N
N

N

HAL

open science

A Flexible Run-time Support for Distributed
Dependable Hard Real-time Applications

Emmanuelle Anceaume, Gilbert Cabillic, Pascal Chevochot, Isabelle Puaut

» To cite this version:

Emmanuelle Anceaume, Gilbert Cabillic, Pascal Chevochot, Isabelle Puaut. A Flexible Run-time Sup-
port for Distributed Dependable Hard Real-time Applications. [Research Report] RR-3564, INRIA.

1998. inria-00073119

HAL 1d: inria-00073119
https://inria.hal.science/inria-00073119
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073119
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Flexible Run-time Support for Distributed
Dependable Hard Real-time Applications

Emmanuelle Anceaume, Gilbert Cabillic

Pascal Chevochot and | sabelle Puaut

N° 3564

Novembre 1998

apport
derecherche

% I N RIA

RENNES

A Flexible Run-time Support for Distributed

Dependable Hard Real-time Applications

Emmanuelle Anceaume, Gilbert Cabillic

Pascal Chevochot and Isabelle Puaut

Theme 1 — Réseaux et systemes

Projet Solidor

Rapport de recherche n3564 — Novembre 1998 — 27 pages

Abstract: Typically, most distributed, dependable, real-time systems designed in the past
can only meet the particular requirements of the application domain to which they were
targeted. This approach led to specific, non-flexible, dedicated and non-reusable solutions,
often based on specialized hardware. This report presents an alternative approach where a
flexible run-time support for distributed dependable hard real-time applications is built on
top of off-the-shelf hardware. This support, called HADES has been designed by considering
three fundamental and complementary aspects: real-time, to support applications that ex-
hibit hard timing constraints; fault-tolerance, to provide a high degree of reliability through
transparent fault tolerant software components; and flexibility, to allow the modifications of
components of the run-time support without having to rewrite it entirely, and to support a

large range of application domains, real-time kernels and hardware.
Key-words: Run-time support, real-time, availability, distribution, flexibility.

This work is partially supported by the French Department of Defense (DGA/DSP),
#96.34.106.00.470.75.65.

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 299 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 71 71

Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

(Résumé : tsvp)

INRIA

Support d’exécution flexible pour des applications
temps-réel
distribuées hautement disponibles

Résumé : La plupart des systemes temps-réel fiables développés dans le passé furent dédiés
a4 un domaine d’application et une politique d’ordonnancement donnés. Cette approche a
souvent entrainé le développement de solutions lourdes, rigides et reposant fortement sur le
développement de matériel spécifique. Ce rapport présente une approche alternative dans
laquelle un support d’exécution flexible destiné & développer et exécuter des applications
temps-réel distribuées et hautement disponibles est construit au-dessus de matériels sur
étageére. Ce support, appelé HADES, a été concu en considérant trois aspects fondamentaux
et complémentaires : temps-réel, pour exécuter des applications exhibant des contraintes
temporelles fortes ; tolérance auz fautes, pour fournir un haut degré de fiabilité & travers des
mécanismes de tolérance aux fautes transparent & 'applicatif ; et flexible, pour permettre
d’une part, I’évolution du support d’exécution sans entrainer sa réécriture complete, et
d’autre part sa capacité a supporter un large éventail de noyaux temps-réel, de matériels et

de domaines d’application.

Mots-clé : Support d’exécution, temps-réel, distribué, disponibilité, flexibilité.

4 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

1 Introduction

Dependable hard real-time applications in the last thirty years have been spread out in
space rockets and flight control systems, nuclear power plants, stock exchange, medical
and automotive equipments. Designing systems supporting such demanding applications is
difficult because they must reach a triple goal. First, these systems have to be highly reliable
to meet the maximum acceptable probability of failure ranging from 10=* to 107!° failures
per hour [RSL95, KWFT&S8|. Second, they have to ensure strict timeliness requirements to
guarantee response times typically ranging from 1 to 100ms [MRS*90, RSL95|. Third, they
must enforce data consistency to handle concurrent executions of multiple tasks, especially
in a distributed environment.

Reaching this triple goal is complex and led so far to solutions that met only the par-
ticular requirements of an application domain. By particular requirements we refer to the
constraints imposed by the applications in terms of resources consumption, specific schedu-
ling needs, or fault-tolerance. Existing solutions are therefore dedicated to a single applica-
tion domain, and often based on specialized (and costly) hardware, making the implemented

software seldom reusable in a different context [RSL95, KWFTSS].

The HADES project! [ACCP98] developed at IRISA addresses these problems and pro-
vides an environment for the development and the execution of distributed dependable hard
real-time applications.

Application development in HADES relies on the use of an original task model and a set
of off-line tools. The HADES task model defines the way application tasks are structured and
the constraints that must be handled during their execution. The off-line tools encompass a
worst-case execution time analyzer, feasibility tests associated with a panel of scheduling po-
licies, an automatic replication tool, and a tool that determines the right amount of memory
to be allocated for the application execution. The replication tool [CPC98] automatically

replicates application tasks according to the requirements of the application designer (e.g.,

1HaDEs stands for Highly Available Distributed Embedded System.

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 5

tasks or the portions of tasks to be replicated, replication strategy to be used such as active,
passive or semi-active replication).

Application execution is managed by the HADES run-time support. This run-time sup-
port is built as a middleware software layer running on top of off-the-shelf real-time kernels
(it has been ported on Chorus [CS96] and emulated on Solaris). It consists in a set of man-
datory services for the execution of a large panel of dependable distributed real-time tasks.
Examples of such services are scheduling policies, communication primitives, group mem-
bership management, distributed execution control, and clock synchronization. All these
services exhibit timeliness and dependable properties.

