i = i;)

7.2 Racing

An other kind of non-determinism is possible in Statecharts, through the variable
assignment: two actions in two parallel components occurring at the same moment
and giving different values to the same variable. Sometimes called “racing”, this
non-determinism could be handled the same way the non-determinism on transitions
is handled: Introducing a boolean K choosing between the different values of the
variable. The different ways to handle non-determinism shown above are also valid
for racing.

8 Conclusion and perspectives

We have proposed here a way to translate the essential features of Statecharts and
Activitycharts into Signal. This translation gives clocks to every part of a Statechart
(states, transitions, actions). It keeps the structural and hierarchical informations
through the translation to privilege the traceability from specification to the ge-
nerated code. It is expected that this will have consequences on the compilation

RR n3397

44 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

process and the optimization algorithms offered by the Signal/DC+ environment, in
the perspective of producing efficient code, for possibly distributed executaion ar-
chitectures, from Statecharts specifications, using the clock calculus and the BDD’s
techniques of the Signal compiler. Non-determinism may be modeled and handled
through boolean adjunction. Verification of the behavior is possible using the tools
based on the synchronous technology. Real-time properties of a Statechart could be
checked through timing analysis of a Signal program. The main contribution of this
work is to get an access to the already existing Signal tools from a Statechart design.
This translation provides a support for co-execution of co-simulation of Signal and the
languages of StateMate. Interoperability between Signal and Statecharts is possible
by composing the resulting Signal process with any Signal context. The interaction
between the two parts is then managed by the synchronous composition.

An implementation of such a translation is being done in C+-+ in the context of
the SAfety CRitical Embedded Systems (SACRES) European Project [21]. The
translation is done in a variant of Signal called DC+ [18] which is a common format
of the synchronous languages. The Statemate tool from i-Logiz is used to draw the
Statechart, then the automatic translator uses an API of the Statemate tools in order
to extract the needed informations of the Statechart design and generate the DC+-.
Perspectives presently worked upon concern other features of the Statemate lan-
guages. For instance, variables can have different data-types and scopes. In the
actions, mechanisms for timeouts and scheduled events could be encoded as coun-
ters on the number of steps. Context variables are special variables that can take
several different values within one step: they are used in connection with loops in
the actions.

The proof that the translation is correct from a behavioral point of view is now needed
in the context of safety critical systems. Such a proof may be in terms of equality
of the traces of the initial Statechart and the target Signal program, based on the
semantics of the languages [19]. This semantics defines Signal, and its derived format
DC+, as well as the languages of StateMate, in terms of fair Synchronous Transition
Systems (fSTS). This provides a common basis for comparing the translation to the
source, and establishing the correctness.

References

[1] T. Pascalin Amagbegnon, Loic Besnard, and Paul Le Guernic. Implementation
of the data-flow synchronous language SIGNAL. In Proceedings of the ACM Symp.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 45

on Programming Languages Design and Implementation, PLILP’95, pages 163—
173. ACM, 1995.

[2] J.-R. Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, and T. Gautier. A
translation of STATECHARTS into SIGNAL. In Proceedings of the International

Conference on Application of Concurrency to System Design (CSD’98), Aizu-
Wakamatsu, Japan, March 1998.

[3] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous
programming with events and relations: the SIGNAL language and its semantics.
Science of Computer Programming, 16:103—149, 1991.

[4] G. Berry. The constructive semantics of pure ESTEREL. Book in preparation,
current version 2.0, http://zenon.inria.fr/meije/esterel.

[5] Gerard Berry and Georges Gonthier. The ESTEREL synchronous programming
language: design, semantics, implementation. Science of Computer Program-

mang, 19:87-152, 1992.

[6] Thierry Gautier, Paul Le Guernic, and Olivier Maffeis. For a new real-time
methodology. Research Report 2364, INRIA, October 1994.
http://www.inria.fr/RRRT/RR-2364.html.

[7] Alvery Grazebrook. Sacres - formalism for real projects. In F. Redmill and T.
Anderson, editors, Safer Systems, London, 1997. Springer-Verlag.

8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
Y y
programming language Lustre. Proc. of the IEEE, 79(9):1305-1320, September
1991.

[9] David Harel. Statecharts : A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987.

[10] David Harel and Amnon Naamad. The languages of Statemate. i-Logiz Inc,
January 1991.

[11] David Harel and Amnon Naamad. The Statemate semantics of Statecharts.
ACM Transactions on Software Engineering and Methodology, 5(4):293-333, Oc-
tober 1996.

RR n3397

46 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

[12] A. Kountouris and P. Le Guernic. Profiling of Signal programs and its applica-
tion in the timing evaluation of design implementations. In Proceed. of the IEE
on HW-SW Cosynthesis for Reconfigurable Systems, pages 6/1-6/9, HP Labs
Bristol UK, Feb. 1996.

