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Abstract: CcAL is a Computational Geometry Algorithms Library written in C++. The goal is
to make the large body of geometric algorithms developed in the field of computational geometry
available for industrial application. In this report we discuss the major design goals for CGAL,
which are correctness, flexibility, ease-of-use, efficiency, and robustness, and present our approach
to reach these goals. Templates and the relatively new generic programming play a central role in
the architecture of CGAL. We give a short introduction to generic programming in C++, compare
it to the object-oriented programming paradigm, and present examples where both paradigms
are used effectively in CGAL. Moreover, we give an overview on the current structure of the
library and consider software engineering aspects in the CGAL-project.
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Sur la conception de CGAL,
une bibliothéque d’algorithmes géométriques

Résumé: CcAL(Computational Geometry Algorithms Library) est unebibliothéque d’algorithmes
géomeétriques écrite en C++. Le but de cette recherche est de faciliter le transfert vers I'industrie des
algorithmes géométriques congus par la communauté internationale de géométrie algorithmique.
Dans ce rapport, nous discutons les principales caractéristiques de CGAL, & savoir 'efficacité, la
flexibilité, la facilité d’utilisation, et la robustesse. Nous présentons une approche pour atteindre
ces buts basée sur la programmation générique et la paramétrisation qui jouent un role essentiel
dans ’architecture de CGAL. Nous introduisons la programmation générique en C++, la comparons
a Papproche orientée objets, et présentons des exemples d’utilisation effectives des deux approches
dans CGAL. Nous présentons aussi une synthése de la structure de CGAL, et discutons les aspects
de génie logiciel dans le projet CGAL.

Mots-clés : Géométrie algorithmique, génie logiciel, bibliothéque de programmes
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1 Introduction

Geometric algorithms arise in various areas of computer science. Computer graphics and virtual
reality, computer aided design and manufacturing, solid modeling, robotics, geographical infor-
mation systems, computer vision, shape reconstruction, molecular modeling, and circuit design
are best-known examples. Out of research on specific geometric problems in these areas the
design and analysis of geometric algorithms has been investigated in the field of Computational
Geometry. A lot of efficient geometric methods and data structures have been developed in
this subfield of algorithm design over the past two decades. But many of these techniques have
not found their way into practice yet, mostly, because the correct implementation of even the
simplest of these algorithms can be a notoriously difficult task [MN94|. This is mainly due
to the degeneracy and precision problem [Sch98a]: Theoretical papers assume the input to be
in general position and assume exact arithmetic with real numbers. Both assumptions hardly
match the situation in practice. Advanced algorithms bring about the additional difficulty that
they are frequently hard to understand and hard to code. For these reasons it is impractical for
users to implement geometric algorithms from scratch. To remedy this situation a computational
geometry library providing correct and efficient reusable implementations is needed. Such a
library, called CGAL, Computational Geometry Algorithms Library, is developed in a common
project of several universities and research institutes in Europe and Israel. In this paper we
present and discuss the design of this C++ software library.

The sites contributing to CGAL are Utrecht University (The Netherlands), ETH Ziirich (Switzerland),
Free University Berlin (Germany), Martin-Luther University Halle (Germany), INRIA Sophia-
Antipolis (France), Max-Planck-Institute for Computer Science and University Saarbriicken
(Germany), Risc Linz (Austria), and Tel-Aviv University (Israel). The participating sites are
leading in the field of computational geometry in Europe and had ample experience with the
implementation of geometric algorithms [Avn94, Gie94, MN95, MNU97, NSAL*91, Sch91]. Work
on the CGAL-library is the central task of an ESPRIT 1V LTR project which is called CGAL, too.
It is the goal of the CGAL-project to

make the large body of geometric algorithms developed in the field of computational
geometry available for industrial application.

