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Abstract: This paper studies the benefits of compiling data-parallel languages onto a multithreaded runtime
environment providing dynamic thread migration facility. Each abstract process is mapped onto a thread, so
that dynamic load balancing can be achieved by migrating threads among the processing nodes. We describe
and evaluate an implementation of this idea in the Adaptor HPF and the UNH C* data-parallel compilers.
We show that no deep modifications of the compilers are needed, and that the overhead of managing threads
can be kept small. As an experimental validation, we report on an HPF implementation of the Gauss Partial
Pivoting algorithm. We show that the initial BLOCK data distribution with our dynamic load balancing
scheme can reach the performance of the optimal CYCLIC distribution.
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Un exécutif multiprogrammé avec migration de processus légers
pour compilateurs a parallélisme de données HPF et C*

Résumé : Ce papier étudie les avantages de la compilation de langages & parallélisme de données sur
des environements multiprogrammés offrant la migration dynamique de processus légers. Chaque processus
abstrait est mappé dans un processus léger. Ainsi, I’équilibrage dynamique de charge peut étre réalisé par
la, migration de processus légers entre les nceuds de calcul. Nous décrivons et évaluons une implémentation
de cette idée dans les compilateurs & parallélisme de données Adaptor (HPF) et UNH-C*. Nous montrons
que des modifications profondes des compilateurs ne sont pas nécessaires et que le surcotit de gestion des
processus légers peut étre maintenu faible. Comme validation, nous présentons une implémentation en HPF
de l’algorithme du pivot partiel de Gauss. Nous montrons que la distribution de données initiale (BLOC) peut
atteindre les performances optimales de la distribution CYCLIC avec I’aide d’un équilibrage de charge.

Citation. Une version abrégée de ce rapport a été publiée dans les actes de la conférence IEEE PACT 98 [4].
Merci de mentionner cette référence dans toute citation.

Mots-clé : Langages a parallélisme de données, compilateur, HPF, C* migration de processus léger.
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Introduction

Data-parallel languages are now recognized as major tools for high performance computing. Considerable
effort has been put in designing sophisticated methods to compile them efficiently onto a variety of architec-
tures, including MIMD clusters of commodity processors interconnected by very high-speed networks. As of
today, this effort has been mainly concerned with the compilation of the High Performance Fortran (HPF)
language [17], and to some extent to the C* language, a data-parallel version of C designed by Thinking
Machine Corporation in 1990 for the Connection Machines series [31]. It is the base for the Data-Parallel C
Extension (DPCE) definition of an ANSI committee [10]. The compilation method consists in generating a
SPMD parallel program from the data-parallel source code. The SPMD processes are typically (plain) Unix
processes which communicate one with the other by exchanging messages through some standard message-
passing library. Each process is in charge of managing a “slice” of the parallel data structures. Considerable
effort has been devoted to minimizing the overhead induced by inter-process communications. It has mainly
focused on designing sophisticated ways to distribute data slices among processes.

It has often been stressed that this approach cannot efficiently cope with irregular computations where
the amount of work induced by the individual slices may vary in time, even if these variations are partially
predictable at compile time. Expensive runtime redistribution of data among processes are then needed.

In a previous paper [26], we have proposed a new compilation technique to address this point. The idea is
to use mobile lightweight processes (thereafter called threads) instead of heavy, plain processes. Many multi-
threaded programming environment are available (to cite two of them : Nexus [13] and Athapascan [8]), but
the concept of mobility is still rarely addressed. Such mobile threads are provided by the PM2 multithreaded
programming environment [21]. In our case, dynamic load balancing is achieved by migrating the threads
from one node to another. We show that this approach only requires minor changes in the core of existing
compilers. Most changes are located in the runtime library, and are therefore largely independent of the
specific compilation scheme.

We describe in the paper two prototype compiling environments which have been designed along this
idea. The first one is a modified version of the Adaptor HPF compiler [6]. The second one is a modified
version of the UNH C* compiler [16]. In both case, we provide preliminary performance evaluations which
demonstrate the interest of the approach and the various tradeoffs involved.

Section 1 describes the general approach. It lists the problems found by the classical compilation scheme
and presents the benefits of using a multithreaded runtime environment. Section 2 provides a preliminary
performance evaluation of the HPF implementation which demonstrates the interest of the approach and
the various tradeoffs involved. The C* implementation is reviewed in Section 3. Section 4 is the conclusion.

1 Multithreaded runtime environment for data-parallel languages

1.1 Compiling data-parallel languages to MIMD architectures

This section describes the general principles of data-parallel compilation schemes, as used for instance for
HPF and C*. Both are based on the Owner Computes Rule (OCR) : the computation necessary to update
a slice of data is carried out by the processor which stores it.