[13] M. von der Beeck. A Comparison of Statecharts Variants. In H. Langmaack,
W.-P. de Roever, and J. Vytopil, editors, Formal Technigues in Real-Time and
Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science, pages
128-148, Liibeck, Germany, September 1994. Springer-Verlag.

[14] Olivier Maffeis and Axel Poigné. Synchronous automata for reactive, real-time
or embedded systems. Technical report, GMD, Jan. 1996. no 967.

[15] F. Maraninchi and N. Halbwachs. Compiling ARGOS into Boolean equations. In
B. Jounsson and J. Parrow, editors, Formal Techniques in Real-Time and Fault-
Tolerant Systems, Uppsala, Sweden, volume 1135 of Lecture Notes in Computer
Science, pages 72-90. Springer-Verlag, September 1996.

[16] Eric Rutten and Paul Le Guernic. Sequencing data flow tasks in signal. In In
Proceedings of the ACM SIGPLAN Workshop on Language, Compiler and Tool
Support for Real-Time Systems, Orlando, Florida, June 1994.
http://www.cs.umd.edu/users/pugh/sigplan_realtime_workshop/lct-rts94/.

[17] Eric Rutten and Florent Martinez. Signal GTi, implementing task preemption
and time intervals in the synchronous data flow language Signal. In IEEE
Computer Society Press, editor, Seventh FEuromicro Workshop on Real-Time
Systems, pages 176-183, June 1995.

[18] SACRES. The common format of synchronous languages - the declarative code
DC+ version 1.4. Technical report, EP 20897 Project, November 1997.

[19] SACRES. The semantic foundations of SACRES. Technical report, EP 20897
Project, March 1997.

[20] SYNCHRON. The common format of synchronous languages - the declarative
code DC version 1.0. Technical report, C2A-SYNCHRON project, October
1995.

[21] SACRES. Deliverable report I1.1.A: Statemate translation to DC+. Technical
report, EP 20897 Project, 1998 (to appear).

INRIA

A translation of Statecharts and Activitycharts into Signal equations 47

A An example of translation of Statemate into Signal

A.1 An example of Statemate specification

METRONOME

RUN4
@EVERY4 F
RUN2
4—‘
@CTRL_METRONOME
o
@EVERY?2 = -

Figure 16: Example: the top-level activity.
The example is built as an activity called METRONOME, as shown in Figure 16. Its
inputs are:

e A: an event to be counted,
e RUN2: an event commanding the counting modulo 2

e RUN4: an event commanding the counting modulo 4
The output is:

e D, an event occurring once every 2 or every 4 occurrences of A, depending on
the mode the counter is in.

The activity METRONOME is decomposed into sub-activities EVERY2 and EVERY4, con-
trolled by the statechart CTRL_METRONOME.

CTRL_METRONOME

.\‘ RUN2/sp! (EVERY4);st!(EVERY2) -
E4 | =]
RUN4/st! (EVERY 4);sp! (EVERY 2)

Figure 17: Example: the metronome controller.

The control statechart CTRL_METRONOME is shown in Figure 17. It alternates between
the two states E4 and E2. The initial state is E4. There are two transitions:

RR n3397

48 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

e one from E4 to E2, which can be taken when event RUN2 is present. The
action associated to the transition consists of stopping sub-activity EVERY4
and starting sub-activity EVERY2.

e the other one from E2 to E4, which can be taken when event RUN4 is present.
The action associated to the transition consists of stopping sub-activity EVERY2
and starting sub-activity EVERY4.

Activity EVERY2 is defined by the statechart shown in Figure 18. It alternates between
two states S3 and S4, upon reception of event A, and emits an event D every second
A.

Figure 18: Example: the counter modulo 2.

Activity EVERY4 is defined by the statechart shown in Figure 19. It is an AND-node,
composing two sub-statecharts similar to the one in EVERY2. They are linked by the
event B, in such a way that the sub-statechart UP emits a B every two As, and the
sub-statechart DOWN emits a D every two Bs. Hence EVERY4 emits a D every four As.

EVERY4

uUpP

Figure 19: Example: the counter modulo 4.