The CaGAL-library is the key tool to reach this goal. It will be the basis for implementations of
geometric algorithms in cooperation projects with industrial partners. These cooperations will
be the test bed for the library. Feedback from these cooperations will ensure that CGAL serves
industrial needs. Since in the CGAL-project we have to overcome the aforementioned problems
arising in the implementation of geometric algorithms as well, implementation effort has to
be accompanied by further research on these problems. To select best solutions for practice,
experimentation is needed as well.

Since computational geometry has so many potential application areas with different needs,
flexibility of the library components, especially adaptability and modularity of the library, are
important design issues for CGAL. Of course, correctness, ease-of-use, and efficiency were design
goals of CGAL. Providing useful functionality is another design goal among a long list of many
others. Design goals for CGAL are discussed in Section 3.

We decided to design CGAL as a C++-library because C++ is widely used and as it can easily be
interfaced with existing C and Fortran code. Since CGAL can be seen as part of a more global
European effort to provide algorithmic software to enhance the technology transfer to industry, the
decision to use C++ was also partially motivated by corresponding decisions for related libraries,
e.g. LEDA and ABAcUSs. We consider C++ as a compromise between aesthetic and efficiency.
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Eiffel or Smalltalk are more properly object oriented but lack acceptance. At present, Java was
considered too slow for industrial strength code. We use the template mechanism of C++ and
the generic programming paradigm known from the C++ Standard Template Library (STL) to
design a generic and modular library. This approach is not supported by Java. Through the
use of templates and the generic programming paradigm the code in the library gains a certain
independence. The library algorithms and components work with a variety of implementations of
predicates and subtasks and geometric objects. This allows one to easily interchange components
as long as they have the same interface.

In the next section we regard previous and related work on computational geometry libraries and
the the roots of CGAL. After discussing the design goals we consider the generic programming
paradigm in Section 4. Section 5 discusses circulators, an extension of the iterator concept of
the Standard Template Library to circular structures. They are useful in the implementation of
geometric objects, where circular structures often arise. In the subsequent sections we discuss
the structure of CGAL and present the different layers of the library. Section 7 presents the
kernel, which contains basic (constant-size) geometric objects and primitive operations on these
objects. Section 8 presents the basic library, which contains standard geometric algorithms and
(non constant-size) geometric structures. Besides the design of CGAL we look at engineering
aspects addressed in the CGAL-project like manual writing, and separation between specification,
implementation, and testing. These are discussed in Section 9. We conclude with an evaluation
of the design. In the more technical parts of the paper we assume that the reader is familiar with
the C++ programming language and the basics of its Standard Template Library, see e.g. [Str97].

2 Related Work

Amenta [Ame97] gives an overview on the state of the art of computational geometry software before
CcAL and provides many references. Computational geometry software was intensively discussed
at the First ACM Workshop on Applied Computational Geometry, cf. [Lee96, Meh96, Ove96].
The design of the CGAL-kernel at that time is presented in [FGK*96] and the project goals in
[Ove96]. A more recent overview can be found in [Vel97]. Precision and robustness aspects of a
computational geometry library are discussed in [Sch96]. Further topics on designing combinatorial
data structures in CGAL, such as polyhedrons, are described in [Ket97].

Many implementations of computational geometry algorithms exist in loosely coupled collections
only. Use and combination of such algorithms usually requires some adaptation effort while
components of a library are designed to seamlessly work together. First implementation efforts
for computational geometry libraries have been started already end of the Eighties [EKK194,
dRJ93, NSAL*91, Sch91]. These libraries were integrated into workbenches allowing animation
and interaction, but were typically restricted to a particular platform.

To some extent, specifications of components of CGAL have their roots in CGAL’s precursors
developed by members of the CGAL consortium. To a much less extent CGAL scavenged also
implementation techniques from its precursors. These precursors are the XYz library, developed at
ETH Ziirich, [NSAL*91, Sch91] PlaGeo/SpaGeo [Gie94], developed at Utrecht University, C++GAL
[Avn94], developed at INRIA Sophia-Antipolis, and the geometric part of LEDA [MN95, MNU97],
a library for combinatorial and geometric computing, developed at Max-Planck-Institut fiir
Informatik, Saarbriicken.