The HPF language The High Performance Fortran (HPF) language [17] specifies the allocation of data
slices to processors through a 3-level scheme. In HPF, the parallel data are multidimensional arrays. First,
arrays are mutually ALIGNed, possibly with respect to optional abstract reference arrays called TEMPLATES.
Mutually ALIGNed array elements are guaranteed to be eventually stored into the same physical memory.
This step is entirely handled at compile-time, and is of little interest to us. Second, arrays are DISTRIBUTEd
onto the virtual topology of processors as defined by the PROCESSORS directive. These processors are called
abstract processors in the HPF terminology. Several distribution strategy can be used : BLOCK, CYCLIC, etc.
Third, abstract processors are mapped onto the real topology of the physical processors of the architecture.
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Throughout the paper, we refer to the physical processors as nodes. In most HPF compilers, both topologies
have the same number of processors. They may only differ in their geometry, so that this last level is mostly
trivial. Moreover, the HPF document itself (see [17, p. 19]) does not specify precisely what should be done
if it is not the case, that is, if the PROCESSORS directive is not trivial. It is specified to be implementation
dependent.

LT 7777777 A A7 AT A A7
A A LT 7777 777
oo Daapaald e
LT 7777777 . LT 7777777
ey array variables e
LT 77777 7 7 L7777 777
LL T T T Z T ool
/ ALI GN
TEMPLATE
(optional)
l DI STRI BUTE

7T
(Abstract processors)
L 7

l (Only partly specified in HPF)

Nodes
(Physical processors)

Fic. 1: The HPF data placement model. Note that the last level is only partly specified by the current
language specification.

Most HPF compilers generate an SPMD code based on this assumption. Each abstract processor defined
by the PROCESSORS directive is emulated (“virtualized”) by a separate process placed on a separate node.
We will call them system processes. The process stores the data slice it is in charge of managing, and it is
responsible for fetching the remote data which are involved in the updating of this slice (Owner Computes
Rule). This is done by exchanging point-to-point messages with the other processes through some standard
message-passing communication library (MPI). There is thus a perfect overlapping between three distinct
notions :

— the HPF abstract processor as defined by the PROCESSORS directive ;
— the system process which implements its behavior;

— the physical node which runs this process.

The C* language The case of the C* language is somewhat simpler [31]. Parallel data are are aligned
by construction onto abstract arrays called shapes. There is no freedom in alignment as in HPF. In the
C* terminology, each element of a shape is called a virtual processor (somewhat inconsistently with HPF,
hence the term abstract processor). Then, shapes are distributed onto the physical nodes. In the UNH C*
compiler, this is done according to a BLOCK strategy. Each of the blocks can be seen as an abstract processor
in the sense described above, but here is no notion of a virtual topology there. Finally, each physical node
runs a system process to emulate (“virtualization loop”) all the shape elements it manages. Again, we have
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a perfect overlapping of the notions : the system process which emulates the parallel actions on a block of
shape elements and the physical node which runs the process.

Runtime Both the Adaptor HPF and the UNH C* compilers are based on extensive runtime libraries
which implement a number of high-level communication primitives such as sending and receiving a point-to-
point message, broadcasting a scalar value, reducing a parallel value down to a scalar, etc. For portability
purpose, these libraries are based on a small number of low-level routines, typically found in most standard
message-passing libraries such as MPI. Of course, the efficiency of the generated code crucially depends on
the efficiency of the runtime library.

Problems The compilation scheme sketched above raises a number of difficult problems.

— As already mentioned, the runtime management of the communications between processors has a
dramatic impact on the performance. A huge effort has thus been spent in optimizing this aspect.
Sophisticated techniques have been proposed to reschedule the generated code such that the overlapping
of communications by computation is maximal. All these techniques are based on a static analysis of
the program, so that they work poorly as soon as the behavior cannot be fully predicted.

— The compilation scheme is based on the notion of an owner for each element of parallel data. The
load of a processor depends on the number of data elements it owns or/and their value. An optimized
distribution of data is thus the key toward performance. Sophisticated techniques have been devised
to provide the programmer with a large panel of alternative distribution strategies. Examples of them
are the general block distribution and the user-defined data distributions like in Vienna Fortran [7],
Fortran D [28] or Annai [19]. One of the main advances of HPF2 [17] with respect to the original HPF
was to extend the flexibility of the DISTRIBUTE directive. Again, such static strategies cannot adapt to
dynamic variations in the amount of work required by the data, nor in the amount of computing power
or memory space available at the nodes (in the case of a cluster shared by several users, for instance).
The only possibility is then to REDISTRIBUTE the data among the abstract processors, which is a very
expensive operation.

— Finally, such compilation schemes are specifically targeted towards current distributed-memory archi-
tectures based on single-processor nodes. No provision is made to exploit the power of multi-processor
nodes which are bound to become commonplace within the coming years.

1.2 Why to use a multithreaded runtime environment ?

From coarse-grain to medium-grain abstract processors The basic compilation scheme above considers
coarse-grain abstract processors. Each abstract processor is mapped onto a separate system process, which
is run on a separate node. In contrast, we could consider medium-grained abstract processors, each mapped
onto a separate system process, and then place many of them onto a single node. The benefits of this approach
would be the following.

— Overlap communications by computations thanks to the native system process scheduling on the node.
Much work has been devoted to explore this aspect [1, 2, 30, 25], though some researchers [12] question
the impact of this approach.

