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Stabilisation exponentielle de certaines configurations du
systéme & N remorques

Résumé : Nous considérons le probléme de la stabilisation de certaines postures pour
le systéme composé d’une voiture tractant N remorques dans le cas général (i.e. le point
d’attache de chaque remorque n’est pas nécessairement localisé sur ’essieu arriére de la re-
morque précédente). Ce systéme n’est en général pas plat et, par conséquent, il est impossible
de ’écrire sous forme chainée. Nous montrons toutefois que, dans certaines configurations,
le systéme peut étre approximé par un systéme en forme chainée. Ceci nous permet de
déduire des retours d’état instationnaires continus qui stabilisent localement ces postures
particuliéres, tout en assurant une convergence exponentielle.

Mots-clés : Stabilisation exponentielle, retour d’état instationnaire, retour d’état homo-
géne, voiture avec N remorques.
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1 Introduction

The N-trailer system (i.e. a cart-like or car-like mobile robot followed by N non-actuated
trailers) has been much studied over the past few years. This kind of system is stan-
dard in mobile robotics, while its highly nonlinear characteristics lead to very challenging
control problems. In most of the studies on this system, it has been assumed that each
trailer is hitched at the middle of the rear axle of the preceding vehicle. A consequence
of this assumption is that the kinematic equations of the system can be expressed —in
some adequate coordinates— in the so-called chained form. This was proved in [13] for
a cart with one trailer, and in [20] for an arbitrary number of trailers. The very simple
structure of the chained form, and some specific properties associated with it —such as
flatness [6] and homogeneity of the control vector fields with respect to a family of dilations
[7]—, have been used to derive various solutions to both the stabilization problem (see e.g.
[10, 11, 12, 14, 18, 19, 22] for a time-varying feedback approach, [1, 3] for a discontinuous
approach, and [2, 21] for a hybrid approach), and the trajectory generation problem (see
e.g. [6] and the numerous contributions on the subject in [8]).

While a car with a single trailer is still flat when the hitching point of the trailer is
located at some distance of the car’s rear axle [17], this is no longer the case when there
are two —or more— successive trailers with “off-axle” hitch points. Then, it becomes im-
possible to transform the kinematic equations of the system into a chained form, and the
results obtained for this latter class of systems cannot be applied. The fact that no simple
canonical expression for the kinematic models of these systems is known may account for
the limited research effort that they have raised up until now. For configurations around
which the system is controllable —i.e. satisfies the Lie Algebra Rank Condition—, one may
apply methods recently developed for general controllable driftless systems, e.g. [9] for the
trajectory generation problem, and [11] for the asymptotic stabilization of a desired config-
uration of the system. However, the complexity of these methods makes their application
to these systems extremely involved. There is a need for simpler approaches.

In this paper, we consider the stabilization problem of a configuration of the “general
N-trailer system” —following [17], we use this expression to refer to the N-trailer system
with possibly off-axle hitch points. We exhibit a set of configurations around which the
system’s equations can be approximated, in some sense, by the chained form system. This
kind of approximation is sufficient to assert the local controllability of the system from that
of the approximated system. It also implies, as we shall see, that time-varying feedback
laws previously developed for chained-form systems can be used to achieve local exponential
stability of these particular configurations. A practical interest of this approach is that it
yields simple and easily tunable control laws.

The paper is organized as follows. We introduce in Section 2 the concept of a “control
system with a chained form approximation” and point out some properties associated with
such a system. We show in Section 3 that the general N-trailer system has a chained form
approximation at certain configurations, and provide time-varying feedbacks for the local
exponential stabilization of these configurations. Finally, simulation results are presented in
Section 4.

RR n° 3412



4 D.A. Lizdrraga, P. Morin and C. Samson

2 Main Results

The results reported in the present paper rely on the properties of homogeneous systems,
some of which are recalled hereafter. Given an n-tuple of positive reals r = (ry,... ,75), the
family of mappings 67 : R* — R™ indexed by a positive real A and defined as

0 (z) = (A\"xy, ..., A™ay,) 1)

is called a dilation of weight r. Given a dilation 63, a function f : R* xR — R is homogeneous
of degree T with respect to 6% (in short 6% -homogeneous of degree T) if

Vz e R*, Vte R: f(65(x),t) = A\ f(=,t). (2)

A vector field X (z,t) = Y., Xi(z, t)a%,- +% is homogeneous of degree o with respect to 6% if
X is 65-homogeneous of degree o +r;, fori =1,... ,n. A homogeneous norm associated with
a dilation 6% is a continuous, positive definite mapping p : R* — R which is 6{-homogeneous
of degree 1. Finally, several subsequent statements make use of the following definition:

Definition 1 ([7]) Given a dilation 6% and a 6%-homogeneous norm p, the origin x = 0 of
z = f(z,t) is said to be locally p-exponentially stable if there exist an open neighborhood
U of this point and two positive reals K and v, such that for any (zo,to) € U x RT, the
solution x(t) issued from o at time to satisfies p(x(t)) < Kp(x(to))e 110,

For n > 3, a (2,n) single-chain system (henceforth called, a chained-form system) is
defined by

zZ= bl(z)ul + b2U2
bi(2) = (1,23,... ,2n,0)T (3)
by = (0,...,0,1)T.

Note that the vector fields b; and by are homogeneous of degrees —1 and —gq respectively
w.r.t. the dilation of weight r(¢) = (1,¢g+n—2,9+n—3,...,q). The possibility of setting ¢
equal to any positive integer represents a degree of freedom which will be used later on. As
mentioned earlier, non-flat systems cannot be directly transformed into the chained form,
since a chained form system is flat. Nevertheless, it may happen that such systems still
exhibit properties allowing to view them as if they were flat, in such a way that available
stabilization techniques for chained-form systems can apply to them. To give a precise
statement of one of these properties, we define a class of systems which behave locally in a
“flat fashion”. They are systems for which there exists a chained-form approximation that
locally emulates their dynamics:

Definition 2 A smooth control system

= f(z,u), z€R"(n>3), uek

INRIA
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is said to have a chained-form approximation at T if there exist a diffeomorphism (x,u) —
(2,v) 2 (p(x),¥(x,u)) mapping (T,u) into (0,v) and a dilation 6;(q) with r(q) = (1,q+n —
2,g+n—3,...,q) and ¢ € IN — {0}, such that in the new coordinates the system has the
form

2 =b1(2)v1 + bovy +v161(2) + vaea(2) (4)

with by, by defined by (8), and e1, ea equal to a countable sum of 8} -homogeneous vector
fields of degrees strictly larger than —1 and —q, respectively.