The HADES run-time support has been designed to guarantee three fundamental and

complementary aspects:

1. Real-time: support of applications that exhibit hard timing constraints;

2. Fault-tolerance: provision of a high degree of reliability through transparent fault

tolerant software components;
3. Flexibility, that is:

(a) FExtensibility: ability to change parts of the run-time support without having to

rewrite it entirely.

(b) Adaptability: support for a large range of application domains, real-time kernels

and hardware.

The achievement of the real-time aspect mainly relies on an accurate estimation of the
worst-case execution times (WCETs) for all the activities to be executed in the system
(application tasks, run-time support tasks, real-time kernel). The computation of WCETSs of
the application and run-time support tasks is eased by the HADES task model (see Section 2);
in particular, it requires that all synchronization constraints (e.g., precedence between tasks,
resource sharing) be specified statically. Concerning the core of the run-time support, it has
been kept small enough to be easily analyzed. Lastly, the predictability of the real-time

kernel has been verified through the analysis of the Chorus kernel source code.

RR n3564

6 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

The fault tolerance aspect of the run-time support relies on the automatic task replication
tool, on the fault-detection and exception handling mechanisms offered by the run-time
support. For space consideration, this aspect is not detailed in this paper, but the interested
reader is invited to read [CPC98].

To achieve flexibility, we have specified in HADES a set of services with a well-defined
interface, that can evolve without having to rewrite the run-time support (eztensibility pro-
perty). These services are relevant to task scheduling, communication, group membership,
execution management of distributed tasks, and clock synchronization. Any implementation
of any service can be replaced by a service with different properties as far as it conforms to
the service interface. This allowed us to develop a range of service implementations adapted
to the specific constraints of the applications and the hardware (adaptability property).

The remainder of the paper is devoted to the description of the HADES run-time support.
It concentrates on the main structuring principles that were exploited to obtain a run-time
support exhibiting a timely behavior, while maintaining its flexibility. It is organized as
follows. Section 2 briefly presents the HADES task model. The HADES run-time support is
described in Section 3. This description encompasses an overview of the services interface
illustrating the extensibility of HADES (Section 3.2). Section 3.3 points out the completeness
of this interface to demonstrate the adaptability of HADES. Finally, the HADES run-time

support is compared with related work in Section 4.

2 The HADES task model

The HADES task model describes every task as a directed acyclic graph (see Section 2.1).
A set of timing, synchronization, distribution and fault-tolerance attributes can be specified
for each task (see Section 2.2). The fault model assumed when designing these tasks is given
in Section 2.3. The term task covers both the application tasks, denoted by App_tasks, and
the tasks implementing run-time support services, denoted by RTS tasks. In the remainder
of this section, we give only a brief description of the task model. The reader is invited to

read [ACCP98]| for more details.

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 7

2.1 Structure of tasks

Every task is described as a direct acyclic graph, called HEUG, for HADES Elementary Unit
Graph. A node (also called EU for Elementary Unit) can either be a Code Elementary Unit
(Code_EU), i.e., a sequence of code without synchronization, or a System Call Elementary
Unit (Sys_EU). Tasks can use an invocation Sys EU to request the synchronous or asyn-
chronous execution of other tasks, or to interact with the core of the run-time support. An
edge is a precedence constraint between nodes. An edge from an Elementary Unit eu; to an
Elementary Unit euj, noted eu; — euy;, states that eu; can start executing only after eu;

has finished its execution.

2.2 Task attributes

Task attributes can be classified into synchronization attributes, timing attributes, distri-

bution attributes and fault-tolerance attributes.

Synchronization attributes: The Code EUs can be synchronized by using either condi-
tion variables (i.e., boolean variables that can be cleared, set and waited for by Code_ EUs) or
shared resources expressing consumer-producer synchronization schemes between Code_ EUs.
A resource abstracts any hardware or software component required to execute a Code_ EU.
A resource can be associated with persistent data, i.e., data that survives beyond the exe-
cution of a Code EU. A Code EU or a group of Code EUs must specify which resources
to acquire before beginning its execution, together with the requested access modes (shared

or exclusive).

Timing attributes: Timing attributes express temporal properties at the task level and
at the elementary unit level. They can be used off-line, for instance by static feasibility
tests, and/or on-line for the purpose of execution monitoring, or dynamic scheduling poli-
cies. At the HEUG level, attributes express either the expected arrival law (i.e., periodic,
sporadic, aperiodic) or the relative deadline (i.e., the date at which the task execution must

be completed, relative to the task activation date). The scheduling service to be used to

RR n3564

8 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

compute the execution order of App task EUs can be chosen by the application designer
(see Section 3). At the EU level, the application designer can specify the EU deadline,

earliest start time, latest start time, and execution priority.

Distribution attributes: A task may execute on a set of sites. A site has a proces-
sor, a memory, and a set of local hardware devices (peripheral devices, sensors, actuators).
Distribution attributes specify for each Code EU and Sys EU the site on which the corres-
ponding EU executes. A precedence constraint eu; — ew; is said to be local (resp. remote)
if eu; and eu; are assigned to the same site (resp. different sites). The application designer
can specify which execution service is in charge of managing the execution of the App tasks

(see Section 3).

Fault-tolerance attributes: Fault-tolerance attributes specify for each HEUG or por-
tions of them (i.e., HEUG subgraphs) which fault-tolerance strategy is to be applied (active,
passive, semi-active, temporal replication) and the requested replication degree. These at-
tributes are used by the HADES off-line replication tool [CPC98]. The application designer
can also specify for each Code_ EU a handler that catches an exception whenever it is raised.
An HADES exception is defined as a synchronous event triggered by the run-time support
to notify the Code_EU of errors related to its execution (e.g. processor exception, attempt
to execute an operation on a failed resource). This enables the designer to define specific

fault-tolerance strategies.