In the US, an implementation effort with a goal similar to that of the CGAL-project has been started

at the Center for Geometric Computing, located at Brown University, Duke University, and John
Hopkins University. They state their goal as an effective technology transfer from Computational
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Geometry to relevant applied fields. Recently they started working on a computational geometry
library called GeomLib [BTV97] implemented in Java.

3 Design Goals

Computational geometry has many potential application areas with different needs. As afoundation
for application programs CGAL is supposed to be sufficiently generic to be usable in many different
areas. We expect different kind of users, both in academia and industry. The users’ knowledge of
computational geometry or C++ programming will range from novice to expert. To capture the
different requirements we have structured them in the following list of primary design goals for
the project. There are further important design goals for such a project, such as maintainability,
but we consider them as secondary for the project mission statement and do not discuss them
here.

3.1 Flexibility

The different needs of the potential application areas lead to our design goal flexibility. In order
to be useful in many different situations four sub-issues of flexibility can be identified.

Modularity A clear structuring of CGAL into modules with as few dependencies as possible
helps a user in learning and using CGAL, since the overall structure can be grasped more easily
and the focus can be narrowed on those modules that are actually of interest. In continuation,
only those parts of the library could be isolated that are used in a particular situation, which
keeps CGAL from being a monolithic library. Instead, CGAL has the flexibility to be used in
smaller independent parts. Natural examples are the distinction between two-dimensional and
three-dimensional geometry, or separate modules for convex-hull computation and point set
triangulation.

Adaptability CGAL might be used in an already established environment with geometric
classes and algorithms. Most probably, the modules will need adaptation before they can be
used. An example is the application of the convex-hull algorithm to a user defined point type,
which differs from the CGAL point type. The idealistic situation would be like a theoretical paper
on a convex-hull algorithm: The algorithm is described once and can be applied to virtually
any programming language and point type. Stressing this analogy further, the ideal theoretical
paper will typically declare the operations, which are assumed to be available somehow for the
point type, and will express the algorithm in terms of these operations. Similar in the library,
the adaptation effort should only influence the declaration of the point type and operations used,
not the convex-hull algorithm itself.

Extensibility Not all wishes can be fulfilled with CGAL. So users might want to extend the
library. It should be possible to easily integrate new objects and algorithms into CGAL. For
example, it should be possible to easily add new geometric objects to the library and to provide
corresponding intersection functions similar to those existing for native CGAL objects.

RR n° 3407
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Openness CGAL should be open to coexist with other libraries, or better, to work together
with other libraries and programs. The C++ Standard defines with the C++ Standard Template
Library a common foundation for all C++ platforms. So it is easy and natural to gain openness
by following this standard. But there are important libraries besides the standard, and CGAL
should be easily adaptable to them as well, in particular LEDA [MNU97] with its number types,
combinatorial and graph algorithms, the Gnu Multiple Precision Arithmetic Library [Gra96] for
a number type, and various visualization systems, some of them standardized.

3.2 Correctness

A library component is correct if it behaves according to its specification. Basically, correctness is
therefore a matter of documentation and quality control that documentation and implementation
coincides. However, this is easier said than done. In a modularized program the correctness of
a module is determined by its own correctness and the correctness of all the modules it depends
on. Clearly, in order to get correct results, correct algorithms and data structures must be
used. Usually the correctness of a geometric algorithm has been proven in a theoretical context
with simplifying assumptions, such as exact arithmetic or general position assumptions excluding
degenerate configurations. See also the design goal robustness in the following subsection. If
these assumptions, e.g. exact arithmetic, do not hold in practice, the correctness proof is not valid
anymore. Accordingly, modules using other modules, e.g. arithmetic modules, do not necessarily
yield correct results anymore, if the used modules do not behave according to their specification.
Whether assumptions concerning exact computation hold for a concrete problem instance in
practice depends on the demand of this instance on the arithmetic. Here, geometric computations
impose subtle dependencies on modules that make the combinations of modules intrinsically
harder. The arithmetic demand of geometric computations has been studied for a few basic
geometric problems [BP97, BMS94, LPT97], but further research on the arithmetic demand as
well as on an easy-to-use documentation of this demand is still needed. Ignoring the simplifying
assumptions, such as relying on ‘sufficient exactness’ of the built-in arithmetic, would violate our
understanding of correctness.