In what follows, we let .ACy(7) denote the set of smooth control systems on R that have
a chained-form approximation at & € R™ for a given q. The next proposition asserts that
any feedback control which p-exponentially stabilizes the origin of a chained-form system
yields a corresponding feedback control which, when applied to any element of AC7 (),
asymptotically stabilizes the point Z with exponential convergence.

Proposition 1 Let & € ACy(Z) and p,%, be as in Definition 2. Assume that the time-
varying feedback v(z,t) with v € CO(R™ x Rt ; R?) locally asymptotically stabilizes the origin
of a chained form system, and that v1 and vy are T-periodic in their second argument and
0% -homogeneous of degrees 1 and q respectively. Then, the feedback w defined by u(z,t) =
P (v(e(z),t))t, when applied to T, locally asymptotically stabilizes the point x = & with
exponential convergence, i.e. there exist v,m > 0 and a class K function h such that, if
2(0) — || <, then |lz(t) — || < h(||z(0) — z[[)e™"* for all t > 0.

Proof. The proof is based on [15, Prop. 4] (itself an extension of [16, Thm. 2]), according
to which: Given a dilation 8%, the origin of 2 = X%(z,t) + Y i, X*(2,t) is locally p-
exponentially stable if (i) The origin of 2 = X°(2,t) is locally asymptotically stable, (ii) X°
is 0% -homogeneous of degree 0, (iii) X* is 65 -homogeneous of strictly positive degree for all
1 > 1. Introducing the feedback v(z,t) into (4), we obtain the closed-loop dynamics

=X %2,t) +vi(z,t)e1(2) + va(z, t)ea(2) (5)

with X°(2,¢) 2 by (2)v1(2, )+ bava(2, t). By assumption, the origin of z = X°(z, ¢) is locally
asymptotically stable, and X° is §7-homogeneous of degree 0, so conditions (i) and (i)
above are satisfied. Moreover, by Definition 2, €1 and e, are sums of §}-homogeneous v .f.
of degrees strictly greater than —1 and —q respectively, thus the last two terms in (5) are
also sums of 6{-homogeneous v.f. of strictly positive degrees. Therefore, the third condition
is satisfied as well, and the origin z = 0 of (5) is locally p-exponentially stable. This implies
in turn that, given a ¢é3-homogeneous norm p, there exist constants v,n’ > 0, and a class K
function A’ such that if ||z(0)|] < ', the closed-loop solution z(t) satisfies

2@ < B (I12(0)[)e™", (6)

! For any = € R, 43 ! is the inverse of the map u — P(z,u).

RR n° 3412



6 D.A. Lizdrraga, P. Morin and C. Samson

for all ¢ > 0. This means that the solution will be confined to lie in the set B = {z €
R™ : |lz|] < A'(]|z(0))}, whose compactness follows from the continuity and properness
of h'. From Definition 2 we have z(t) = ¢~ '(2(t)) and Z = ¢~!(0) and, since ! is a
diffeomorphism and B is compact, it follows that there exists a constant M’ > 0 such that
for all t > 0:

o) =zl = lle™(2(t) = (O]
M||z(B)]l- (7)

IA

The combination of (7) and (6) yields
l2(t) =zl < M'R'(J|2(0) e ". (8)

Similarly, by virtue of the mean value theorem, there exists a constant M such that ||2(0)|| <
M]||z(0)—z|| and thus, applying the non-decreasing function A’ to both terms of this equality:

K (12(0)]l) < 1'(M||z(0) — Z))
which, combined with (8) implies
l2(t) =zl < A([l2(0) — z[)e ", 9)

with h(7) = M'W'(M7) and 7 € R. One verifies immediately that h is a class K function
and that n = inf) =, ¢! (2)|| > 0, hence any solution z(t) that satisfies ||z(0) — z|| < 7
will also satisfy (9) for all ¢ > 0. |

The set of driftless systems with two inputs is of special interest to us because it includes
a number of kinematic models of mobile robots. The following proposition states sufficient
conditions, for a system which belongs to this set, to have a chained form approximation.

Proposition 2 Consider a control system
Y &= f(x)ur + g(x)us (10)

with f, g analytic and such that

0 5@ = B ] o =] 8 ]

f@),01(x) €ER, 2= (21,...,2,)7 and z, = (22,... ,2n

(ii) f1(z) #0 and f.(Z,) =0,

(i3) (A, B,) = (WgT(fT),gr(iT)) is a controllable pair of matrices.

)

INRIA
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Denote a; (1 =0, ... ,n —2) the coefficients of the characteristic polynomial associated with
the matriz A, (i.e., det(sI — A,) = s" ' 4+ a,_ 95, 2 + ... +ag). Then the coordinate

transformation (z,u) — (z,v) = (p(x), Y (x,u)) with
_| (@—-z)
o) = p 00 ]

w@wJI[—m¢m;¢Z—zn+u2] "

a=(ag,... ,an 2)"
T 0
T:[fl(()) TT],TT:(tz,...,tn) (12)
B,, (1=0)
thi =< Artn_it1 + n_icitn,
(1<i<n-2)

transforms (10) into (4), with €1 and 2 as specified in Definition 2 when choosing ¢ > n—2.
Therefore, ¥ € ACy (%) for ¢ >n —2.

Proof. Let y = x—Z, so that system (10) may also be written as y = f(y+Z)uy +9(y+T)us.
By a Taylor expansion of f and g at y = 0, one obtains:
T —
. c v n fi(z)
o= Lo [ e [ ] w
T
+ [ gjér) ] uz + urtfi (yr) + uan; (yr)
with A, = 98f.(z,)/0%,, B, = ¢.(%.), ¢ = 8f1(z)/0x1, I = 0f1(z)/0x,, and 7%, n}
countable sums of polynomial terms in ys,... ,y, of degrees > 2 and > 1, respectively. It
is well known from linear system theory (see e.g. [4]), that the matrix T, given by (12)

transforms the linear controllable system associated with the pair (A, B,) into the control
canonical form (4., B.) := (T, ' A, T,, T, ' B,) with

0 1 0
Ac — . T,
0 0 1
—@y —G1 - —On2

B.=(0,...,0,1)T.