— Achieve load balancing by moving abstract processors from one node to another, instead of moving
data from one abstract processor to another. This approach has been explored in the context of task
scheduling. When the task grah is (statically) predictable, on can look for an optimal mapping of the
abstract processors on the nodes [11, 33, 9]. For certain kinds of HPF loops, it is also possible to
dynamically map the abstract processors to balance the load with a work stealing technique [23]. In
contrast, we propose to let abstract processors migrate dynamically between the nodes within their
lifetime.

— Take advantage of multi-processor nodes where available, just through the native process schedu-
ling [27].
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— As an extra bonus, distributing the data among a larger number of abstract processors improves the
locality of their accesses, so that the cache hit gets increased. This side-effect can improve the efficiency
quite noticeably, as reported in [2, 25, 26].

Going from coarse-grain abstract processors to medium-grained ones amounts to use non-trivial PROCESSORS
directives in HPF. Say for instance !HPF$ PROCESSORS PROC(64) on a 8-node architecture, so that there
will be 8 abstract processors on each node. This lets a data-parallel compiler generate an SPMD code for
64 processes. As modern message-passing libraries are able to send messages even between processes located
on the same node, just launching 8 processes on each node will do the work. No modification whatsoever is
needed here. Of course, the main problem with this approach is performance.

— Using MPI to exchange messages between processes which share the same physical memory is wasteful.

— The context switching time between system processes is high, so that the overhead of running many
small processes instead of one large one is considerable.

— No standard communication library allows processes to be moved from nodes to nodes. Some proto-
type implementations have been described, but the reported performance cannot be sufficient for our
needs [18].

Yet, the problem lies in the cost of process managment, not in the idea! Observe that the processes generated
by a data-parallel compiler make little if no use at all of process facilities such as signals or I/O. Downstripped
lightweight processes may as well do the work, at least as long as I/O are not involved.

Our proposition We therefore propose to use a multithreaded runtime environment for data-parallel lan-
guages. POSIX-like multithreaded programming environments are now widely available. We chose the PM2
programming environment, as it is available on a large variety of systems, and it provides a primitive to
migrate threads from a process to another process in a almost fully transparent way. Only minor modifica-
tions to be discussed later have been needed. Using lightweight threads instead of system processes to run
medium-grain abstract processors brings the following additional benefits, besides the ones listed above.

— Very short context switching time (a couple of microseconds for PM2), which provides a very good
overlapping of communications by computation. As soon as a thread gets blocked on a reception, it is
suspended and a ready thread is resumed.

— The semantic model implemented by threads is an extension of that of processes, as long as pure
computation is concerned. The code generated by current compilers for processes can be run by threads
as well.

— Thread migration is provided by PM2 at no extra cost. It is very efficient, as discussed later.

— The runtime library can be rewritten so as to implement communications between threads within the
same process as direct copies. The underlying message-passing library needs only to be called when
exchanging data between remote threads.

— If multiples processors are available at some of the nodes, then they can be exploited at no extra cost.

1.3 The PM2 multithreaded programming environment

We only sketch in this section the aspects of the PM2 multithreaded programming environment which
are central to this work. An extensive presentation of the environment and its implementation details can
be found in [22, 21].

General presentation PM2 [22, 21] is a distributed multithreaded environment designed as an efficient
runtime for irregular parallel applications. The main objective of PM2 is to provide a carefully chosen set of
basic functionalities on top of which many dynamic load balancing policies are easy to implement. Because
PM2 applications may generate a large number of threads with unpredictable lifetimes, the PM2 programing
model is based on the concept of mobile threads. In this way, threads can be preemptively migrated from
one node (say, a Unix process) to another one without any explicit state backup nor global synchronization.
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Even the most efficient thread migration mechanism is not usable if further interaction between migrated
threads are costly. Therefore, interactions between threads are done through well defined decomposition
operators (such as the Lightweight Remote Procedure Call mechanism) that can be efficiently made “migration
tolerant” by PM2.

The current implementation of PM2 is based on two software components : a POSIX-compliant thread
package (Marcel) and a generic communication interface (Madeleine).

Marcel Compared to a classical Pthread library, the Marcel package introduces some original features which
are needed by PM2 to implement functionalities such as thread migration or reduced preemption. Its
implementation is currently available on the following architectures : Sparc, ix86, Alpha, PowerPC and
Mips.

Madeleine The Madeleine communication layer was designed to bridge the gap between low-level com-
munication interfaces (such as BIP, SBP or UNET). It provides an interface optimized for RPC-like
operations that allow zero-copy data transmissions on high-speed networks such as Myrinet or SCI.

Performance We present here some results to give the reader a rough idea of the efficiency. Each node
consists in a 200 MHz PentiumPro processor. The operating system is Linux 2.0.29. The nodes are inter-
connected by a Myrinet network from Myricom [3, 20] accessed through the BIP low-level communication
interface [32].

Figures 2 and 3 show the performance of PM2/Madeleine over Myrinet. This implementation uses BIP
as the underlying communication layer. On figure 2, the performance of an optimized implementation of
MPICH on top of BIP is provided as a reference. It shows that although PM2 remote invocations are more
complex interactions than MPI message transmissions [29, 15], they can be efficiently implemented thanks
to an interface such as Madeleine.