Exactness should not be confused with correctness in the sense of reliability. There is nothing
wrong with approximation algorithms computing approximate solutions as long as they do what
they pretend to do. Also, an algorithm handling only non-degenerate cases can be correct with
respect to its specification, although in CGAL we would like to provide algorithms handling
degeneracies at the first hand.

In a modularized project structure it is important to test modules independently and as early
as possible [Lak96]. One specific technique for quality assurance are assertions, assertions of
invariants of an algorithm and the self-checking of functions at runtime [Mag93, MNS*96]. They
are of great help in the implementation process and can reduce debugging efforts drastically.
The user should be able to switch off the checking, e.g. when code goes in production mode.

3.3 Robustness

A design goal particularly relevant for the implementation of geometric algorithms is robustness.
Many implementations of geometric algorithms lack robustness because of precision problems.
Design and correctness proof of geometric algorithms usually assume exact arithmetic while
many implementations simply replace it by imprecise arithmetic. Since imprecise calculations
can cause wrong and mutually contradicting decisions in the control flow of an algorithm, many
implementations crash or at best compute garbage for some inputs. For some applications the
fraction of bad inputs compared to all possible inputs is small, but for other applications this

INRIA
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fraction is large. There is no perfect solution to the precision problem known, especially with
respect to libraries. Primitives based on imprecise computations are hard to combine and therefore
less useful as library components. Exact computation is possible for many geometric problems
and saves the correctness proof given for a theoretical model of computation to the actual code,
but it slows down the computation. CGAL allows one to choose the underlying arithmetic and
thereby offers kind of a trade-off between efficiency and robustness.

3.4 Ease of Use

Many different qualities can contribute to the ease-of-use of a library and differ according to
the experience of the user. The above mentioned correctness and robustness issues are among
these qualities. Of general importance is the learning time and how fast the library gets useful.
Another issue is the amount of new concepts and exceptions of the general rules that must
be learned and remembered. Ease-of-use tends to get in conflict with flexibility, but in many
situations a solution can be found to please them both. Especially the flexibility of CGAL should
not distract a novice from the first steps with CGAL.

Smooth Learning Curve One major point of the success story of C++ was its almost complete
compatibility with C and the possible smooth transition from C to C++: from the new style of
comments, to member functions and inheritance, up to full object-oriented programming. Each
newly learned feature could be put into practice immediately. CGAL users are supposed to have
a base knowledge of C++ and the STL. The reader of the paper should be aware that there is a
tremendous difference between developing a library, such as CGAL, which this paper is about,
and the use of such a library, which is usually much simpler to understand. This has been
successfully shown with LEDA, and can also be seen with the STL.

CaGAL is based in many places on concepts known from STL or the other parts of the C++
Standard Library. An example is the use of streams and stream operators in CGAL. Another
example is the use of container classes and algorithms from the STL.

Uniformity A uniform look-and-feel of the design in CGAL will help in learning and remembering.
A concept once learned should be applicable in all places one would expect to. A function name
once learned for a specific class should not be named differently for another class. Exceptions
should be minimized in the design.

Complete and Minimal Interfaces Another goal with similar implications than uniformity
is a design with complete and minimal interfaces, see for example Item 18 in [Mey92]. An object
or module should be complete in its functionality, but should not provide additional decorating
functionality. Even if a certain function might look like ease-of-use for a certain class, in a more
global picture it might hinder the understanding of similarities and differences among classes,
and makes it harder to learn and remember.

