
HAL Id: inria-00072955
https://inria.hal.science/inria-00072955

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Perlin Textures in Real Time using OpenGL
Antoine Miné, Fabrice Neyret

To cite this version:
Antoine Miné, Fabrice Neyret. Perlin Textures in Real Time using OpenGL. [Research Report] RR-
3713, INRIA. 1999, pp.18. �inria-00072955�

https://inria.hal.science/inria-00072955
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Perlin Textures in Real Time using OpenGL

Antoine Miné Fabrice Neyret
iMAGIS-IMAG, bat C

BP 53, 38041 Grenoble Cedex 9, FRANCE
Fabrice.Neyret@imag.fr

http://www-imagis.imag.fr/Membres/Fabrice.Neyret/

No 3713

juin 1999

THÈME 3

Perlin Textures in Real Time using OpenGL

Antoine Miné Fabrice Neyret
iMAGIS-IMAG, bat C

BP 53, 38041 Grenoble Cedex 9, FRANCE
Fabrice.Neyret@imag.fr

http://www-imagis.imag.fr/Membres/Fabrice.Neyret/

Thème 3 — Interaction homme-machine,
images, données, connaissances

Projet iMAGIS

Rapport de recherche n˚3713 — juin 1999 — 18 pages

Abstract: Perlin’s procedural solid textures provide for high quality rendering of
surface appearance like marble, wood or rock. This method does not suffer many of
the flaws that are associated with classical image mapped textures methods, such as
distortion, memory size, bad continuity through objects. Being based on a per-pixel
calculation, they were however limited up to now to non-real-time quality rendering
as is ray-tracing. In this paper, we propose a way to implement Perlin texture using
a real-time graphics library like OpenGL.

Key-words: image synthesis, virtual reality, procedural texture, Perlin noise.

(Résumé : tsvp)

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN (France)

Téléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
Télécopie : 04 76 61 52 52 - International: +33 4 76 61 52 52

Textures de Perlin en temps-réel avec OpenGL

Résumé : Les textures procédurales pleines de Perlin permettent un rendu de
qualité pour des surfaces comme le marbre, le bois ou la pierre. Cette méthode ne
souffre pas de la plupart des problèmes que rencontrent les méthodes de plaquage
de texture classique, comme les distortions, l’occupation mémoire, la mauvaise
continuité d’une composante géométrique à l’autre. S’appuyant sur un calcul par
pixel, elles étaient toutefois limitées jusqu’à maintenant aux rendus de qualité non
temps-réel, comme le lancer de rayon. Dans ce papier, nous proposons une méthode
pour qui permet d’implémenter les textures de Perlin en s’appuyant sur une librairie
graphique temps-réel comme OpenGL.

Mots-clé : synthèse d’images, réalité virtuelle, textures procédurales, bruit de
Perlin.

Perlin Textures in Real Time using OpenGL 3

1 Introduction

Perlin’s procedural solid textures are often used to generate complex looking sur-
face appearance such as marble, wood or rock. They have numerous interesting
properties, compared to classical image textures:

- They are computed in 3D, not on the surface, which avoids surface parameteriza-
tion problems that usually produce large distortions on image mapped textures.

- For the same reason, texture features like a vein in marble can easily continue
from one element of a composed object to the other, while using classical textures
a mapping continuous and coherent through objects have to be found (which is
uneasy).

- Almost no memory is used, as the texture values are computed on the fly.
- The resolution is adaptive, each iteration adds increasingly small details and can

be stopped once the pixel size is reach. Having a classical image texture both
covering a whole surface and having very fine details (to allows for close point
of views) can need a lot of memory (e.g. 10 � 000 � 10 � 000 resolution).

- As they are procedural, no redundant design work is necessary, and no repetition
appears. The artist rather controls high level parameters, such as the size of
perturbation, the amount of turbulence, the kind of patterns, their size, orientation
and location, the range of colors, etc.

However Perlin’s textures are based on a per-pixel calculation, thus they cannot
be computed in real time, but rather used in a realistic rendering algorithm like ray-
tracing. As a consequence, real-time graphics library such as OpenGL only knows
image mapped textures.

It would be very interesting to get the quality and ease of Perlin’s textures,
with the interactive rendering rate of real-time graphics libraries like OpenGL. This
would allow for high quality images in a real-time application. This would also
provide a large acceleration to non-real-time quality rendering.

Using the numerous features of extended OpenGL such as 3D texture coordi-
nates, multipass, color matrix and look-up tables, we demonstrate in this paper that
the Perlin’s noise equation can be translated in terms of per-polygon mapped texture
rendering.

RR n˚3713

4 Antoine Miné and Fabrice Neyret

2 Previous Work

2.1 Perlin’s textures

Perlin introduced his model in 1985 [Per85]. Since then it has largely been used
in all the existing high quality image synthesis platforms such as Maya, Explore,
PowerAnimator or Softimage.

This model contains two ideas:

- It is a procedural texture model, which means that the value at a point results
from an on the fly calculation.