2.3 Computational fault model

HADES has been designed to support omissions, value and timing faults. We have defined
mechanisms to simulate fail-silent sites, i.e., sites for which omission, value and timing
faults affecting its processor, memory or some other hardware device causes the site to
stop before propagating the erroneous state to another site. Mechanisms (see [CPC98])
have been defined at the task construction level (e.g., temporal replication), and at the

run-time support level (e.g., fault-detection) to approximate the fail-silent behaviour. The

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 9

communication network is subject to omission failures, so that messages might get lost. To

tolerate these failures, we assume that the number of successive omissions is bounded.

3 Description of the HADES run-time support

A key concern when designing the HADES run-time support was to guarantee its timeliness
while retaining its flexibility. This section gives an overview of the structuring principles

that were followed during HADES construction.

3.1 Overall functionalities of the run-time support

The HADES run-time support executes on every site of the distributed system as a midd-
leware software layer based on a Commercial-Off-The-Shelf (COTS) real-time kernel. Its
purpose is to provide a range of flexible functionalities to execute dependable distributed
real-time applications. The HADES run-time support has been divided into three software
layers, namely the dispatcher, the kernel adaptation layer and the services layer. A non-
exhaustive view of the functionalities provided by the run-time support is depicted in Fi-

gure 1.

Dispatcher: The dispatcher is the core of the run-time support. It provides the very
basic functionalities needed to execute a task, namely task eligibility management and task
monitoring. It interacts both with the services layer and the adaption layer.

Concerning eligibility management, the dispatcher maintains a priority-ordered set of
run-queues. App tasks are inserted in a certain order in the appropriate run-queues by the
scheduling service (see Section 3.2). In contrast, RT'S tasks are inserted by the dispatcher in
a FIFO order, and the EUs of their graph are ordered in breadth first order, while respecting
their synchronization attributes (i.e., resource, condition and precedence). An EU eu; is
runnable if it meets the following four eligibility conditions: (i) the EUs that eu; must
wait for, due to precedence constraints, have finished their execution, (i) all the resources

needed by eu; can be granted to eu;, (4ii) all the condition variables that eu; must wait for

RR n3564

10 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

are set, (iw) the current time is higher than eu; earliest start time. Among runnable EUs,
the dispatcher executes the one with the highest priority.

The monitoring functionality of the dispatcher consists in checking tasks execution pro-
gress in order to detect the violation of safety, liveness and timeliness properties (e.g., missed

deadline, violation of the task arrival law).

Kernel adaption layer: To port the HADES run-time support on different real-time ker-
nel, a kernel adaption layer has been designed. This layer interacts with the underlying
real-time kernel for activities related to threads and interrupts management. The adapta-

bility of this kernel adaption layer is shown in Section 3.3.4.

Services layer: The services layer consists in a panel of services exhibiting fundamental
properties (i.e., availability, dependability, timeliness) meeting the requirements of distri-
buted dependable real-time applications. A service is defined as a module accomplishing a
given function, and is called through a well-defined interface. A service interface is made of
task invocations, and upcalls (i.e., task invocation requested by the service itself).

Services pertaining to the service layer are relevant to scheduling policies, distributed
execution control, message multicast, group membership, time management, and synchro-
nization of clocks (see Figure 1). In contrast to the dispatcher functionalities, these services
are extensible, i.e., they can be modified/updated by the application designer as long as

their implementation conforms to the service interface (see Section 3.2).

3.2 Support for extensibility

Extensibility is the property of systems in which the evolution of existing functionalities or
the design of new ones is possible at any time during the life of the system. In order to
achieve it, the dispatcher is decoupled from the services layer. This enables the application
designer to extend the properties of any given service without having to cope with timing,
synchronization, fault-tolerance and distribution constraints that are inherent to any other

services. The following sections present the interface of four services, namely the schedu-

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 11

A\

s D
) Scheduling || Distributed Group Multicast Time
Té service execution membership service service
| || srinecrse || SONtrOl Sy Co R ST ettt I Clock
w service | (D) Meastsend (@ cicet synchro
Q| || @ schedmrmeu | [T T @ orpsubscribe e '
< @ DstrActTask @ GrpNewConfig @ casbeliver @ cls service
T @ DstrTrmEu (©) McastNewContig @ ClSubscribe

@ DstrNewConfig @ ClWakeup
Dispatcher
Kernel adaption layer
(P) KrnCreateContext (P KrnsetContext (F) KrnswitchTo () KrnConnectlt
AN
[C.O.T.S. Real-timekernel]

() Hades [| Serviceslayer

Interface description:

(@ TasName Task invocation @© upcaliName Upcall (F) FuncName Function call

Figure 1: Internal structure of HADES run-time support

RR n3564

12 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

ling service, the distributed execution control service, the multicast service, and the group

membership service.

Scheduling service: The scheduling service is in charge of computing the order in which
App_tasks must execute to meet their performance requirements (e.g., deadline or priority).
The feasibility tests, analyzing whether a set of tasks can meet its timing constraints or not,
are provided by an off-line tool. In order to bind a given scheduling policy with a given
App_task T;, one indicates in the timing attribute of T;’s HEUG (see Section 2) which
scheduling policy to use. The scheduling service interface is composed of two RTS tasks

invocations, named SchedActTask and Sched TrmFEu:

e Upon activation of an App task, say T;, the dispatcher asynchronously invokes the
SchedActTask task, with two parameters identifying the task to be scheduled (i.e., T3)

and the set of T;’s FUs that must be executed on the current site.

e Upon termination of an EU, say eu;, the dispatcher asynchronously invokes the Sched-

TrmFEu task with eu; as argument.

The SchedActTask and SchedTrmFEu tasks interact with the dispatcher via a set of
Sys_EUs that manages the priority-ordered set of run-queues (i.e., insert first, insert last,
insert after, and delete Sys_EUs).