INRIA

A translation of Statecharts and Activitycharts into Signal equations 49

A.2 Tts translation in Signal

Here follows the complete translation in Signal of the example. It shows the hie-
rarchical structure of the encoding, following the structure of the original Statemate
specification. This translation has been performed manually, and is simplified a bit
in places for the sake of readability. The actual translator is implemented with the
DC+ format as a target, directly, as mentioned in section 8.

process METRONOME=
(? event A,RUN2,RUN4
! event D
)
(I (D,ACTIVE2,ACTIVE4):= METRONOME_BODY(TICK,TICK,
0 when NUL_K(TICK),
GO(TICK) ,NUL_K(TICK),
NUL_K(TICK) ,NUL_K(TICK),
A ,RUN2,RUN4)
| TICK:= A default RUN2 default RUN4
1
where
process METRONOME_BODY=
(? event TICK,LOCALCLOCK;
integer CONTROL;
event STM,SPM,RSM,SDM,A,RUN2,RUN4
! event D,ACTIVE2,ACTIVE4
)
(1 (STARTED_M,STOPPED_M,ACTIVE,SUBCONTROL) :=
ACTIVITYSTATE(TICK,LOCALCLOCK,CONTROL,STM,
SPM,RSM, SDM)
| (STE2,SPE2,RSE2,SDE2,STE4,SPE4,RSE4,SDE4) : =
CTRL_METRONOME (TICK,ACTIVE, SUBCONTROL,
RUN2,RUN4)
EVERY2(TICK,ACTIVE,SUBCONTROL,STE2,SPE2,
RSE2,SDE2,4)
EVERY4(TICK,ACTIVE,SUBCONTROL,STE4,SPE4,
RSE4,SDE4,4A)

| (D2,ACTIVE2):

| (D1,ACTIVE4):

| D:= SHIFT(D1 default D2,TICK)

RR n3397

50 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

DF
process CTRL_METRONOME=
(? event TICK,LOCALCLOCK;
integer CONTROL;
event RUN2,RUN4
! event STE2,SPE2,RSE2,SDE2,STE4,SPE4,RSE4,SDE4

T1:= TRANSITION{0,1}(C_T,RUN2)
T2:= TRANSITION{1,03}(C_T,RUN4)
C_T := C when (not (“CONTROL) default LOCALCLOCK)

(C,NC) := NEXTSTATE{0}(TICK,LOCALCLOCK,CONTROL,T1
default T2)

STE2:= =~ T1

SPE4:= STE2

STE4:= =~ T2

RSE2:= NUL_K(TICK)
SDE2:= NUL_K(TICK)
RSE4:= NUL_K(TICK)
| SDE4:= NUL_K(TICK)
15
process EVERY2=
(? event TICK,LOCALCLOCK;
integer CONTROL;
event STE2,SPE2,RSE2,SDE2,A
! event D2,ACTIVE
)
(1 (STARTED_E2,STOPPED_E2,ACTIVE,SUBCONTROL) :=
ACTIVITYSTATE(TICK,
LOCALCLOCK,CONTROL,
SSTE2,SPE2,RSE2,DE2)
| D2:= EVERY_2(TICK,ACTIVE,SUBCONTROL,A)
DR
process EVERY_2=
(? event TICK,LOCALCLOCK;
integer CONTROL;
event A

I
I
I
| SPE2:= STE4
I
I
I

INRIA

A translation of Statecharts and Activitycharts into Signal equations

ol

! event D2
)
(| T1:= TRANSITION{0,1}(C_T,A)
| T2:= TRANSITION{1,0}(C_T,A)
| C_T := C when (not (~CONTROL) default LOCALCLOCK)
| (C,NC):= NEXTSTATE{0}(TICK,LOCALCLOCK,CONTROL,
T1 default T2)

| D2:= ~ T2
1);
process EVERY4=
(? event TICK,LOCALCLOCK;
integer CONTROL;
event STE4,SPE4,RSE4,SDE4,A
! event D1,ACTIVE
)
(| (STARTED_E4,STOPPED_E4,ACTIVE,SUBCONTROL):=
ACTIVITYSTATE(TICK,
LOCALCLOCK,CONTROL,
STE4,SPE4,RSE4,SDE4)
| (D1,B1):= EVERY_4(TICK,ACTIVE,SUBCONTROL,A,B)
| B:= SHIFT(B1,TICK)
1);
process EVERY_4=
(? event TICK,LOCALCLOCK;
integer CONTROL;
event A,B
! event D1,B1
)
(| B1:
| D1:
1);
process UP=
(? event TICK,LOCALCLOCK;
integer CONTROL;
event A
! event Bl

UP(TICK,LOCALCLOCK,CONTROL,A)
DOWN(TICK,LOCALCLOCK ,CONTROL,B)

RR n3397

52

J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

(| T1:= TRANSITION{0,1}(C_T,A)
| T2:= TRANSITION{1,0}(C_T,A)
| C_T := C when (not (~CONTROL) default LOCALCLOCK)
| (C,NC):= NEXTSTATE{0}(TICK,LOCALCLOCK,CONTROL,
T1 default T2)

| Bl:= ~ T2
1);

process DOWN=

(? event TICK,LOCALCLOCK;
integer CONTROL;
event B
! event D1
)
(] T1:= TRANSITION{0,1}(C_T,B)
| T2:= TRANSITION{1,0}(C_T,B)
| C_T := C when (not (~CONTROL) default LOCALCLOCK)
| (C,NC):= NEXTSTATE{0}(TICK,LOCALCLOCK,CONTROL,
T1 default T2)

| D1:= =~ T2
1);

b wkrkkkkkkkkkkkkk LIDrary skkkskokkkkkokokkokkokkokkkokky,

process ACTIVITYSTATE=

(? event TICK,LOCALCLOCK;
integer CONTROL;
event STA,SPA,RSA,SDA
! event STARTEDA,STOPPEDA,ACTIVE;
integer SUBCONTROL