Figure 2 shows that the latency of PM2 over Myrinet is very low (8 us for a remote invocation with no
parameter). The overhead over raw BIP is small. This is mainly due to the transfer of additional data needed
for service designation and flow-control processing. Because this overhead is constant, the full bandwidth is
reached for large enough messages as shown by Figure 3. This shows that the zero-copy implementation of
Madeleine has a positive impact on performance. Thus, communications under PM2 are far from being the
bottleneck in the experiments detailed below.

250 T

BIP ——

PM2BIP -~
140 | g

time (microseconds)
Bandwith (MB/s)

. . . . . . . . . .
0 2000 4000 6000 8000 10000 12000 14000 16000 50000 100000 150000 200000 250000 300000
size of messages (bytes) size of messages (bytes)

Fic. 2: Latency of asynchronous LRPCs of PM2 Fic. 3: Bandwidth of PM2 compared with low level
compared with low-level and high-level communi- communication libraries.
cation libraries.

Dynamic thread migration A PM2 thread may silently migrate from one process to another without
interrupting the application. Only the origin and the destination processes are active during migration. No
global action whatsoever is needed. The destination does not need to wait for the incoming thread : it can
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proceed with its local threads as long as no dependency with the incoming thread is involved. Thus, thread
migration can be overlapped by computation and a minimal cost is induced. Also, several threads may
migrate together between two processes.

The migration of a PM2 thread requires the destination process to allocate a fresh stack, possibly at
a new address. Thus, all pointers have to be recomputed after a migration. PM2 automatically relocates
the thread stack and updates its internal pointers, but it cannot cope with the user pointers which may
have been pushed as values on the stack. It rather provides a primitive which allows the user to register
these pointers. After a migration, PM2 automatically updates all registered pointers. Thanks to this facility,
thread migration do not induce any global synchronization nor any global address space reservation like in
UPVM or Millipede [18, 14].

In our case, we mainly have to cope with pointers to memory blocks allocated by the runtime library in
the heap. PM2 provides the user with a number of hooks attached to the migration routines. One hooked
function may be called just before sending the migration message and another one when the thread is ready
but not yet inserted in the ready queue at the destination process. With these functions, we can pack all the
memory blocks allocated in the heap into the migration message at the origin process, unpack them at the
destination process (notice the compiler does not generate any pointers, only integer indices!). These hooks
are also used to compute some internal values and possibly adjust internal pointers.

1.4 Putting everything together

Let us now review the main modifications needed to retarget data-parallel compilers towards a multi-
threaded programming environment. We focus here on the Adaptor HPF compiler developped by Thomas
Brandes, GMD, and on the UNH C* compiler, developed by Phil Hatcher, UNH.

Code generation No deep modification of the generated code is needed here, at least, when I/O are not
concerned. The only point is to let the compiler “believe” it generates code for a parallel archiecture with
n nodes, where n is unusually large : up to 32 threads per node on 8 nodes in the preliminary expriments
described below, that is n = 256.

Yet, achieving full performance requires to redesign the way scalar computation is handled by the compi-
ler. Both the Adaptor HPF compiler and the UNH C* compiler replicate scalar computations on each node,
so as to avoid broadcasting each time a scalar variable is udpated. This scheme remains correct when using
threads instead of processes, but it leads to a significant waste of computing power : the same computation
is done again and again by each of the threads run by a node, whereas its result could be directly shared. Im-
plementing such an optimization requires some deeper modification of the compilers, which we are currently
investigating. The experimental study presented below does not include this optimization.

Runtime The runtime libraries of the Adaptor HPF compiler and the UNH C* compiler have to be exten-
sively redesigned. All the global variables have to be privatized, as several threads may call runtime routines
concurrently. References to remote abstract processes have to be changed to references to threads instead of
system processes. The communication primitives have to be updated so that communicating within a single
process bypasses the underlying communication library by issuing a physical copy. This, in turn, necessitates
some extra buffer management by the threads. Also, each node has to maintain a global table to determinate
the location of all the threads throughout the application. Finally, the multithreaded programming environ-
ment PM2 we use is based on Remote Procedure Calls (RPC) rather than message passing. Though it is
straightforward to implement message passing calls on top of remote procedure calls, it is more efficient to
redesign a number of high-level communication routines directly in terms of RPC. All these modifications
are somewhat tedious, but routine.

Considering threads instead of processes also allows for some alternative, optimized implementations of
many collective operations such as broadcast or global synchronization. The idea is to first perform the
operation at the node level between threads, using a shared-memory model, then at the global level between
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5
DALIB

Data-Parallel Program fadapt SPMD (message passing) Program compile. link Parallel
(HPF or CM Fortran) p (FORTRAN 77 + DALIB calls) pre Executable

FiG. 4: The Adaptor system

nodes, using a distributed-memory model. The dominating cost is by far the global phase , so that little
penalty is induced by using multithreaded nodes here.

Underlying multithreaded programming environment PM2 is a multithreaded programming environment
designed to be used for a large class of applications. Using it as an efficient target for data-parallel compilers
requires a number of specific tuning of some functionalities, as detailed below.