Rich and Complete Functionality We aim for a useful and rich collection of geometric
objects, data structures and algorithms. CGAL is supposed to be a foundation for algorithmic
research in computational geometry and needs therefore a certain breadth and depth. The
standard techniques of the field are supposed to appear in CGAL. Completeness is related to
uniformity. Examples are distance and intersection computations that should be available for all
appropriate pairs of geometric objects, not only for an arbitrary subset. However, for certain
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pairs, the return-type might not fit in the framework currently available in CGAL, or solutions
might not be known yet.

Completeness is also related to robustness. We aim for general purpose solutions that are for
example not restricted by assumptions on general positions. Algorithms in CGAL should be able
to handle special cases and degeneracies. If this is expensive, additional versions are possible,
which are more efficient but less general.

3.5 Efficiency

We consider time and space efficiency. In situations, where a trade-off between them will be
possible, we will provide the flexibility to do so. With efficiency we address the well studied,
worst-case asymptotic complexity of an algorithm, and results from empirical studies to determine
the constant factors hidden in the O-notation of theoretical results, as well as results on typical
input sets that occur in practice. Whenever possible and known, the most efficient version of
an algorithm is used. Sometimes multiple versions of an algorithm are supplied. For example if
dealing with degeneracies is expensive, a faster but less general version might also be supplied.
Another example is the exploitation of the characteristics of a specific number type within an
algorithm.

Efficiency is a competing goal with respect to flexibility, robustness, and ease-of-use. As long as
it is a small constant fraction, we are willing to sacrifice efficiency in favor of the other goals. One
cannot expect a library with flexibility requirements as CGAL to provide hand-coded solutions
for all purposes. The following sections will reveal that we have taken efficiency seriously. It is
a primary design goal for CGAL. In fact, the techniques used for flexibility in CGAL enables us
also to achieve optimal efficiency.

4 Generic and Object-Oriented Programming

Basically, two main techniques are available in C++ for realizing our design goal flexibility in
CagAL: Object-oriented programming, using inheritance from base classes with virtual member
functions, and generic programming, using class templates and function templates.

In the object-oriented programming paradigm flexibility is achieved with a virtual base class,
which defines an interface, and as many derived classes as different actual implementations of
the interface are present in a system. The technique of so-called virtual member functions and
runtime type information allows a user to select any of the derived classes wherever the base
class is required and that even at runtime. Also, general functionality can be programmed in
terms of the base class without knowing all possible derived implementations beforehand.

The advantages are the clear definition of the interface and the flexibility at runtime. There
are four main disadvantages: This paradigm cannot provide strong type checking at compile
time, enforces tight coupling through the inheritance relationship [Lak96|, it adds additional
memory to each object derived from the base class (the so-called virtual function table pointer)
and it adds an indirection through the virtual function table for each call to a virtual member
function [Lip96]. The latter one is of particular interest when considering runtime performance
since virtual member functions can usually not be made inline and are therefore not subject to
code optimization within the calling function. Modern microprocessor architectures! can optimize

Ipipelining, branch prediction, speculative execution and reordering, global optimizers using runtime statistics
and the interplay with the cache architecture.
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at runtime, but, besides that runtime predictions are difficult, these mechanisms are more likely
to fail for virtual member functions. These effects are negligible for larger functions, but small
functions will suffer a loss in runtime of one or two orders of magnitude. Significant examples for
CaGAL are coordinate access and arithmetic for low-dimensional geometric objects and traversals
of combinatorial structures. If the class hierarchy tends to be dense with long derivation chains
and maybe even worse with multiple inheritance, the system will be hard to learn, to understand,
to test and maintain [Lak96].