Therefore, the linear diffeomorphism y +— z = T~1y transforms system (13) into

| T, n(z)
5 = +ecz +A£;(:)7 z ] w4 fléf) s
+71 (nf(TTzT)ul +n3 (TrzT)u2) . (14)

RR n° 3412
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In view of the definition (11) of v, one readily verifies that system (14) is of the form (4)
with

[ 1 (AT T
51(2’) _ cz1 + ING) ('Y /1(;7" + 91 (.’L’)a )zr

+T'92(T,2,) + o 2, T '9) (T} 2,)

[ 01(2)
52(2) = fl(()i) + T_ln% (T'rz'r). (15)

It only remains to show that ¢; and e5 satisfy the homogeneity conditions of Definition 2
for ¢ > n—2. Let M := max{r; }2<i<n = ¢+ n — 2. For &1, the only non-zero component of
the first vector field (v.f.) is cz1 + (1/£1(2)) (YT Ty + g1(Z)aT)z,. Since it is linear in z, and
since ¢ = min{r; ({ =2,... ,n)}, it may be written as a finite sum of ¢5-homogeneous v.f. of
degrees not smaller than min{1, ¢} —r; = 0. Simple calculations show that T’lnf(TTzT) is a
countable sum of quadratic and higher order terms in 2o, ... , 25, and so is aTzTT_ln% (Trz:)
due to the factor alz,. Therefore, each of these v.f. may be decomposed as a sum of &5-
homogeneous v.f. of degrees not smaller than 2¢— M = g—n+2. The homogeneity condition
on 7 requires that the degrees of the v.f. arising in its decomposition be minored by —1.
From what precedes, this is clearly satisfied for ¢ > n — 2.

Let us turn to 5 in (15). The first v.f. on the right-hand side is constant and defines a
8%-homogeneous v.f. of degree —1 (= —ry). For the second v.f (i.e. T7'n}(T,z.)), each of

its components is a countable sum of polynomials in zs, ... , z, of degree larger or equal to
one. Therefore, we may decompose this vector field as a sum of §5-homogeneous v.f. with
degrees not smaller than m — M = —n + 2 (since n > 3). From Definition 2, €5 must be

a sum of vector fields homogeneous of degree larger than —g. This condition is satisfied if
-1 > —q and —n + 2 > —q, that is if ¢ > max{1,n — 2} = n — 2, as announced in the
proposition. [ |

3 Application

Let us consider the general N-trailer system with off-azle hitching, as shown on Fig. 1. In
order to derive a kinematic model of the system, it is assumed that the vehicles’ wheels
roll on a plane without slipping. It is also assumed that the leading vehicle (the tractor)
is a car-like vehicle equipped with a front steering wheel. When the leading vehicle is a
unicycle, extension of the present results involves slightly more complicated equations, but
is nonetheless straightforward.

The notation for various physical parameters and angles is detailed on Figure 1. The ve-
hicles are numbered starting with the one farthest from the tractor. The relative orientations
of the vehicles with respect to each other are given by {a;}o<i<n41, while an42 is the ori-
entation of the car’s front wheel. Besides these angles, it remains to determine the position
and orientation of one of the vehicles, say vehicle M, in order to completely characterize the
configuration of the system in the plane. To this purpose, one may consider a given curve C

INRIA



FExponential stabilization... 9

Figure 1: General N-trailer system. The leading vehicle may be cart- or car-like.

in the plane whose known curvature « is a function of the curvilinear distance s measured
along C from some point Cy on the curve, and consider a set of Frénet coordinates (s,y,3)
as shown on Figure 2. The coordinates s and ¥y give the position of the point Pg, which is
fixed to vehicle M, and (3 is the angle between vehicle M and the tangent to the curve C at
the origin Pr of the moving Frénet frame. In the particular case when C is a straight line
(k(s) =0), s and y are nothing but the Cartesian coordinates of Pg w.r.t. a fixed frame.
In former studies, see for instance [20] and [19], P was chosen as the mid-point P; on the
rear axle of the last trailer because its Cartesian coordinates constitute a flat output for the
system, thus facilitating the transformation of the model into the chained form. However,
when the hitch offsets are all nonzero and N > 2, the system ceases to be flat, depriving P,
of this special meaning. As shown further, a practical advantage of the proposed approach
is to allow the selection of an arbitrary point Pg attached to any of the vehicles involved in
the composition of the trailer system. We will thus subsequently assume that Py is fixed to
vehicle M for some M € {1,... ,N +1}.
The state vector z is defined by

A
r:T = S
z 2y
5 =
A (16)
z3 = f3
x; e aj—2 (4<ji<n=N+4)

RR n° 3412



10 D.A. Lizdrraga, P. Morin and C. Samson

Figure 2: Reference curve C and Frénet frame with origin Pc.

The control inputs u; = rw, with r denoting the radius of the car’s front wheel, and us =
QN +2 are the rolling and steering velocities of the car’s front wheel. With this notation, the
model for the car with N trailers, obtained in the Appendix, is:

T = f(x)ur + gus an

with
i W (z,B(z)) ]

l—n(zl)zg
W(z,B(z) - 3)
Gu(z) _ r(z1)W(z,(z))
Ly 1—k(z1)T2
Ga(z) _ Gi(=)

f(.’L') = Lo Ly

Gn+i(z) _ Gn(z)
Lyy1 Ly

L 0 =
g = (0,...,0,1)T
W(z,) = cos()Fu(x)
—(sin(-)d, + cos(-)dy)

Blz) = a3,

Ly

INRIA
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and the recursive expressions

Fni1(z) = cos(zn44)

G () =i 9
Fi@) = costwon)Fon(@) + 2 sin(w)Gan(@) | _ o
Gi@) = sin(@s)Puns(2) — o5 cos(ziss)Copr (0) }“‘N’N bt

The posture stabilization problem addressed here consists in finding a feedback control which
locally stabilizes some desired posture Z.