The global synchronization operation is at the very heart of data-parallel compilation schemes, and the
efficiency of inter-thread synchronization is of dramatic concern. Local thread synchronization is implemented
as a two-phase operation. Let n be the number of threads to synchronize. In the first phase, n — 1 threads
get blocked on a semaphore waiting for the nth one; in the second phase, the nth thread releases the
n — 1 blocked threads. Using threads for data-parallel computing allows a number of optimizations, as all
computing threads have the same priority. All blocked threads can therefore be inserted back into the ready
list by a single operation. However, the cost of a synchronization is still O(n) because of the first phase.
The optimization only reduces the value of the multiplicative constant from 4.8 us to 3.1 us per thread on
a Pentium 133 MHz Linux machine. This is a 35% improvement. On this machine, the PM2 thread context
switch roughly takes 1.5 us.

PM2 is a preemptive environment. But it turns out that full preemption is not well-suited when threads
are used to run data-parallel programs. Consider the case where the computation task is approximately
balanced between threads. As all the threads have the same priority, they progress in close synchronization.
The threads thus reach the communication calls at approximately the same time. With n identical threads,
the delay is at most n — 1 times the time slice. Only a small overlapping of communications by computation
is then possible. To maximize this overlapping, a thread should not be preempted until it blocks. On the
other hand, the network has to be regularly polled to accept incoming messages. The specific preemption
mechanism we have implemented in PM2 does not allow a working thread to preempt another thread.
Only the communication thread may regularly preempt working threads until it get blocked on a message
reception. Then, the control is yielded back to the preempted thread to insure maximal overlapping.

2 A preliminary implementation within the Adaptor HPF compiler

Adaptor [6] is a public domain HPF compiler developed at the GMD (Germany) by Th. Brandes. It
transforms HPF (or CM-Fortran) data-parallel programs into FORTRAN programs with explicit message
passing. Adaptor itself consists of two components. fadapt is a source-to-source translator from HPF to F77
(or F90), and DALIB is the HPF runtime system that handles descriptors for arrays, sections and distributions
and which implements the communication routines. We have used Version 4.0a of May 1996. Figure 4 outlines
the main components of the Adaptor system.

2.1 Adapting Adaptor to multithreaded code generation

The fadapt component has been left unchanged but for a simple postprocessing script. It transforms the
main program into a subroutine, so that it can be run by a thread, and adds a new main program which
calls our own initialization routine. A specific module has been added to the the DALIB runtime component
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to map its generic message-passing interface to the PM2 Remote Procedure Call facility. The DALIB runtime
component has been substantially modified, as described in Section 1.4.

2.2 Evaluation

The experimental evaluations described in this section have been done with our modified version of the
Adaptor compiler. All the measures have been obtained on a cluster of PentiumPro 200 MHz machine with
256 KB of cache and 64 MB of EDO RAM. The operating system is Linux 2.0.29. The communications use
TCP over a Myrinet network. The C compiler used is GCC 2.7.2 with the 04 optimization option. We use
Version 1.6 of the Portland Group FORTRAN 77 compiler. The FORTRAN 77 compiler options are 02,
dalign, recursive and reentrant. We exactly place one Unix process on each physical node.

2.2.1 Purely scalar code

The goal of this experiment is to demonstrate that the scalar computations are replicated in all threads.
The test program is a scalar loop containting a scalar expression. To avoid cache effects, the scalar expression
is a call to an empty function. We turn off all compiler inter-procedural optimizations by compiling the empty
function in a different file. This test is executed on a single-processor machine. The parameters are the number
of abstract processors, i.e., the number of threads, and the size of the loop. The normalized time displayed
at Figure 5 is the experimental time divided by the loop size and the number of threads. It can be seen that
the time is proportional to the loop size and to the number of threads : the scalar code is replicated.

Experiment +—

1.5e+07

Scalar Code Length

20
# Threads 25 30

Fic. 5: Normalized time of purely scalar code as a function of the number of threads and the size of the
scalar code. The normalized time is the experimental time divided by the loop size and the thread number.

2.2.2 Purely parallel code

This experiment aims at estimating the overhead induced by running multiple medium-grain abstract
processors on a single-processor machine, instead of running a single coarse-grain one. The test program
is a fully parallel loop embedded in a scalar loop of 4000 iterations in order to increase granularity. In
the generated code, we have changed array operations to function calls to avoid cache effects. The tests
are executed on a single-processor machine. The parameters are the number of abstract processors and the
parallel loop size. The time for such a program is of the form ¢ = a x ny + 8 X p + v where t is the time, n,
the number of threads and p the parallel loop size. Figure 6 tabulates the normalized constant « in function
of the number of threads and of the parallel loop size. We have used the least squares method to obtain an
average value of a.
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Experiment +—

Apha Number of Parallel loop size
12 threads 4096 | 8192 | 16384
1 0.867 | 1.733 | 3.464
o 2 0.869 | 1.735 | 3.466
o0 4 0.873 | 1.738 | 3.470
° 8 0.880 | 1.746 | 3.476
16 0.896 | 1.761 | 3.492
32 0.925 | 1.791 | 3.522

o | Plain Adaptor [| 0.867 | 1.732 | 3.464 |

F1c. 6: Normalized « value and execution time of a fully parallel code without communication as a function
of the number of threads and the size of the parallel code on a single-processor machine.