The generic programming paradigm features what is known in C++ as class templates and function
templates. Templates are program recipes where certain types are only given symbolically, the so
called template arguments. The compiler replaces these arguments with actual types where the
program recipe is actually used, at the place of the template instantiation. The recipe transforms
to a normal part of a program. For function templates this can even be done automatically by
the compiler, since the types of the function parameters are known to the compiler. Examples
are a generic list class for arbitrary item types or a swap function exchanging variable values
for all possible types. The following definitions would enable us to use list<int> as a list of
integers or to swap two integer variables x and y with swap(x,y).

template <class T> class list {

// ... , uses T as item type.
};
template <class T> void swap( T& a, T& b) {
T tmp = a;
a=b;
b = tmp;

The example of the swap function illustrates that a template usually assumes some properties to
hold for the template arguments, here that variables of those type can be assigned to each other.
These requirements are not expressed within C++, but only in the accompanying documentation.
An actual type used in the template instantiation must fulfill the requirements of the template
argument in order of the template to work properly. Requirements can be classified into syntactical
ones, there must be an assignment operator, and semantical ones, the implementation of the
operator must really do what it is supposed to do. Syntactical requirements will be checked by the
compiler at instantiation time of the template. Semantical requirements cannot be checked. In
certain situations it might be wishful to stress semantical requirements with additional syntactical,
i.e. checkable, requirements, e.g. symbolical tags.

For class templates exist the special situation that different member functions might impose
different requirements on the template arguments, but a certain instantiation of the class template
uses only a subset of the member functions. Here, the arguments must only fulfill the requirements
imposed by the member functions actually used. In particular, the compiler is only allowed
to instantiate those member functions of an implicit instantiation of a class template that are
actually used [C++96]. This enables us to design class templates with optional functionality that
impose additional requirements on the template arguments if and only if this functionality is
used.

A good example for the generic programming paradigm is the Standard Template Library
[SL95, MS96, C++96, Sil97]. The main source of its generality and flexibility stems from the
separation of concepts and models [Sil97]. For example, an iterator is an abstract concept defined
in terms of requirements. A certain class is said to be a model of the concept if it fulfills the
requirements. The iterator concept is a generalization of a pointer and the usual C-pointer is
a model of an iterator. Iterators serve two purposes: They refer to an item and they traverse
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over the sequence of items in a container class. Container classes manage collections of items.
Different categories are defined for iterators: input, output, forward, bidirectional and random-
access iterators. They differ mainly in their traversal capabilities. The usual C-pointer is a
random-access iterator. Generic algorithms in the STL are not written for a particular container
class but for a pair of iterators instead. The so called range [first,beyond) of two iterators
denotes the sequence of all iterators obtained by starting with first and advancing first until
beyond is reached, but does not include beyond. A container is supposed to provide a type,
which is a model of an iterator, and two member functions: begin() returns the start iterator
of the sequence and end() returns the iterator referring to the ‘past-the-end’-position of the
sequence. A generic contains function could be written as follows and will work for any model
of an input iterator.

template <class InputlIterator, class T>
bool contains( InputIterator first, InputlIterator beyond, const T& value) {
while ((first != beyond) && (*#first != value))
++first;
return (first != beyond);

The advantages of the generic programming paradigm are the strong type checking at compile
time during the template instantiation, no need for extra storage or additional indirections during
function call, and full support of inline member functions and code optimization at compile
time [Str97]. One disadvantage is the lack of a formal scheme in the language for expressing the
requirements of template arguments, the equivalent to the virtual base class in the object-oriented
programming paradigm. This is left to the program documentation. Another disadvantage is
that the flexibility is only available at compile time. Polymorphic lists at runtime cannot be
implemented in this way.

In many places we follow in CGAL the generic programming paradigm to gain flexibility and
efficiency. Important is the compliance of CGAL with the STL. This allows the reuse of existing
generic algorithms and container classes, but — much more important — unifies the look-and-feel
of the design of CGAL with the C++ Standard and is therefore easy to learn and easy to use
for users familiar with the STL. The abstract concepts used in the STL are so powerful that
only a few additions and refinements are needed in CGAL. One refinement is the concept of
handles. Combinatorial data structures might not necessarily possess a natural order on their
items. Here, we retract to the concept of handles?, which is the item denoting part of the iterator
concept without traversal capabilities. Any model of an iterator is a model for a handle. Another
refinement is the concept of circulators, a kind of iterators with slightly modified requirements
that suit the needs of circular sequences better as they occur naturally in several combinatorial
data structures, such as the sequence of edges around a vertex in a triangulation. See the next
section for more details on circulators.