The scheduling service interface has been designed to provide different scheduling policies,

each being adapted to a different application domain (see Section 3.3.1).

Distributed execution control service: The distributed execution control service is in
charge of launching the execution of distributed tasks on the relevant sites, validating their
precedence constraints and detecting their termination. The execution control service is cal-
led by the asynchronous invocations of three RTS tasks, named DstrActTask, DstrTrmFEu
and DstrNewConfig. The first two are in charge of respectively launching the distributed
execution of App tasks, and terminating their execution. The third one acknowledges modi-

fications of the group’s membership of the system (see hereafter). The distributed execution

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 13

control service to be used by a task 7; is specified in the distribution attribute of 7;’'s HEUG

(see Section 2). The distributed execution control service exhibits the following interface:

e Upon activation of a distributed App task T;, the dispatcher asynchronously invokes

the DstrActTask task;

e Upon termination of an EU eu;, the dispatcher asynchronously invokes the DstrTrmFEu

task;

¢ Upon modification of the group membership (i.e., after a site failure or site reinsertion),
the DstrNewConfig task is asynchronously invoked by the group membership service,
with two parameters indicating the new membership group view, and the time at
which reinserted sites are bound to be operational. Notice that the DstrNewConfig
task needs to be invoked only when the distributed execution control service has to

meet a fault tolerant behavior.

The execution control tasks interact with the dispatcher via a set of Sys EUs designed
to interact with the core of the run-time support (e.g., allocation of an execution flow,
validation of a set of precedence constraints, completion of the execution of an invocation
Sys _EU). These tasks also interact with the multicast service to launch the task executions
on the appropriate sites.

The execution control service interface has been designed to allow the implementation of
execution control policies assuming a reliable and a fault-tolerant environment. For space
consideration, these implementations are not given in this paper, but the interested reader

is invited to read [CPC98].

Multicast service: The HADES multicast service is concerned with the transmission of
messages to a set of sites. The HADES multicast service interface is made of two RTS tasks
invocations, named McastSend and MCastNewConfig, and one RTS task upcall named
MecastDeliver. The McastSend task broadcasts the messages to the sites belonging to the
group while the McastDeliver upcall delivers the messages destinated to the site. More

precisely, the McastDeliver upcall invokes the appropriate tasks in charge of handling the

RR n3564

14 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

received messages. The MCastNewConfig task plays the same role as for the distributed

execution control service. The multicast service interface is as follows:

e Upon request to multicast a message, the requesting task asynchronously invokes the
MecastSend task with three arguments indicating the message body, the destination

sites and the task in charge of handling the message on each destination site.

e Upon receipt of a destinated message, the McastDeliver upcall invokes the appropriate
task in charge of handling the received message, with the message as an argument. The
invocation of this task can be delayed to ensure that the delivery ordering properties

of the multicast service are met (i.e., causal order, total, or temporal order).

e Upon modification of the group membership, the McastNewConfig task is asynchro-
nously invoked with two arguments indicating the new membership group view and

the time at which reinserted sites are bound to be operational.

The multicast service interface has been designed to allow the implementation of multi-

cast protocols with different reliability and delivery order properties (see Section 3.3.2).

Group membership service: The HADES group membership service is in charge of
detecting failures, allowing operational sites to agree on the set of failed and operational
sites. Its interface is composed of a RTS task invocation named GrpSubscribe allowing a
HADES service to be notify upon group membership changes, and a RT'S task upcall named
GrpNewConfig allowing to warn the subscribed services of changes in the group membership.

More precisely:

e Upon request to be notify of group membership modifications, the requesting service

invokes the GrpSubscribe task by indicating its identifier;

¢ Upon modification of the group membership (i.e., following a site failure, or site rein-
sertion), the GrpNewConfig upcall provides the new membership group view as well as

the time at which reinserted sites are bound to be operational to subscriber services.

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 15

Notice that the respective interfaces of the multicast and group membership services do
not impose the role and number of tasks used to implement these services. For performance
reasons, the service designer can implement these two services jointly by using the same
task to implement both the multicast and group membership protocols (see section 3.3.2

and 3.3.3), while preserving their flexibility.

3.3 Support for adaptability

HADES specifies the interface of a set of run-time support services, so that the properties they
exhibit can be adapted to the target application domain, to the hardware, or to the fault
hypothesis, as long as they conform to the service interface (see Section 3.2). This section
illustrates this flexibility by giving for three services of the Services layer, two different
specifications according to the scheduling requirements (Scheduling service), the message
delivery order (Multicast service), the group membership properties (Group membership

service), and the underlying kernel features (Kernel adaption layer).

3.3.1 Scheduling service

The choice of a scheduling service highly relies on application-specific features like task
arrival laws, task priorities, preemption policy, and resource access patterns. Several dyna-
mic and static scheduling algorithms (e.g. Earliest Deadline First (EDF), Rate Monotonic
(RM) [LL73]) as well as planning-based scheduling policies [XP90, RSS90, Agn91]) exist and
some of them have been specified and implemented in the HADES run-time support. Two
scheduling policies that conform to the interface of the scheduling service are presented he-
reafter: a static planning-based scheduling policy and a dynamic scheduling policy. The first
implementation is intended for applications whose required resources must be preallocated
so that deadlines can be guaranteed a priori. The motivation for the second implementation

is to support sporadic tasks.