The values of « tabulated in Figure 6 are in the range [0.91...1.16], which validates the above equation.
The thread overhead in a parallel loop depends on the number of threads and not on the parallel loop size.
For this experiment, the overhead is around 2 ms per thread for 4000 iterations of the parallel loop. A deeper
analysis shows that the replication of the scalar loop costs around 1 ms. Thus, the whole thread management
cost is around 1 ms per thread, which is far less than 1%. The overhead is negligible.

2.2.3 Communications in parallel code

The next question addresses the communications cost in parallel code. What is the overhead compared to
the original version without threads ? We have already seen that the PM2 communication overhead is small
compared to the performance of the underlying communication library. The test program for this section
is the usual Jacobi program, whose communication/computation ratio can be controlled by using various
matrix sizes.

Program Version Matrix size

256 | 512 | 1024 | 2048
Adaptor without thread || 0.54 | 1.70 | 6.38 | 29.35
Adaptor with threads 0.44 | 1.55 | 6.31 | 29.28

Fic. 7: Time in seconds of a Jacobi program on 8 processors. The version with threads has only one thread
per process.

The communication overhead induced by threads is not noticeable when there is one thread per process
as shown in Figure 7. The version with threads is slightly faster because of side effects of the alarm signal
used in PM2 on the UNIX process scheduler [25].

2.2.4 Migrating abstract processors

This section reports on the experimental cost of migrating an abstract processor. The parameters are
the volume of user data migrated together with the abstract processor and the number of user arrays in
which these user data are scattered. This is a significant parameter as each array is individually packed. The
packing phase is done automatically in the migration phase. The experiment consists in migrating an abstract
processor forth and back between two nodes. The migration time includes the packing, the transmission and
the unpacking (including numerous memory allocations) of the abstract processor. Figure 8 shows the result
of this experiment done with PM2 using a TCP protocol on a Myrinet network.
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F1G. 8: Time needed to migrate an abstract processor between two nodes as a function of the total volume
of user data and the number of arrays. The right figure is a zoom of the left figure.

The user data bandwidth is around 19.3 MB/s. The maximal bandwidth on PM2 for this configuration
(based on the TCP protocol on Myrinet), is around 20.4 MB/s. Thus, the user data are sent using 95% of the
available bandwidth. Migrating an array takes around 84 ps which is spent in packing/unpacking the array
itself and its internal structures. Memory allocation of small size is very fast on Linux, it takes less than 1 us,
while large memory allocation takes as much as 40 us. As there is only one large memory allocation (the one
for the data), and all other are small, 84 us appears to be a good figure. Finally, there is a constant cost of
70 us which represents the time spent by the thread migration function of PM2. In conclusion, the cost of
managing the migration of an abstract processor is small compared to the cost of transferring its data. For
example, for 2 arrays of 20 kB each, the user data transfer represents 90% of the migration time.

2.3 Experimental validation : Partial Gaussian Pivoting

This last experiment aims at validating the whole compilation chain. We consider a classical algorithm,
Partial Gaussian Pivoting, which exhibits an irregular, yet fully predictable, behavior. A default BLOCK
distribution of the matrix leads to a very imbalanced behavior : by the end of the algorithm, only a few
blocks are still working. In contrast, it has been shown that there exists an optimal static distribution for
the data, which minimizes the overall running time : it is the CYCLIC distribution. The question is : can we
achieve the performance of the optimal CYCLIC when starting from the default BLOCK and moving abstract
processors around according to some predefined strategy ?

Our test matrices are very regular to avoid column exchanges. As the data distribution is different
for the cyclic and the block distribution with load balancing, a column exchange may generate inter-node
communications in one distribution and not in the other. To avoid this, we always choose the pivot in the
current column : at the kth iteration, the pivot is in column k.

The load balancing strategy consists in computing a new abstract processor mapping at each iteration
by moving an abstract processor to the node which has sent the last pivot to other nodes. The choice of
the abstract processor to be sent is not arbitrary. One chooses the abstract processor with the highest line
number among the abstract processors allocated to the most loaded node. This is the kind of information
that could be detected at compile time. If the load in the new mapping is better balanced than the current
one, then the abstract processor is migrated. This strategy may be not the best one, but it is simple. The
overhead introduced by computing the new mapping is quite small, around 2% of the total time.

In [26], we reported on a similar experiment done on hand-written code. We describe here the result of
the experiment run with the program generated by our version of the Adaptor HPF compiler without any
additional modification. Only the load balancing strategy has been hand-coded. The results are displayed in
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Figure 9 and Figure 10. Figure 10 displays the efficiency of the BLOCK distribution with threads version with

respect to the CYCLIC distribution without thread.
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F1G. 9: Experiments with the Partial Gaussian Pivoting. The x-axis is the total number of threads. The y-axis
is the total running time. For each figure, we have plotted the running time of the HPF program compiled
with the modified Adaptor compiler with the CYCLIC and the BLOCK distribution without threads (the
horizontal lines) and with BLOCK distribution with threads, with and without dynamic load balancing.