In a few places we make use of the object-oriented programming paradigm. For example the
strategy pattern [GHJV95] has been applied to polyhedral surfaces to implement a protected
access to the internal representation [Ket97], which is no time critical operation compared to
the work that is supposed to be performed with the internal representation. Another example
is the return-value of the intersection of two polygons, which might contain points, segments, or
polygons in general. In CGAL, a polymorphic list is used to return the result of such intersection
routines. Note that this does not necessarily imply a common base class for all CGAL classes.
In fact, CGAL has no common base class for all objects, and its class hierarchy is very flat, if
there is any derivation used at all. Instead, we applied an appropriate design pattern, a generic
wrapper, as described in the Section 7. This keeps the influence of this design decision locally.

2Handles are already present in the STL where container classes invalidate iterators after insert or deletion
operations, but they were not explicitly named as a concept.
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5 Circulators

Our new concept of circulators reflects in CGAL the fact that combinatorial structures often lead
to circular sequences, in contrast to the linear sequences supported with iterators and container
classes in the STL. For example polyhedral surfaces and planar maps give rise to the circular
sequence of edges around a vertex or a facet. Implementing iterators for circular sequences
is possible, but not straightforward, since no natural past-the-end situation is available. An
arbitrary sentinel in the cyclic order would break the natural symmetry in the configuration,
which is in itself a bad idea, and will lead to cumbersome implementations. Another solution
stores, within the iterator, a starting edge, a current edge, and a kind of winding-number that
is zero for the begin()-iterator and one for the past-the-end iterator®. No solution is known
to us that would provide a light-weight iterator as it is supposed to be (in terms of space and
efficiency). Therefore we introduced in CGAL the similar concept of circulators, which does allow
light-weight implementations. The support library provides adaptor classes that convert between
iterators and circulators, thus integrating this new concept into the framework of the STL.

Circulators share most of their requirements with iterators. Three circulator categories are
defined: forward, bidirectional and random-access circulators. Given a circulator c the operation
xc denotes the item the circulator refers to. The operation ++c advances the circulator by one
item and -c steps a bidirectional circulator one item backwards. For random-access circulators
c+n advances the circulator by n where n is a natural number. Two circulators can be compared
for equality.

Circulators develop different notions of reachability and ranges than iterators. A circulator d
is called reachable from c if ¢ can be made equal to d with finitely many applications of the
operator ++c. Due to the circularity of the data structure this is always true if both circulators
refer to items of the same data structure. In particular, c is always reachable from c. Given
two circulators ¢ and d, the range [c,d) denotes all circulators obtained by starting with ¢ and
advancing c until d is reached, but does not include d if d # c. So far it is the same range
definition as for iterators. The difference lies in the use of [c,c) for denoting all items in the
circular data structure, whereas for an iterator i the range [i,i) denotes the empty range.
As long as ¢ !'= d the range [c,d) behaves like an iterator range and could be used in STL
algorithms. It is possible to write just as simple algorithms that work with iterators as well as
with circulators, including the full range definition, see Chapter 3.9 in [Ket98]. An additional
test ¢ == NULL is now required that is true if and only if the data structure is empty. In this case
the circulator c is said to have a singular value. For the complete description of the requirements
for circulators we refer to Chapter 3.7 in [Ket98].

We repeat the example for the generic contains function from the previous Section 4 for a range
of circulators. The main difference is the use of a do-while loop instead of a while loop.

template <class InputCirculator, class T>
bool contains( InputCirculator c¢, InputCirculator d, const T& value) {
if (¢ != NULL) {
do {
if ( *c == value)
return true;
} while (++c !=4d);
}

return false;

3This is currently implemented in Ccar as an adaptor class which provides a pair of iterators for a given
circulator.
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