Henceforth, we assume that « is constant. This means that C is either a straight line or a
circle. Under this assumption, it is simple to verify that (17) has the form (10) of Proposition
2, with f and g analytic away from configurations such that kxo # 1. Moreover, f and g
are both independent of z1, so that condition (%) in the proposition is met. As for condition
(i), it may or may not be satisfied depending on the selection of Z. For instance, one readily
verifies that any posture of the form Z = (s9,0,...,0)?, when x = 0, corresponding to the
case where all vehicles are aligned, satisfies this condition. A natural question which then
arises is whether there exist other postures which also satisfy this condition. The following
result gives a positive answer to this question.

Lemma 1 For any constant curvature k belonging to some interval (Kmin, Ksup) containing
0, there exist unique values T3(k),... ,Tn(k) in (—7/2,4+7/2) such that for

_A _ _
T = (50,0,%3(K), .., Zn(K))7,
with so arbitrary, condition (i) of Proposition 2 is satisfied for system (17).
(Proof in the Appendiz).

The set of particular postures Z pointed out in this lemma has in fact a simple geometrical
interpretation. Indeed, the trailer system can move along the circle C only when all vehicles
describe circular paths concentric to C. The corresponding constant vehicle-to-vehicle angles
Z; (1 = 3,...,n) are therefore geometrically obtained by drawing these paths and the
tangenting lines at the points P, (i =1,... ,N +1).

In order to proceed, we must verify that condition (%) of Proposition 2 is also satisfied,
i.e. that the pair (A4,,B,) is controllable. For x = 0, the following proposition guarantees
this property.

Proposition 3 Given T = (s0,0,...,0)7 with sg € R, the pair (A,, B,) 2 (‘9’(;;(1?),%),
obtained from (17) with k = 0, is controllable.

(Proof in the Appendiz).

Based on this result, one can invoke continuity arguments to deduce that if || is small
enough and different from zero, then condition (%) of Proposition 2 is still satisfied. The

RR n° 3412



12 D.A. Lizdrraga, P. Morin and C. Samson

problem of determining all values of k for which this condition is met is however more
involved.

Having established that the general N-trailer system can be approximated, in the sense of
Definition 2, by a chained-form system at the specific configurations pointed out in Lemma
1, we are now in the position of applying Proposition 1 in order to extend to this system
previous feedback stabilization results obtained in the case of chained-form systems. We
will illustrate this possibility by first recalling a result in [12].

Proposition 4 ([12, Prop. 3]) Select n—1 real constants as, ... ,an such that the polyno-
mial P(s) = 8" 14a,s" 2+ - -+azs+asy is Hurwitz. Consider a set of weight vectors r(q) =

(1,g+n—2,9+n—3,...,q) and associated homogeneous norms ppq(z) = (3 iy |2 T—W))Jl
Then, for q large enough and p > n — 2 4 q, the continuous time-periodic control
vi(2,t) = —k12(sin®t + sign(z)sint)
—kn+1pp,q(2) sin(t) o\ P (19)
n sign(v
va(2,t) = —v1(2,8) D oiy Gi% ( e )

with k1 > 0, kny1 > 0, globally p-exponentially stabilizes the origin of the chained-form
system (3).

Consider now the general N-trailer system with n = N +4. Let Z be any of the postures
pointed out in Lemma 1 such that the pair (A,, B,) 2 (OJ;;E(?) gr) is controllable. By appli-
cation of Proposition 1, the control u(x,t), obtained from (19) by the change of coordinates

specified in Proposition 2, locally exponentially stabilizes Z.

4 Simulation results

This control has been simulated in the case of a car pulling three trailers, so that n = 7. In
the first simulation a “straight-in-line” posture, for which Z = 0 with k = 0, is stabilized. In

the second simulation, the stabilized posture is Z = (0,0, Z3(k),... ,Tn(x)) with k = 1/15.
This corresponds to what may be called a “circular” posture. In both simulations, the
vehicles’ dimensions L; (i = 1,...,4) are set equal to 2 and the off-axle hitch distances C;

(i =2,...,4) are all taken equal to 1. The point Py is fixed to the last trailer (M = 1)
with coordinates (d,,d,) = (0, —1). The desired posture Z and the initial state value x, are
set as follows:

Simulation 1:

oz =0,

oz = (0,5,0°,0°,0°,0°,0°).

Simulation 2:
oz =(0,0,0°,12.18°,12.09°,12.01°, 7.95°),

INRIA
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o 2o = (0,5,0°,0°,0°,0°,0°).

The gains (az, ... ,a7) in the feedback law (19) are given by (0.27,1.4,4.2,6.4,6.7,3.9),
whereas k; = 2.5 and k,;1 = 6. Finally, the value ¢ involved in the weight vector r(q) has
been chosen equal to n — 1 = 6. Figures 3 and 4 show the initial and desired postures of the
simulated system, as well as the path described by Pg.

Figure 3: Simulation 1: “Straight-in-line” posture stabilization (the stabilized desired posture is
drawn with a thick trait).

Figure 4: Simulation 2: Stabilization of a “circular” posture.

Appendix

Derivation of the kinematic model for the General N-Trailer System

In order to obtain the model, we will temporarily introduce an inertial reference frame
Yo = (Po, {io,jo}), (with arbitrary origin Py and orthonormal basis {ig,jo}) as well as the

RR n° 3412



14 D.A. Lizdrraga, P. Morin and C. Samson

orientations 6;, (1 = 1,... ,N + 1), where 0, represents the angle measured from iy to the
i-th vehicle’s main axis. Similarly, we will use (z;,y;), (i = 1,... ,N + 1) to represent the
position of P; with respect to Xg, i.e. P; = x;ip + y:jo-

The model of the car (the tractor) is widely known and given by:

TN+1 u1 co8(On41) cos(an2)

Ynt1 | _ | ursin(@n41)cos(an2) (20)
Onir | | (ui/Lyy1)sin(anie)

AN 42 U

with u; = wr. In view of the cascaded structure of the system, it will be useful to derive ex-
pressions for (i, §;,6;) in terms of (41, Yit1,6i41). Let Q; denote the position of the point
where the i-th vehicle is hitched to the (i + 1)-th one. Then, easy kinematic computations
show that

S D ] 5. sin(0i+1)
Qz — 141 + C’L+161+1 |: —COS(0i+1) :| ” (21)
and also
.o [ —sin(6))
Q= Fie b | ] (22)

A third equation may be derived based on the rolling-without-slipping assumption, which
translates into