- It is a solid texture model1, which means that the appearance on the surface re-
veals data that are defined in volume, as if the object was sculpted in a block of
material.

The procedural model is based on turbulent noise, that is a continuous self-
similar function providing fractal looking patterns. This fractal noise t

�
x � is defined

in 1D as the fractal sum of a simple noise s
�
x � : t

�
x ��� ∑n

0
1
2i � s � 2i � x �
∑n

0
1
2i

A value of 4 for n

generally gives good results, but one can let the sum add details up to the pixel size.
Moreover, a lower value can be used to get smooth patterns. The s

�
x � noise function

is both continuous and random, and has a pseudo-period that can be controlled. It is
built by interpolating smoothly random values defined on the nodes of a grid. Affine
transformations of x allows for controlling the size of patterns (i.e. the frequency of
the lowest component), and there location (i.e. the position of a pick in the values
relative to a geometric feature). Formulas are identical in 3D, taking x as the vector�
x � �

x � y � z � . s
� �
x � is thus a function from IR3 to IR, which smoothly interpolate the

values given on a 3D grid.

In fact no 3D grid really need to be built, neither infinite array: hashing tech-
niques [Arv90, EMP � 98] allows for the simulation of uncorrelated data using a
simple small 1D grid of precomputed random values. The hashing of the indices
greater than the array size allows for the generation of uncorrelated sequences: e.g.

1also called 3D textures, which should not be confused with volumetric textures [KK89] that
really design 3D expanded objects.

INRIA

Perlin Textures in Real Time using OpenGL 5

the sequences � i � i � � α � i � i � � β � i � i where the parameters α and β are large and gen-
erally primes, are uncorrelated once the indices are hashed. A permutation func-
tion σ

�
i � of the indices allows for the production of uncorrelated components in

multidimensional data. e.g. a 3D value on
�
i � j � k � is simulated using the 1D in-

dex σ
�
i � α1 � σ

�
α2 � α3 � j � α4 � σ

�
α5 � α6 � k � � � , where the fixed parameters

α1 � α2 � α3 � α4 � α5 � α6 are big numbers (generally primes).

To be smooth, the interpolation used should be better than linear. Rather than
using cubic interpolation, Perlin change the kind of data to be interpolated: instead
of single values, he stores 4 values at the nodes of the 3D grid, that associate a plane
to this node (i.e. a quadruplet of random values is used, representing a normal and
a height). The resulting value of s

� �
x � is the trilinear interpolation of the distance of

x to the plane defined at each on the nodes on the cell on which x lies.

The turbulent noise function is used as a seed or as a perturbation to give im-
ages. E.g. a colormap function can turn the values into colors, threshold functions
can generate low or high plates in the curve. The

�
x value indexing an image or a

simple characteristic curve can be perturbed and turned into
�
x � α � t

�
β � �x � were α

controls the amplitude of the perturbation and β the frequency of its details2. Marble
and wood are simulated that way, using a characteristic function that simulates an
unperturbed vein for marble (a pick at the location of parallel planes, see figure 1)
and for wood (a pick at the location of parallel circles, see figure 2).

2.2 Beyond Basic Graphics Libraries Features

Z-buffer based graphics libraries like OpenGL only implement a restricted set of
geometric, photometric and textural representations[NDW93]. E.g. the shapes are
only made of triangles, the photometric model is either Gouraud or limited Phong
(computed at surface nodes then interpolated on the triangles). The textures are
based on the mapping of images using

�
u � v � texture coordinates given on the surface

nodes. These limitations are mainly due to the use of the Z-buffer algorithm, and
to the constraints of using hardware (e.g. interpolating and normalizing a normal

2A perturbation has 3 components. t ���x � and s ���x � are then vector functions, i.e. they provides 3
uncorrelated noises in each of the 3 dimensions. So α and β can be a number, a diagonal matrix, or
a full matrix if anisotropic perturbations are wanted.

RR n˚3713

6 Antoine Miné and Fabrice Neyret

0 1

color

blue pick

pink pick

blackblack black

Figure 1: Marble texture: characteristic function f � � , colormap C � � , C � f � � � , turbulence t � � , per-
turbation of f � � by t � � (i.e. f � x � α � t � x � �), result with the colormap (i.e. C � f � x � α � t � x � � �). NB:
these images are produced in real time using our algorithm.

INRIA

Perlin Textures in Real Time using OpenGL 7

0 1

color
white pick

black blackblack

yellow pick

Figure 2: Wood texture: characteristic function f � � , colormap C � � , C � f � � � , perturbation of f � � by
t � � (i.e. f � x � α � t � x � �), result with the colormap (i.e. C � f � x � α � t � x � � �), same from a side view. NB:
this images are produced in real time using our algorithm.