Static planning-based scheduling policy: The static planning-based scheduling policy

we have specified and implemented is based on the Xu and Parnas algorithm [XP90], which

RR n3564

16 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

acts on a set of periodic tasks with resources and precedence constraints. The original
algorithm has been extended to handle distributed tasks. This scheduling policy relies on
a feasibility test run off-line, which generates a scheduling plan, containing for every EU
its start time relative to the beginning of the task period. A set of HADES run-queues is
reserved for EUs scheduled by the extended Xu and Parnas scheduler. Each EU is mapped
onto one of this run-queue depending on its preemption level (i.e. if EU eu; preempts EU
eu;, it is assigned to a run-queue with a higher priority). The execution of the Xu and Parnas
scheduling policy is implemented by two RTS _tasks named t%fpamas and tirm . Upon
activation of an App taesk, that is at the beginning of the task period, task t%f},amas inserts
each EU of this task into the dispatcher run-queues. It uses the information given in the
scheduling plan to insert the EUs in the run-queue corresponding to their preemption level
and for a given run-queue, to sort them according to their increasing earliest start times.

Upon EU termination, task t%ﬁ",amas removes the EU from the run-queue it belongs to.

Dynamic scheduling policy: The dynamic scheduling policy we have implemented is
the Earliest Deadline First (EDF) scheduling policy coupled with the Stack Resource Policy
(srP) [Bak91] to avoid multiple priority inversions. The key idea of SRP is that when a task
needs a resource, it is blocked at start time rather than later when it actually requests the
shared resource. The main motivation for this early blocking is to save unnecessary context
switches. Briefly, the SRP statically assigns a preemption level, noted 7 (t) to each task t.
Preemption levels are defined so that they are ordered inversely with respect to the order of
relative deadlines.

The implementation of the EDF scheduling policy without the Srp is straightforward.
The App_tasks scheduled according to the EDF policy are assigned to a single HADES run-
queue, into which tasks are sorted by increasing deadlines. The EDF scheduling policy is
managed by two RTS tasks named tfdif and teTcgcm. Each time a task is activated, task tfd?t
adds the EUs of this task to the EDF run-queue according to their deadlines. Each time
an EU terminates, task tz(grm removes it from the EDF run-queue. This implementation

undergoes some modifications when the EDF scheduling policy is coupled with the SrP.

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 17

The EDF/SRP scheduling policy is managed by two RTS tasks named tfdcft/s,-p and
tIrm Each time a task t is activated, task tA¢f checks if t can preempt the cur-

edf /srp® edf /srp
rently executing task #.,,. According to SRP, t can preempt t.,, if the following preemption

condition is met: deadline(t) < deadline(teur) and T < w(t), where T is the maximum of

the current ceilings of all resources [Bak91]. If the preemption condition is met, task tfdjf/srp

inserts the EUs belonging to t at the beginning of the EDF/SRP run-queue; otherwise, ¢ is
Act
edf /srp’

Each time an EU terminates, task tgf%rp removes it from the EDF/SRP run-queue and

kept in an internal data structure of ¢ containing pending task execution requests.
scans its list of pending task execution requests to test the preemption condition and to

modify the EDF/SRP run-queue if necessary.

3.3.2 Time-bounded reliable multicast

The problem of sending messages in a failure-prone environment has been subject to inten-
sive investigation, yet relatively little research seems to address the problem of designing
reliable multicast that are amenable to schedulability analysis. HADES run-time support
provides three time-bounded multicast protocols. The first one, called time-bounded basic
multicast protocol, has been designed for a failure-free environment, whereas the others rely
on the fault hypothesis given in Section 2.3. These two fault tolerant multicast protocols,
named time-bounded atomic multicast protocol and time-bounded causal multicast protocol
ensure that any message sent by a correct site will be delivered by all correct destination
sites by guaranteeing the Validity, Integrity, Agreement and real-time A-Timeliness pro-
perties [HT93]. They only differ by the order in which messages are delivered: temporal
order for the first one and causal order for the second protocol. The causal order ensures
that messages are delivered in accordance with their precedence relationship. The temporal
order of events in a distributed system is defined in terms of an omniscient external observer.
This observer possesses a single reference clock and timestamps each event by this clock.
So event E; temporally precedes event Es if timestamp(F;) < timestamp(Fs). In simpler

terms, if F; occurs before FEs, then F; precedes Fs.

RR n3564

18 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

For space considerations, we only give a brief description of the atomic and the causal

time-bounded multicast protocols.

Time-bounded atomic multicast protocol: The HADES real-time atomic multicast
protocol is based on the Time-Division Multiple Access strategy, and relies on the clock
synchronization service to get locals clocks synchronized within 4 of each other. Time is
divided into rounds, a round being composed of a succession of time slots. Each site i gets
s; slots per round to send its messages. The assignment of slots to sites is done statically;
it is never modified even in case of group membership changes. Upon message submission,
task McastSend stores the message in a sending buffer. Concurrently, a periodic RTS task
called tenq/recy is activated during the time slots granted to the site. This task is in charge
of timestamping each message of the sending buffer with a unique identifier based on the
local time of the site, broadcasting them on the channel, and receiving each broadcast
message. Note that received messages are piggybacked in broadcast messages until each
message has been broadcast w = fsepg + 1 times to tolerate up to fsenqg successive omissions.
For each destinated message m, the t,.n4/rccv task invokes the task in charge of handling
m (i.e., upcall McastDeliver) as soon as m’s timestamp satisfies the delivery conditions.
These conditions concern the respect of the temporal order. This protocol ensures that if
a message m is multicast at real-time ¢ (by invoking task McastSend), then no correct site
invokes the destination task in charge of handling m after real-time ¢ + A. The value of A
is equal to 2((w + 2).(P + r + 2.w) + A¢rans + 2.w), with P the period of task tscnq/reco,
A¢rans the maximum network latency in a failure-free environment, v the precision of the
clock synchronization algorithm, and r the maximum response time of task tseng/reco- BY

taking, Aypans = 1ms, P = 10ms, r = 1ms, v = 10ms, and w = 2, we get A ~ 290ms.