— &;sin(6;) + ¢; cos(8;) = 0. (23)
Equations (21)-(23) can be condensed into the equivalent one:
1 0 —-L; Sin(ei) T; l.'i+1 + Cz'+1 sin(0i+1)9:i+1
0 1 L, cos(6;) Ui | = | Gig1 — Ciy1c08(0it1)0it1
—sin(6;) cos(6;) 0 0; 0
which in turn yields
&y cos?(6;) cos(8;)sin(6;) Ciy1 cos(6;)sin(a;) Tig1
7| = cos( ;) sin(6;) sin?(8;) Cit1 sin(0;) sin(a;) Uil (24)
0; - s1n(01) Li cos(#;) C’“ cos(a;) 0it1
(i=N,N-1,...,1), (25)
with a; = 6,41 — 6;, (1 = 1,...,N). Together, this matrix equation and (20) allow us
to develop the expressions (xz,yl,e )fori=N+1,...,1. After some simplifications, the
resulting expressions are
%; = cos(0;)P;(0)uy
¥; = sin(6;)®;(0)ur (t = N+1,N,...,1)
g, = 1"1L((9)u1

GNy2 = U

INRIA
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with On4o 2 anga, 0 2 (01, ... ,0xn42)T and:

Py 41(0) = cos(On+2)
Iny1(0) = sin(On42)

@1(9) = c'os(ai)@iﬂ(ﬂ) + C% sin(ai)l‘iﬂ(e) (z _ N7 N 1, . 71).
T3(0) = sin(a;)®i11(0) — 75+ cos(ai)Tit1(6)

Assuming the point Pg fixed to the M-th vehicle for some M € {1,...,N + 1}, the next
step consists in expressing its velocity Py with respect to Zg. This is readily accomplished
by attaching a Cartesian frame X (Par, {isr,jm}) fixed on the M-th vehicle and oriented
so that the position of P with respect to X be given by Pg/y = deiy + dyju- Using the
classical expression Pg = Py + P /M +wu A Pgyu, we get

[ 1= [ ] [t o

Let us now introduce the curve C and its associated Frénet frame and then find the expres-
sions for 4, ¥ and 3 (see Fig. 2). Calling f¢ the orientation of iz with respect to iy and
using elementary kinematics, we get

5= m (#g cos(O¢) + Yo sin(fc))
¥ = —&¢sin(fc) + 9g cos(6¢)
6 = K(s)s.

Finally, by posing 3 29 M — B¢ and letting the state vector x be defined as in (16), the
above expressions can be rearranged to give the complete model (17).

Proof of Lemma 1

Assuming a constant curvature k(1) = k, our goal is to determine z,(k) = (0,Z3(k), ... ,
Zn(k))T with z;(k) € (=%, %), such that

fr(zr(K)) = 0. (26)

For conciseness in the notation, we will henceforth write z;, F; and G; instead of Z;(k),
F;(z(x)) and G;(Z(k)), respectively. In view of (17), (26) is equivalent to the following three
conditions:

(—da cos(Z3) + dy sin(Z3)) L4 = sin(Z3) Far, (27)
[1+ K(d. sin(Z3) + dy cos(Z3))] £ = & cos(Z3) Fur, (28)
GG _Grn (29)
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16 D.A. Lizdrraga, P. Morin and C. Samson

We consider two cases depending on the value of k. First, let us assume x = 0. This
assumption and (28) imply that Gy = 0. With (29), this implies in turn that Gy41 =
sin(Zn+4) = 0 and therefore Zy14 = 0. Using (29) again, as well as the definitions of F; and
G;,weget G;,=0and F; =1fori=1,... , N + 1. Therefore z; =0 for j =4,... ,N +4.
From this and (27), we find that #3 = 0 and consequently z,(0) = (0,... ,0)T € R*~L.

Now suppose k # 0. In this case Gj; does not vanish, otherwise one would have, by a
similar reasoning as above, G; = 0 and F; =1 for i =1,... , N + 1. Moreover, from (28),
kcos(z3)Fyy = 0 so that 23 = § +7Z. Using any of these values in (27) it would come that
Fu =0, a contradiction. Combining (27) and (28) we find

(kdy + sin(Z3))Gyr = 0, (30)
therefore
T3 = —arcsin(kd,), provided |kd;| <1, (31)
since Gy # 0. In addition, from (18) and (28)
Gj =sin(Z;43)Fjr1 — Cjia COS($j+3)CL;—ja
which translates into
Gj Sin(Z;43)

Si_ Fi, (j=1,....N). 32
L; ~ L+ Cjpacos(Tjps) U ) (3

Using the definition of F}, (29), and (32):

Fj _ Ljcos(Zjts) + Cipa

- . (j=1,...,N). 33
Fjyr Lj+ Cjqa cos(Zj43) ( ) (33)
Setting Cy4o £0, and using (32) and (33),
G; Sin(Z;+3) ,
G _ F, (j=1,...,N+1 34
Lj  Ljcos(Zjs) + Cjyr G ) (34)
and, equivalently
G; sin(Z; )
= = (%s+4) Fit1, (=0,...,N). (35)

Liyi Ljy1c08(Zj4a) + Cjpa

Using (29), (32) and (35), we obtain the following recursive expressions for the values of
Tay... ,TN+4:
Sin(Z43) Sin(Z;+4) :
= N = 1, ceey N . 36
Lj+ Cjp1c08(Zjt3)  Ljy1cos(Tjpa) + Cjgn G ) (36)
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The next step consists in finding a relation between Z3 and any Z;, with i € {4,... ,N +4}.
Combining (28) and (34):
sin(Zar43) _ Kk cos(Z3)
Ly COS(CEM+3) =+ CM.|_1 1+ K(Sin(.f;g)dz + COS(3_33)dy)

2 4, (37)

In order to find the values of Zs43 that solve this equation, we use the “half-angle” trans-
formation T £ tan(Zar+3/2). Relation (37) then becomes

A,{(CM_H —LM)7'2 —2T+A,€(LM+CM+1):0. (38)

This quadratic (algebraic) equation in T degenerates to a linear one when A, (Cp41—Ly) =
0. However, under the assumptions « # 0 and |Z3| < %, A, cannot vanish, so this singular
case occurs only when Cpr41 = Ljs. Its corresponding solution is 7 = Ay, which tends to
zero as k does. On the other hand, when A.(Cny1 — L) # 0, the solutions to (38) are
given by

o= . + T~ A2(Cos — ) (39)
“ Au(Cuy1 — L) Ac(Cymy1— L) '
Since lim,_.g A, = 0, one verifies easily that
ii_r'r}] |71 = +00 (40)
iin%) 5 = 0. (41)

Since the absolute value of the solution Zys4+3 = 2arctan(ry) tends to 7 (i.e. Zar43 tends to
leave the interval of interest (—7/2,7/2)) as & tends to zero, we simply discard this solution.
Therefore, with

Ana f C = L
Tm+s = { b M M (42)

2 arctan(rs), otherwise,

|Zap+3] can be made arbitrarily small by choosing a sufficiently small |&|.