These experiments yield a number of conclusions. First, the effect of replicating scalar code appears to
be quite important as witnessed by the significant slope of the curve for the BLOCK distribution with threads
but without migration. The scalar code consists of the management of the columns and of the rows. We
can observe that the favorable cache effects cannot compete with the overhead of scalar replication in any
situation as the curve for the BLOCK distribution without migration never decreases. Second, each case shows
a range of numbers of threads for which dynamic load balancing migration improves the running time with
respect to the static BLOCK distribution without thread.

Number of Matrix size

Processors || 256 | 512 | 1024 | 2048
2 1.21 | 1.19 | 1.16 | 1.09
4 0.84 | 1.00 | 1.08 | 1.15
8 1.16 | 1.20 | 1.22 | 1.15

F1G. 10: Ratio between the BLOCK distribution with thread migration version, and the CYCLIC distribution
without thread version.

We can remark in Figure 10 that the efficiency usually lies between 1.10 and 1.20, in spite of the overhead
induced by scalar code replication. We can also note that for one experiment, 4 processors and 256 x 256
matrix, the multithreaded version with thread migration achieves better times than the CYCLIC version. This
is due to cache effects.

3 A more elaborate implementation with the UNH-C* compiler
The UNH C* programming environment [16] consists of a public domain compiler for the C* language [31].
It has been developed at the Univ. New Hampshire by Ph. Hatcher. It transforms a data-parallel C* pro-

gram into a C program which makes calls to a runtime library. This library implements the high-level
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communication functions of the C* language using a low-level library for communication management. Our
implementation is based on Revision 3.1 of the UNH C* driver.

3.1 Modifying the UNH C* compiler

The modifications have been made to the code generator and to the runtime library. The modifications of
the runtime library are quite similar to those made for Adaptor, as described in Section 1.4. The modifications
of the code generation are more elaborate. As discussed in Section 1.3, the main problem to be addressed
concerning thread migration lies with pointer relocation. Our approach is to generate array indexes wherever
it is possible, so as to avoid pointer translation problems. This technique does not solve the problem of scalar
pointers but enables a first evaluation of thread migration in a C* environment.

To emulate the data-parallel operations on its own slice of parallel data, each abstract processor generates
virtualization loops. On entering such a loop, the array indices are converted into pointers. It allows faster
access to data, and provides room for clever optimizations by the underlying C compiler. Of course, this
makes load balancing within a virtualization loop impossible. In fact, this restriction is handled at the code
generation level by an elegant side-effect. The load-balancing phase is triggered by a call to a C* function
which is not declared as “pure”. Only “pure” function calls may occur within virtualization loops, so that the
code generator splits the loops into parts on such “non-pure” calls.

3.2 Experimental evaluation

The Adaptor HPF compilers and the UNH C* compilers are very close with respect to our concerns. They
both generate generic code that relies on a high-level runtime library, which in turn is based on a low-level
library for explicit message passing routines. Thread support has been included with the same methodology
in both cases, and similar results are thus to be expected. Yet, the impact of transforming pointers into array
indices has to be careful assessed. This section presents the scalar and parallel code experiments. Then, it
focuses on the cost of using array indexes. It finishes by the evaluation of the thread migration cost.

All the measures have been obtained on a cluster of 200 MHz PentiumPro processors with 256 kB of
cache and 64 MB of EDO RAM. The operating system is Linux 2.0.29. The communications are done
through the TCP protocol over a Myrinet network. The underlying C compiler is GCC 2.7.2 used with the
04 optimization option.

3.2.1 Purely scalar code

1.5e+07

Scalar Code Length

20
# Threads 25 30

F1G. 11: Normalized time of a scalar code as a function of the number of threads and the size of the scalar
code. The normalized time is the experimental time divided by the loop size and the thread number.
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Like in Section 2.2.1, the test program is a scalar loop over a function call. The parameters are the loop
size and the thread number. The normalized time displayed in Figure 11 has been obtained by dividing the
experimental time by the thread number and the loop size. The resulting curve is flat : the scalar code is
replicated over the threads.

3.2.2 Purely parallel code

Like in Section 2.2.2, the execution time of a fully parallel C* expression is linear in the number of
threads and in the shape size : t = a X ny + 8 X p + v where t is the time, n; the number of threads and
p the parallel variable size. a represents the thread overhead. We validate this expression and we evaluate
a by using a test program which is a scalar loop over a data-parallel C* expression. The shape of the C*
expression is unidimensional. The parameters are the thread number and the shape size. Memory accesses
have been changed into function calls to eliminate cache effects. Figure 12 displays the results.

Homatzed e Parallel loop size
1) # thread || 2048 | 4096 | 8192
o8 1 0.665 | 1.334 | 2.632
o7 2 0.658 | 1.331 | 2.660
os 4 0.670 | 1.317 | 2.662

8 0.671 | 1.341 | 2.634
16 0.690 | 1.343 | 2.683
° 32 0.717 | 1.382 | 2.691

# Threads
30

F1G. 12: Normalized alpha and time of a fully parallel code without communication as a function of the
number of threads and the shape size on a single-processor machine.