Time-bounded causal multicast protocol: The HADES real-time causal multicast pro-
tocol ensures that messages are causally delivered. Compared to the time-bounded atomic
multicast protocol, this protocol does not rely on synchronized clock which offers an increa-
sed flexibility. This protocol is implemented by a single periodic RT'S_ task named tsenq/recy -

This task is periodically activated, and broadcasts w times each message of the sending buf-

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 19

fer. Upon receipt of a message m, tsend/recy invokes the task in charge of handling m when
delivery conditions are satisfied. To avoid infinite messages collisions on the communica-
tion medium, a mechanism providing a unique access to the medium is mandatory (e.g., in
HADES, the ATM switch is used; in case where Ethernet were used instead of ATM, the
medium access protocol CSMA/CD would guarantee a deterministic access [HLR95]). The
value of A is for this protocol equal to (3.w + 1).P 4+ Arans + 2.7. By taking the above

numerical values, we get A ~ 73ms.

3.3.3 Group membership service

The challenge when designing a group membership protocol for a hard real-time system is
to fulfill the three following requirements: (%) to have a small and bounded failure detection
latency, (i) to have a small and bounded number of messages exchanged and (%) to have
a protocol that can be easily integrated into feasibility tests. The HADES run-time sup-
port comes with two different implementations of the group membership service that meet
such constraints. The first implementation, called strong group membership, guarantees the
Vivacity, Uniqueness, Consistency and Real-time A-Timeliness properties [Cri91]. For per-
formance reasons, the second one, called weak group membership service, guarantees only
the Vivacity, and Real-time A-Timeliness properties. Both implementations periodically
piggybacks heartbeat messages on application messages (in the current implementation, the
tsend/recv task is used to implement both the multicast and the group membership services).
For space consideration, the following is devoted to the description of only the strong group
membership protocol.

The group membership service is based on the same principle as the time-bounded atomic
multicast service, i.e., a TDMA approach. Each site p piggybacks on each application
message the view it has of the sites group, by means of two vectors named recv, and join,.
Vector recvp, is used to implement the heartbeat: recuwp[i] is the latest clock value that p
knows that site ¢ sent. Vector join, is used to agree on when a site has restarted: when the
current local time is at least join,[i], then ¢ has joined the group of operational sites. Upon

receipt of a message on site p, vector recv, is updated and the message is forwarded to the

RR n3564

20 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

group. This protocol guarantees that if at local time ¢,, a site p operational for more than A
time units that has not received any heartbeat message from site ¢ for A time units, then p
excludes ¢ from its group view at local time ¢,,. The value of A is equal to the one exhibited
by the time-bounded atomic multicast protocol (see Section 3.3.2). Thanks to the clock
synchronization service, all correct sites exclude g from their group view at time t, = ¢,.
Similarly, a site p initially crashed, and wishing to be reinserted in the group is guaranteed
to be reinserted in the new group view by all correct sites at time ¢, + A, with ¢, the time
at which p broadcast its first heartbeat message (join,[p] = t, + A). Upon configuration
change, tasks that need to be notified of the configuration are invoked with the new group
view as argument. Note that the time-bounded atomic multicast service altogether with the
group membership service ensure the virtual synchrony property, i.e., the guarantee that the

delivery of messages are totally ordered with respect to changes in the group’s membership.

3.3.4 Kernel adaption layer

The kernel adaption layer interacts with the underlying real-time kernel for activities related
to the management of threads and interrupts. To port the HADES run-time support on a
real-time kernel, one has only to develop a kernel adaption layer that conforms to a interface

made of four function-calls directly invoked by the dispatcher:

Name Description

KrnCreateContext | Allocates a context for a thread
KrnSetContext Sets the thread context (e.g., initialize the thread starting address) but
does not start the thread yet.

KrnSwitchTo Starts a thread or restarts it after a preemption

KrnConnectIt Connects an interrupt handler on a given interrupt level.

The first three function calls allow the dispatcher to assign separate threads of control
to concurrent EUs within a HEUG. Upon occurrence of an interrupt, the fourth primitive

connects the interrupt handler of the concerned HADES services (e.g., time service).

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 21

Such an interface requires that the real-time kernel offers enough support (7) to implement
a multithreading interface; (i7) to connect user-defined interrupt handlers. In addition the
real-time kernel must guarantee the consistency of the dispatcher in presence of interrupts,
and this without any blocking. This last point is detailed hereafter. Up to now, the HADES

kernel adaption service has been ported to Chorus 3.1 and has been emulated on Solaris.

Chorus kernel adaption service: Chorus 3.1 [CS96] provides a real-time operating sys-
tem that can scale down to small embedded platforms and scale up to distributed POSIX
compliant platforms. It is built around a core executive module which provides the basic
services mandatory for a real-time executive. The HADES environment has been ported on
the micro core executive module. This module provides support for multithreaded applica-
tions, FIFO fixed-priority scheduling, basic synchronization and user-provided management
of interrupts, traps and exceptions. Note that the core erecutive module, while offering
more functionalities (e.g., memory protection, dynamic memory management) has not been
selected for predictability reasons (its code was far too large to be guaranteed predictable
through manual code analysis). The HADES kernel adaption service interface has directly
been implemented above the micro core API.

The most difficult part concerned the implementation of indivisible portions of code on
top of the micro core. One trivial solution could have be to simply mask interrupts (using
iz86 instructions cli and sti) during the portions of code that had to be indivisible. This
solution was rejected since interrupts are unmasked at the end of all Chorus system calls,
and thus prevent portions of code invoking them to be indivisible. Our solution relies on
the micro core fixed-priority scheduler. It consists in assigning Chorus priorities to thread
execution according to the following policy: (i) threads allocated to Sys EUs are executed
with the highest Chorus priority; (i) threads allocated to interrupt handlers are executed
with a Chorus intermediate priority. These threads are unblocked whenever an interrupt is
triggered; (i) threads allocated to Code EU are executed with a low Chorus priority. With
such a priority assignment, an interrupt can be triggered while a Sys_ EU is being executed,

but its interrupt handler is executed only when the Sys EU is terminated. This solution

RR n3564

22 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

can be implemented on top of any real-time kernel exhibiting a fixed-priority scheduling

policy.