Notice that, once Z ;43 has been determined, one can use a similar procedure to trans-
form the relationships (36) into quadratic equations analogous to (38), giving Z;;3 in terms
of Z;44 and vice versa, for j =1,... ,N. Again, by computing limits as above, one readily
verifies that if |Z745| is small enough, then Z4,... ,Zp42 as well as Tarya,... , TNy exist

T T

and belong to (=7, ). As previously stated, this is accomplished for all & € (Kmin; Ksup)

with both kmin and ksup sufficiently small. |

Proof of Proposition 3

The proof requires two auxiliary lemmas. The first one explicitly gives the first-order ap-
proximation of the recursive functions F;, G, at the origin. The second one details the
a2f(z)

structure of 5 -
T
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Lemma 2 The expressions F;(x) and G;(x) (i=1,... ,N+1) given by (18) can be written
in the form

Fi(z) = 14o(2) (43)
N+4 o j—3 Cy

Gi(z) = mips3— Z (—1)"*I < H L_k) x; + o(x), (44)
j=ita k=it1

where the terms o(x) represent functions h : R* — R such that lim,_o ‘}Ill(zwll)l =0.

Proof. We proceed by reverse induction on i (i.e. starting with s = N + 1 and ending with
1 =1) and we use Taylor series expansions at = 0. For i = N + 1, the result is clear:

Fnii(z) = cos(zyga) =1+ o(z)

GN+1(£I,') = Sin(.TN+4) =ITN44 + O(:I,')

Now assume that (43) and (44) are true for i = m + 1. Using (18) we readily obtain

Cmy1
Fo(z) = (140o(x))1+o0(z))+ +l Sin(zm+3)Gms1(x)
m+1
= 1+ o(x),
and
Gn(z) = (Tmts +o(2))(1+o0(z))
c N+44 i3 -
m+1 m+j+1 k .
_Zm+l mtd — -1 —r
Lm+1( +0(2)) | Tmta ‘_Z (1) ( 7H Lk) zj + o(x)
j=m+5 k=m+2
N+44 j—3
Cmt1 ; Ch
— mat3 — mtd — —1)ymtit+l -r .
Tm+3 Toit Tm4 Z (-1) ( _H Lk) z;| +o(x)
j=m+5 k=m+42
N+44 -3
Crn e C
= Tmiz T 7 L g — Z (-1) J”L—Jrl( H k)%-i-o(x)
m+1 Jl— m-+41 k=m+2 k
N44 i—3
Cm1 ; Ck
— i3 — td — —1)ymts = .
Tm+3 Lm+1$ +4 ._Z (1) ( _H Lk) zj +o(z)
Jj=m+5 k=m+1
N+4 i3
— m+j k )
= Tm43— Z (=1)m*7 ( H L_k) zj + o(z),
j=m+4 k=m+1
which is simply (44) with ¢ = m. ]
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Lemma 3 For k(x1) = 0 and 7 = (s0,0,...,0)T with sy € R, the matriz A = a’;(f)
computed from (17) is
[0 0 0 Ays A - A Nys A Nya i
0 0 1 Ay Aoy --- Az Ny3 Ao Nya
0 0 0 Ass A3y - As Ny3 As Nya
00 0 —L LitCo . (DVC3CeCn(L1+C3)  (=1)771C5CsCn41(L1+C3)
L1 L1L2 L1L2---LN L1L2"'LN+1
0 O 0 O —L (71)N_1C405“'CN(L2+03) (—1)N0405---CN+1(L2+C3)
Lo LaoL3-Ln LaL3--Ln41
1 Ly+C
coo oo Ty Lyt
000 0O 0 0 0 |
(45)
with
Ay = —dyAs (46)
Azj = dAs; (47)
0, 4<j<M+2
A3" 1y M4+ - - 48
! {%H;ﬁ;ﬂg—:, M+3<j<N+4. (48)

Proof. By inspection of (17), one verifies that when x(z1) = 0, 2; does not appear explicitly
in f(z); it then follows that %(f) = %Eco). This latter matrix can be obtained by means
of (43) and (44) by conserving only the linear terms in z. Since A; ; and A, ; are given in

terms of As ;, let us first develop f3(x):

_ Gul(=)
1 N+44 i3 o
— M+j k )
= m TM+3 — Z (—1) 7 ( H L_k) X +0($)
j=M+4 k=M+1
Since M > 1, we see that the coefficients of z1, ...,z 42 are zero, whereas the remaining
ones correspond to those in (48). The development for fi(x) yields
. Gu(x
filz) =W(z,z3) = cos(z3)Fum(z) — (sin(zs)ds + cos(zs3)dy) f]\i )
- 1
— (1+o() - de(z3 + o(x)) + dy(1 + O(x))GM(x)
Ly
= —d, Gf(“’) + 14 o(),
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It follows directly that the A; ;’s are in the form given by (46). Similarly, for fo(x):

fao(z) = W(z, 23 — g) = sin(zs)Fu(z) + (cos(zs)d, — sin(xg)dy)szfléx)
= x3+de24—($) +0(.’L‘).
M

The term x3 accounts for the entry As 3 = 1 in (45), whereas, by inspection of the next
term, the A ;’s are given by (47).