The normalized a values shown in Figure 12 are in the the range [0.85...1.07]. Thus, the equation is
validated. The least squares method gives a = 2.331 ms. As for Adaptor, the cost of using threads is around
2 ms per thread. The thread overhead is still very small.

3.2.3 Overhead introduced by changing pointers into array indexes

This section aims at measuring the overhead induced by using array references instead of pointers. The
overhead is mainly due to the recomputation of direct pointers from the array indexes on entering the
virtualization loops.

The test program consists of a data-parallel expression iterated by a scalar loop so as to increase the
granularity. The parameter is the shape size of the data-parallel variable used in the data-parallel expression.
The shape is unidimensional. We compare the UNH C* version without threads to the modified version with
threads. Only one working thread is used and the preemption by the message polling thread is disabled.

For a shape size of one, the version with array indexes takes 2085 us instead of 282 us for the version
with direct pointers. This is the cost of translating array indexes into pointers on entering the loop. This
cost could probably be reduced because the generated code is not optimized and contains many redundant
indirections. The break of the curve which is observed for a shape size of 32768 is typical of cache effects
when the data no longer fit into the processor cache.

As shown in Figure 13, the execution time becomes smaller for the version with array indices as the shape
size increases. A look to the assembly code reveals that the processor registers are allocated differently in the
two versions. It seems that the C compiler uses less registers on accessing data with the array indexes version
than with the direct pointer version. The difference maybe stems from a lack of the C-compiler optimization
module. In brief, converting array indexes into direct pointers is costly but this cost is constant with respect
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Fic. 13: Time of the array index version and the direct pointer version in function of the unidimensional
shape size.

to the shape size. It is very small in percentage for shape size larger than a few hundreds of elements for an
element-wise increment of one like in the test program.

3.2.4 Migrating abstract processors

The management of allocated memory is different in the HPF and in the C* runtime libraries. In C*,
several data-parallel arrays may be allocated in the same block of memory. On migrating an abstract pro-
cessor, the data are packed according to these blocks. On the other hand, additional information about the
respective shapes of the arrays have to be added and managed. Figure 14 displays two views of the same
experiment. An abstract processor is migrated from a node to another and then back. The parameters are
the number of arrays and the total size of the arrays.

Time (micros)

Time (micros)
1600 -
1550
1500
1450
1400
1350
1300
1250
1200
1150
1100 &2

1024

256 32
Total Data (in octect) 24 8 16
# Arrays # Arrays

Fi1G. 14: Time needed to migrate an abstract processor as a function of the total volume of arrays and the
number of arrays. The right figure is a zoom of the left figure. Experiments done with TCP over a Myrinet
network.

Except for small arrays, the curve can be approximated as a plan. Its equation is of the form ¢t =
a X ng+ B X ng + 7 where t is the time, ng is the cumulated size of all arrays (in kB) and n, the number
of arrays. The least squares method yields a = 59.82, 8 = 53.57 and v = —973 when t is expressed in
microseconds. The data bandwidth is 19.1 MB/s. The bandwidth for the data is a little lower than for
Adaptor because many additional internal data have to be sent. For example, the state of the C* abstract
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processors have to be sent. 8 is lower than for Adaptor because we have a smaller number of different data to
send though they are larger. This saves calls to the pack and unpack functions and also saves computation
to rebuild the global data at the destination process.

4 Conclusion

We have described in this paper a modified implementation of the Adaptor HPF and the UNH-C*
compilers which integrates a multithreaded runtime library based on the PM2 programming environment.
Usual data-parallel compilers use a coarse-grained approach toward code generation : one abstract processor
is mapped to each physical node of the target architecture. In contrast, we propose to use a medium-grained
approach, in which several abstract processors are mapped to each node. Abstract processors are mapped
onto migratable threads. The dynamic thread migration facility of PM2 allows us to move threads between
nodes to dynamically balance the load.

Our implementation has left unchanged the core of both Adaptor and UNH-C* compiler. Only the runtime
libraries have to be extensively modified. Several threads have to share a common communication interface
within a process. Intra-thread communications should be handled in different ways depending on whether the
partners live in the same process or not. On a thread migration, all the internal tables have to be adjusted.

The experiments we have presented show that the overhead induced by managing the threads is quite
small compared to the new opportunity for load balancing. This makes this solution a quite attractive
alternative to sophisticated static distribution directives, as proposed in HPF 2 for instance. Yet, addressing
the unnecessary replication of the scalar code in all threads necessitates a modification of the internal
compilation phase. We are currently working on this aspect : the abstract processors should now be able to
share the scalar variables, instead of replicating them.

This work is now being extended into two directions. The first one consists in integrating into the existing
data-parallel compilers a form of sharing for scalar variables. The second one if to improve the migration
facility so as to guarantee that the abstract processes will be relocated at the same address in the virtual
space. Then, all pointers remain valid, and our method can adapt any particular use of pointers within the
code generator.
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