(| T1:= TRANSITION{0,1}(C,STA)
| T2:= TRANSITION{1,0}(C,SPA)
| T3:= TRANSITION{2,1}(C,RSA)
| T4:= TRANSITION{1,2}(C,SDA)
| T5:= TRANSITION{2,0}(C,SPA)
I

(C,NC) := NEXTSTATE{0}(TICK,LOCALCLOCK,CONTROL,
T1 default T2

INRIA

A translation of Statecharts and Activitycharts into Signal equations 93

default T3 default T4 default T5)
| STARTEDA:= SHIFT((~ T1) when (NC=1),TICK)
| STOPPEDA:= SHIFT((~ (T2 default T5)) when (NC=0),TICK)
| SUBCONTROL:= (0 when (STA default (CONTROL=3))
default (1 when SPA) default (2 when RSA)
default CONTROL) when ACTIVE
| ACTIVE:= when (NC=1)
1);
process TRANSITION=
{ STATE1,STATE2 ; }
(7 integer ORIGIN;
event TRIGGER
! integer TARGET
)
(| TARGET:= STATE2 when TRIGGER when (ORIGIN=STATE1l) |[);
process NEXTSTATE=
{ integer INITIAL_STATE; }
(? event TICK,LOCALCLOCK;
integer CONTROL,NEW
! integer ZCONFIGURATION,CONFIGURATION
)
(| CONFIGURATION:= NEW default
(INITIAL_STATE when (CONTROL=0)) default
ZCONFIGURATION
| ZCONFIGURATION:= CONFIGURATION $ 1
| CONFIGURATION~=LOCALCLOCK
1
where
integer CONFIGURATION,ZCONFIGURATION init INITIAL_STATE;
end /NEXTSTATEY;
process SHIFT=
(?X;
event TICK
1y
)
(|l INSTANT_X:= (= X) default (not TICK)
| SHIFT_INSTANT_X:= INSTANT X $ 1

RR n3397

54 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

| VALUE_X:= X default SHIFT_VALUE_X
| SHIFT_VALUE_X:= VALUE X $ 1
| VALUE_X~=(~ X) default TICK
| Y:= SHIFT_VALUE_X when SHIFT_INSTANT_X
(D)
where
boolean INSTANT_X,SHIFT_INSTANT_X init false;
event SHIFT_VALUE_X,VALUE_X;
end %SHIFTY%;
process NUL_K=
(? event SOMETHING
! event NOTHING
)
(| NOTHING:= when (not SOMETHING) |);
process GO=
(? event TICK
! event OUT
)
(| OUT:= when ZFIRSTTICK
| ZFIRSTTICK:= FIRSTTICK $ 1
| FIRSTTICK:= false
| FIRSTTICK~=TICK
(D)
where
boolean ZFIRSTTICK init true ;
end %G0% ;
end %METRONOMEY

INRIA

A translation of Statecharts and Activitycharts into Signal equations 55
Contents

1 Introduction 3

1.1 Context and objective o 3

1.2 Motivations 3

1.3 Related work 5

1.4 Organization of the paper o0, 6

2 Signal: a declarative synchronous language 7

3 Statemate: Statecharts and Activitycharts 9

4 Translation principles 12

4.1 Thereactive box 12

4.2 Testing absence L L 14

4.3 Transitlon e e e e e e e 15

4.4 State e 16

4.5 Shift 18

5 Translation from Statecharts to Signal 22

5.1 Or-states and And-states 22

5.1.1 Example 22

5.1.2 Instantaneous States, 26

5.1.3 General translation scheme 27

5.2 Transition labels: triggers and actions 29

5.2.1 Variableso 29

5.2.2 Triggers 30

5.2.3 Actions 33

5.3 Profile 36

6 Translation from Activitycharts to Signal 36

6.1 Statusof an activity 36

6.2 Triggers and actions related to activities 38

6.2.1 Triggers on activivites 39

6.2.2 Actions on activities 39

6.3 Profileo 40

RR n3397

56 J-R Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier

7 Modelling non-determinism 40
7.1 Conflicting transitionso 0oL 40
7.2 Racing Lo 43

8 Conclusion and perspectives 43

A An example of translation of Statemate into Signal 47
A.1 An example of Statemate specification 47
A.2 Its tramslation in Signalo o oL 49

INRIA

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