Now, let us turn to f;(z) = G"L‘:(;) - G"L‘f_gz), (1=4,...,N +3). We start by deriving
a relation between G,_»(z) and G;_3(x):

N+4 o i—3 c
Gialr) = mi— 3 <—1>’+ﬂ3< 11 L—) 2 + o)

j=it+1 k=i—2

N+4 7—3

Ci—? C’i—2 i4+5—2 Ck}

= X;— Exi—l—l — Li72 Z (—1) J H L—k $] + 0($)
j=i+2 k=

Ciz

Li—2

Gia2(x) + o(z).

= x;—

Using this relation, we readily determine f;(z) fori =4,... ,N + 3:

! 1 Cis
10 = Gt 1 o G +oto)
1 Cia
B (L12 LiQLi3> 1_2($) - L173 Z; +0(.’I})
_ o1,
= —pu
N+4 -3
L 3+ Ci_» » e
LiatCiz | o L AN | )
" LioL; 3 it j:%z( Y kgl Ly, zj| +o(z) (49)

The structure shown in (45) for the fourth row and up to the N + 3-th one clearly follows
from (49). The last row is obviously zero. |

Proof of Proposition 3. We use the fact (cf. [5, p. 140]) that a pair (A4, B) is controllable
iff every eigenvector v of AT verifies BTv # 0. The matrix AZ, directly obtained from
Lemma 3, can be written as:
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[ 0 0 07
1 0 0
Ao s As 4 Aga 0
AT = (50)

Az s Az s Ay As s 0

Ay Ny3 Az ny3 Asnts Asnts - Anysngs O

| Ao nya Asnta Asgnys Asnta 0 Anisnga O

with entries A; ; given by:

a) For i =2,3:
4 0, 4<j<M+2
2,5 = M+j+1y .
’ 7( L .2 M+1€W M+3<j<N+4
0, 4<j<M+2
As = (1)M+J+1 :
Hm M+1L:f M+3<j<N+4.

e b)yFori=4,... ,N+3:

0, 2<j<i
Ai,j = _Ll.l_sa .7 =1
itj+1 Li—3+Ci L
(_1)+J+1( LiatCica ;)Hm 17, 1<j<N+4
YFori=N+4
Anta; =0, (2<j<N+4).
Since BT = (0,...,0,1), one only has to show that if v is an eigenvector for A7, then its last

component vy 43 is nonzero. Since AZ is lower triangular, its eigenvalues are the diagonal

entries:

1 1
O'(A;l.—') = <0,0,—L—1,... 7—H70) .
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Let v denote an eigenvector associated with an eigenvalue A. For the remaining of the proof
we will repeatedly use the matrix equation Av = A”v which, after development, is equivalent

/\1)1 = 0 (51)

)\1)2 = M (52)
N+3

Av; = Z Aj+1’i+11)j, (i=3,...,N+3). (53)
j=1

We consider two cases:

e Case 1: A\ = 0. In this case, (52) implies that vy = 0. Let us distinguish three
sub-cases:

(i) (¢=3,...,M +1). We claim that v; = 0 for i = 3,... ,M + 1, and prove it by
induction. Notice that when M = 1 there is nothing left to prove. We therefore
assume that M € {2,...,N + 1}. Recalling that Ay ;11 = Asj41 = 0 for
j=3,...,M+1, then (53), with i = 3, gives:

N+3
0 = Assve+ Agvs+ Z Ajt1,40;
j=4
1
= —L—lv37
so that v3 = 0. Now suppose that v; = 0 for ¢ = 3,... ,k — 1, and develop (53)
fori=k:
k—1 N+3
0 = Asppive+ ZAj+1,k+17)j + Apt1, 10k + Z A1 k4175
j=3 j=k+1
_ 1
I P

so that v, = 0, as claimed.

(ii) (¢=M+2,... ,N+2). We contend that v; = vy for i = M +2,... ,N + 2, and
prove it by induction. For 1 = M + 2, (53) becomes:

M+1
0 = A3 py3vs+ Z Ajp1,m43V5 + Ar3, M+3VM 42
j=3
(_1)2M—|—4 < ﬁ Cm) 1 ;
= X7 vy — —vpyo
Ly v Ly, Ly
—( )
= —(vy —w ,
T, (02 T v
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so that va = var42. Now assume that v; = ve fore = M +2,... )k — 1, and
develop (53) for i = k:

M+1 k—1
0 = Asppivat Y Ajpipiti+ O Ajpikpavy
j=3 j=M+2
N+3
+Akt1, 6410k + Z Ajt1,k+10;. (54)
j=kt1

The first sum on the right hand side vanishes by virtue of sub-case (i). Using the
induction hypothesis we can write (54) as

k—1
1
0 = A3,k:+1+ Z Aj+1,k:+1 Uz—L V- (55)
Py k—2
We have
_)M+kt2 K2 o
R (56)
M m=M+1
and
k—1 k—1
Z Ajpips1 = Z (—1)7tkt3 L 2-'-LCJ - H Lm
J=M+2 j=M+2 Li—2Lj—1 o Lm
k—1 -
g 1
j=M+2 m=j L
k—1 k-2
- (_1)J‘+k Ci-1 iy (57)
j:§+2 Lj—2Lj— 1_:[ Lm
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From (56) and (57) we get

k—1 k—1 k—2

- 1 C
k m
A3”“+1+.Z Ajprer = _.Z (=1 L;_ Hm
J=M+2 J=M+1 m=j
k—1 k—2
DG m
Lj72 . Lm
j=M+2 m=j5—1
k—1 k—2
I DS | .
j=M+1 Il =y om
—2 k—2
. 1 C
_1)it+k -_m
PR SA |
Jj=M+1 m=j
k—2
— ( 1)2]671 1 C_m
Lk_2 m=k—1 Lm

Therefore, (55) becomes

N P S Cm 1
0 = ( (-1) T H Vo kazvk

_ L
k—2 mek_1 "M

1
= m(% - Uk)a
implying that vy = ve, as required.
(iii) (¢ = N + 3). Here we use the results of (i) and (ii) to show that vs = 0. Devel-
oping (53) for i = N + 3, we get

M+1 N+2
0 = A3,N+4v2+ZAj+1,N+4Uj+ Z Aj41,N 4405 + AN4a,N+4UNY3
=3 j=M+2
N+2
= A3 Njav2 + Z Ajp1,N4av2.
j=M+2

After similar calculations as above, this equation reduces to

0 1
= 1}2
Lyyr ™
so that v, = 0.
Summarizing, we have shown that v; = .-+ = vy42 = 0, therefore, the eigenvectors
associated with A = 0 are of the form v = (0,...,0,v543)7. We conclude that

vn+3 # 0, otherwise v would vanish, in contradiction with its definition.
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o Case 2: A= — forany r € {1,...,N}. Let A = —7- in (51) and (52), we get
v = 0, V2 = 0.