Solaris kernel adaption service: The HADES kernel adaption service has been ported
on the Solaris operating system. This port aimed at validating HADES temporal properties
by simulating a worst-case execution scenario, and HADES functional properties. The HADES
kernel adaption layer interface has directly been implemented above the Solaris thread li-
brary. More precisely, per each site is allocated one Solaris multi-thread process in charge of
executing all the App tasks and RTS tasks. For the global system is allocated one Solaris
multi-thread process in charge of (i) coordinating all the sites, (ii) simulating the global

time, (%) handling the local clocks drift, and the messages transmission time.

3.4 Support for predictability

A key design principle in HADES is to provide a run-time system with a predictable behavior.
An action is said to be predictable if its results and its worst case execution time (WCET)
are known before it is executed. Predictability is crucial for the implementation of feasi-
bility tests. Moreover, the more precise the WCET estimation is, the less pessimistic the
application feasibility test is. Indeed, due to the complexity of determining worst case cost
information, scheduling tests often use over-estimated WCETSs of run-time support activi-
ties. While this behavior is safe, it often leads to a negative answer of the scheduling test,
forbidding the execution of applications despite their actual feasibility. Providing a predic-
table run-time support requires that all its components be predictable. A WCET analyzer
is currently being developed to partially automate kernel and Code EUs WCET analysis.
The following sections show how the design of all components of the HADES environment

(i.e., services layer, dispatcher and real-time kernel) makes HADES predictable.

Services layer predictability The predictable behaviour of the service layer results from
two aspects. The first one comes from the specification of all run-time support services
according to the HADES task model. This model eases the determination of the temporal

behavior of these services by requiring that sequential codes (i.e., EUs) are isolated from

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications — 23

any synchronization, or distribution constraints. This makes possible a precise evaluation
of EUs WCET, and thus an exact knowledge of any blocking time. The second aspect is
related to the arrival law of these services. Except for a small set of RT'S_tasks which are
periodical (the tsonq/recy task of the multicast service, the clock synchronization and the
time tasks), all the services are invoked explicitly or implicitly by the application code. This
enables to carry their WCETSs over to the execution cost of application tasks. The periodic
laws of the aforementioned RTS tasks are directly integrated into the scheduling feasibility

test.

Dispatcher predictability The dispatcher has been designed to handle very basic func-
tionalities, which make its code small and easy to analyze. Beyond this feature, the dis-
patcher exhibits a number of characteristics that make it predictable. More precisely, the
dispatcher (i) does not contain any asynchronous or periodic activity; (i7) does not use
dynamic memory allocation (tasks arrival laws, resources, condition variables are known
off-line); and (%) never blocks (see Section 3.3.4).

Such features enable to fully characterize the dispatcher with four WCETSs: (%) weetierm/start
to terminate an FU execution and to start the execution of the following one; (i) wcetsys
to execute a Sys EU; (i) weetin: to take into account an interrupt and to start the execu-
tion of the appropriate interrupt handler; (i) wcetegcept to substitute the execution of the
current Code_ EU by the exception handler. These four WCETSs have been identified in our
prototype and correspond to treatments that cannot be preempted. The integration of these
costs into the application feasibility test is relatively easy. The wcetierm/start and weetsys
costs are directly added to the application tasks costs, while the wcet;n: and wcetezcept are

integrated as high priority sporadic tasks.

Kernel predictability As the designers of real-time kernels generally do not provide any
guarantee about predictability of their kernel, access to their source code is required. Thus,
a study of the Chorus R3 kernel adopted in the HADES prototype, has been done. The

ChorusR3 kernel source code has been analyzed through a verification of invariants, an

RR n3564

24 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

analysis of function side effects, and an identification of WCETSs. So far, code analysis has

been done manually.

4 Related work

A number of systems have been designed to support dependable real-time distributed ap-
plications. Mars [KT89, RSL95| and Maft are two of them. However, Mars is not flexible:
first it uses a single scheduling policy (static and periodical), and second it relies on speci-
fic hardware-intensive solutions for fault-tolerance and clock synchronization. In contrast,
HADES run-time support can be adapted to support multiple scheduling policies (see Sec-
tion 3.3) and uses COTS hardware and software. Maft [KWFT88| proposes mechanisms to
tolerate byzantine failures in order to provide extremely reliable computations, and this, wi-
thout sacrificing performances. However, for the same reasons as Mars, Maft is not flexible.
Delta-4/XPA [BHVT90] proposes flexible fault-tolerance and communication protocols. Un-
fortunately, the execution environment used for its implementation is not predictable and
the proposed fault-tolerance real-time protocols are not suited for hard real-time constraints.
Among works in progress, the GUARDS European ESPRIT project [WBDBP96| has objectives
similar to those of HADES. However, in opposition to HADES, GUARDS favors the develop-
ment of hardware components easing the implementation of fault-tolerance mechanisms.

HADES run-time support cannot be directly compared with real-time kernels, like QNX [Hil92]
and Chorus [CS96]. While some of them exhibit a predictable behavior, they are generally
not designed to support failures or to adapt to application needs (e.g., support multiple
scheduling policies). However, they can be used as HADES base real-time kernel so long as
they offer enough functionalities to implement the HADES kernel adaption layer.