We proceed by contradiction: assume that vyy3 = 0, we shall prove by (reverse)
induction that v; = 0 for i = N+2,...,3. Multiplying (53), with i = N + 2, by S+

LN+1’
we get:
N41
CNy1 VN2 Cn+1
_ = A; + A
Lyt L, Lyy1 ; j+1,N+3V5 + AN43,N+3UN 42
N+1
CN+1 L, 5+ C:_4 1
_ _ 1)3+N J J— m Vi — —
LN+1 JES( ) ] QLJ 1 H Lm J LN N+2
N+1 N+1
= Z ;+NM 11 Om ),
] 2Lj—1 m—j Lm !
CN+1 1
—UN 58
Ly Ly PP (58)
Similarly, setting ¢ = N + 3 in (53):
1 N42
0= — UN+s = Z Ajf1,N4+47;
r =3
N42 N41
_ v L2+ G Cm 59
- Z( ) ‘ vj (59)
- L]fZLjfl Lm
Jj=3 m=j

By addition of (58) and (59),

S i’UN+2 = (=1)*M*? Lt O ( fo C—m> UN42 — COnr LUN+2
Lyyi Ly LyLy+1 \,, i ys Lm Lyyi Ly
1
T Iy T

which yields:

1 Cni1 )
0= + v .
(LN+1 LyyiL,) F?

Therefore vy 42 = 0 since the term in parenthesis is always nonzero. We now suppose
that v; =0fori =N +2,... ,k+1 (k > 3), and proceed as above, i.e. we let i = k
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in (53), multiply it by gfj , and add the resulting equation to the one obtained from

(53) with ¢ = k + 1. The calculations are analogous to those above and give

1 Cr-1
0=(-—"
(Lkl * Ller) vk

so that v, = 0.
From the above two cases we deduce that the last component of any eigenvector v of AZ is
different from zero, so that BXv # 0. Therefore the pair (4,., B,) is controllable. |
References

[1] A. Astolfi, Discontinuous output feedback control of nonholonomic chained systems,
European Control Conference (ECC), pp. 2626-2629, 1995.

[2] M. K. Bennani, P. Rouchon, Robust stabilization of flat and chained systems, European
Control Conference, pp. 2642-2646, 1995.

[3] C. Canudas de Wit, O.J. Sgrdalen, Exponential stabilization of mobile robots with non-
holonomic constraints, IEEE Trans. on Automatic Control, Vol. 37 (11), pp. 1791-1797,
1992.

[4] C.-T. Chen, Linear system theory and design, Oxford University Press, 1984.
[5] P. Faurre, M. Robin, Elements d’Automatique, Dunod, 1984.

[6] M. Fliess, J. Lévine, P. Martin, P. Rouchon, Flatness and defect of non-linear systems:
introductory theory and examples, Int. Journal of Control, Vol. 61, pp. 1327-1361, 1995.

[7] M. Kawski, Homogeneous stabilizing feedback laws, Control Theory and Advanced Tech-
nology, Vol. 6, pp. 497-516, 1990.

[8] Z. Li, J.F. Canny (Eds.), Nonholonomic motion planning, Kluwer Academic Press,
1993.

[9] W. Liu, An approximation algorithm for nonholonomic systems, SIAM J. on Control
and Optimization, Vol. 35, pp. 1328-1365, 1997.

[10] R. T. M’Closkey and R. M. Murray, Exponential stabilization of driftless nonlinear
control systems using homogeneous feedback, IEEE Trans. Automat. Control, Vol. 42,
pp. 614-628, 1997.

[11] P. Morin, J.-B. Pomet, C. Samson, Design of homogeneous time-varying stabilizing con-
trol laws for driftless controllable systems via oscillatory approximation of Lie-brackets
in closed-loop, SIAM J. on Control and Optimization, to appear.

INRIA



FExponential stabilization... 27

[12] P. Morin and C. Samson, Control of Nonlinear Chained Systems. From the Routh-
Hurwitz Stability Criterion to Time-Varying Exponential Stabilizers, IEEE Conf. on
Decision and Control, pp. 618-623, 1997.

[13] R. M. Murray and S. S. Sastry, Steering nonholonomic systems in chained form, 30th
IEEE Conf. on Decision and Control, Brighton, pp. 1121-1126, 1991.

[14] J.-B. Pomet, Explicit design of time-varying stabilizing control laws for a class of con-
trollable systems without drift, Syst. & Contr. Letters, 18, (1992), 467-473.

[15] J.-B. Pomet, C. Samson, Exponential stabilization of nonholonomic systems in power
form, IFAC Symposium on Robust Control Design, Rio de janeiro, 447-452, (1994).

[16] L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field,
Systems and Control Letters, 19(6):467-473, 1992.

[17] P. Rouchon, M. Fliess, J. Lévine, P. Martin, Flatness, motion planning and trailer
systems, IEEE Conf. on Decision and Control, pp. 2700-2705, 1993.

[18] C. Samson, Velocity and torque feedback control of a nonholonomic cart, Int Workshop
in Adaptative and Nonlinear Control: Issues in Robotics, Grenoble, France (1990). Proc.
in Advanced Robot Control 162 (Springer Verlag, 1991).

[19] C. Samson, Control of chained systems. Applications to path following and time-varying
point stabilization, IEEE Transactions on Automatic Control, Vol. 40, No. 1, pp. 64-77,
1995.

[20] O.J. Sgrdalen, Conversion of the kinematics of a car with n trailers into a chained form,
IEEE Conf. on Robotics and Automation, pp. 382-387, 1993.

[21] O.J. Sgrdalen, O. Egeland, Exponential stabilization of nonholonomic chained system,
IEEE Trans. on Automatic Control, Vol 40 (1), pp-35-49, 1995.

[22] A. Teel, R.M. Murray, G. Walsh, Non-holonomic control systems: from steering to
stabilization with sinusoids, Int. Journal of Control, Vol. 62, pp. 849-870, 1995.

RR n° 3412



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