The structuring principles that where adopted in HADES to meet the flexibility pro-
perty are very similar to the ones proposed by micro kernel designers to specialize their
kernels [Lie96]. The difference comes mainly from the class of service that can be speciali-
zed. In micro kernels, services that can be specialized are general-purpose operating system
services (e.g., memory management specialization through paging services, communication

services), while in HADES, such services are representative of services found in run-time

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 25

supports for dependable applications (e.g., real-time scheduling, time-bounded communica-
tions, clock synchronization). More recent work on kernel specialization gave birth to highly
specializable operating systems kernels, such as Spin [B*95| or Exokernel [K*97], but these
kernels do not address predictability issues.

CoRrBA [OMGY6] is a standardized middleware architecture for distributed object com-
puting on heterogeneous environments. It eases the development of distributed services
by providing features to interconnect applications and services. TAO [SLM97] is a predic-
table implementation of CORBA, providing facilities to support hard real-time requirements.
HADES, like TAO relies on a predictable middleware layer. However the two platforms differ
by the fact that HADES does not rely on an object-based approach to develop applications,
by the fact that HADES does conform to any standard like CORBA and by the fact that to

our knowledge, TAO is not fault-tolerant.

References

[ACCP98] E. Anceaume, G. Cabillic, P. Chevochot, and I. Puaut. Hades: A middle-
ware support for distributed safety-critical real-time applications. In Proc. of

ICDCS-18, pages 344-351, May 1998.

[Agn91] R. Agne. Global cyclic scheduling : A method to guarantee the timing behavior
of distributed real-time systems. The Journal of Real-Time Systems, 3(1):45—
66, March 1991.

[BT95] B. Bershad et al. Extensibility, safety and performance in the SPIN operating
system. In Proc. of SOSP-15, volume 29(5) of OSR, pages 267-284, October
1995.

[Bak91] T. Baker. Stack-based scheduling of real-time processes. The Journal of Real-

Time Systems, 3(1):67-99, 1991.

RR n3564

26 Emmanuelle Anceaume, Gilbert Cabillic Pascal Chevochot and Isabelle Puaut

[BHV*T90] P. Barrett, A. Hilborne, P. Verissimo, L. Rodrigues, P. Bond, D. Seaton, and
N. Speirs. The delta-4 extra performance architecture (xpa). In Proc. of

FTCS-20, pages 481-488, June 1990.

[CPCY8] P. Chevochot, I. Puaut, and G. Cabillic. A flexible environment for automatic
replication and execution of distributed safety-critical real-time applications.

TR 1183, IRISA, April 1998.

[Criol] F. Cristian. Reaching agreement on processor group membership in synchro-

nous distributed systems. Distributed Computing, 4(4):175-187, 1991.

[CS96] Chorus Systemes. Chorus/classix R3 technical overview. TR 96-119.91, May
1996.

[Hil92] Dan Hildebrand. An architectural overview of QNX. In Proc. of the USENIX
Workshop on Micro-Kernels and Other Kernel Architectures, pages 113-126,
April 1992.

[HLR95] J.F. Hermant, G. Le Lann, and N. Rivierre. A general approach to real-time
messages scheduling over distributed broadcast channels. In IEEE Conf. on

Emerging Technologies and Factory Automation, October 1995.

[HT93] V. Hadzilacos and S. Toueg. Distributed systems, fault tolerant broadcasts and
related problems. Addison-Wesley / ACM Press, 1993.

[K*+89] H. Kopetz et al. Distributed fault-tolerant real-time systems: The Mars ap-
proach. IEEE Micro, 9:25-40, February 1989.

[K+97] M. Kaashoek et al. Application performance and flexibility on exokernel sys-
tems. In Proc. of SOSP-16, volume 31(5) of OSR, pages 52—65, October 1997.

[KWFT88] R. Kieckhafer, C Walter, A. Finn, and P. Thambidurai. The MAFT architec-
ture for distributed fault tolerance. IEEE Trans. on Computers, 37(4):398-405,
April 1988.

INRIA

A Flexible Run-time Support for Distributed Dependable Hard Real-time Applications 27

[Lic96]

[LL73]

[MRS*90]

[OMG96]

[RSLY5)|

[RSS90]

[SLM97]

[WBDBPY6]

[XP90]

RR n3564

J. Liedtke. Toward real microkernels. Comm. of the ACM, 39(9):70-77, Sep-
tember 1996.

C.L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a

hard real-time environmene. Journal of the ACM, 20(1):46—61, January 1973.

L. Molesky, K. Ramamritham, C. Shen, J. Stankovic, and G. Zlokapa. Imple-
menting a predictable real-time multiprocessor kernel - the Spring kernel. In
Proc. of the 7th IEEE Workshop on Real-Time Operating Systems and Soft-
ware, May 1990.

OMG. The Common Object Request Broker: Architecture and Specification,
July 1996.

J. Reisinger, A. Steininger, and G. Leber. Predictably Dependable Computing
Systems, chapter The PDCS Implementation of MARS Hardware and Soft-
ware, pages 209-224. Springer-Verlag, 1995.

K. Ramamritham, J. Stankovic, and P. Shiah. Efficient scheduling algorithms
for real-time multiprocessor systems. IEEE Trans. on Parallel and Dist. Sys-

tems, 1(2):184-194, April 1990.

D.C. Schmidt, D.L. Levine, and S. Mungee. The design of the TAO real-time

object request broker. Computer Comm. Journal, 1997.

A. Wellings, L. Beus-Dukic, A. Burns, and D. Powell. Genericity and upgrada-
bility in ultra-dependable real-time architectures. TR LAAS-R-96417, LAAS,
November 1996.

J. Xu and D. L. Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. IEEE Trans. on Software Engineering,

16(3):360-369, March 1990.

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit"e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit"e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