RR n˚3713

8 Antoine Miné and Fabrice Neyret

vector along a triangle in order to implement a real Phong shading would need
rather more complex electronics). However many open extra features allows for
extensions, provided one knows how to translate a problem in terms of the limited
grammar provided. E.g. textures coordinates can have from 1 to 4 dimensions,
their value is freely determined by the programmer and a 4 � 4 texture matrix can
transform them at rendering time. A 4 � 4 color matrix can be applied to a resulting
color RGBA seen as a 4D vector, multiple color tables can transform the color
or alpha value coming from pixels or from a texture, before or after color matrix
multiplication, etc. Combinations of transparent layers can also differ for regular
compositing by choosing other operators and coefficients than ones of the regular
blending equation, and textures are not limited to defining a color: they can be
mutiplicative (e.g. to simulate lighting), or contain a Z value.

An important point is to keep in mind that OpenGL ignores the meaning of op-
erations and values, it simply processes them. Thus, interpolating 1 or 4 texture
coordinates along a triangle is an equivalent process, indexing an array with 1 or 4
components is quite similar. It’s the user and the programmer who give interpre-
tation to what the texture is attached to, and what the image contents represents.
E.g. environment reflections can be obtained by encoding in

�
u � v � the direction of a

reflected ray at a given node, while for the rendering they are
�
u � v � like any others.

In particular, textures coordinates with more than 2 dimensions can be used in
two ways:

- if a 4 � 4 texture matrix is provided, the coordinates are interpreted like regular
coordinates, and transformed using the matrix (e.g. a projection). Then, one may
consider the 2 first components of the result to index a texture image, the same
way that the 2 first components of the 4D geometric and camera transform are
considered to index a pixel on screen.

- by indexing a 3D table with 3 texture coordinates that are a linear transform of
the node location, one can display a slice of a volume. The volume is encoded in
the 3D texture, and the slice is given by the polygon location in geometric space
and texture space. Note that rendering a surface using 3D texture coordinates
gives exactly a solid texture as defined previously. Volume rendering can also be
obtained by using a sequence of slices and transparent textures.

Using these OpenGL special features or extension, one can implement mirror
reflections[NDW93], shadows, Fresnel lighting, bump mapping, volume rendering[WE98],

INRIA

Perlin Textures in Real Time using OpenGL 9

volumetric textures[MN98], and many other effects usually only available in ray-
tracing. Many of them are described in the Siggraph Advanced Graphics Courses
[CR98] and on the SGI web site [Gra]. In particular, some clues on how to im-
plement basic Perlin’s textures are given in [CR98]: The idea is to define a small
random 3D texture, and to map it several times while reducing the size by a factor
of two, using the GL_ADD additive blending with no blending coefficient (i.e. 1 and
1 instead of alpha and 1 � alpha). More functionality is necessary however beyond
this basic solid texture in order to get a fully usable Perlin’s texture. In particular,
one needs to use this basic ‘signal’ as a perturbation function as explained before,
in order to get the veins of marble or wood. This is described in the next section.

3 Perlin’s textures using OpenGL

As we have seen in previous work, the more general Perlin texture equation that
gives the color (or any other surface feature) at a given 3D location is modeled by:

C
�
f
�
T1 � � �x �

�
x0 � � T2 � �t � T3 � � �x �

�
x1 � � � � (1)

with
�
t
� �
x � � ∑n

0
1
2i � �

s � 2i � �
x �

∑n
0

1
2i

the turbulence function that produces the perturbation,

f
� �
x � : IR3 � IR the characteristic function of the material,

C
�
x � : IR � IR4 is the colormap that gives an RGBA value,�

s
� �
x � is the pseudoperiodic noise function obtained by the interpolation of the ran-

dom values given at the nodes of a (virtual) 3D grid.�
x0 and

�
x1 controls the translation of the characteristic pattern and of its perturbation,

T1 � T2 and T3 are matrices controlling the orientation and the directional size of the
characteristic pattern and of its perturbation.

In order to simplify the computations, we decompose the transformation T2 into
a rotation R2 and a scaling S2, and factorize the R2 rotation. We note α1 � α2 and α3

the diagonal coefficients of S2. This gives the equivalent expression:

C
�
f
�
R2 � � � R �

1
2 � T1 � �

� �
x �

�
x0 � � S2 � �t � T3 � � �x �

�
x1 � � � � (2)

The point is now to translate this equation in terms of OpenGL (or any other
rich graphics library) operations. In 3.1 we see how to generate the pseudoperiodic

RR n˚3713

10 Antoine Miné and Fabrice Neyret

noise
�
s
� �
x � , and in 3.2 how to build from it the turbulence

�
t
� �
x � . We explain how to

obtain a material such as marble or wood from that, by expressing the characteristic
functions f

� �
x � in 3.3, and the color function in 3.4.

3.1 Generating the pseudoperiodic noise
�
s

� �
x �

As suggested in the previous work section, we use a 3D texture containing ran-
dom values to define the 3D grid. The interpolation to get the values at pixels
lying between grid nodes is done by OpenGL, by selecting the magnifying filter
GL_LINEAR . Despite the fact that it is less smooth than cubic interpolation, it
gives correct results. In practice we use a 16 � 16 � 16 random 3D texture. As on
one hand we only need intensity values, and and the other hand we need uncorre-
lated values for the 3 dimensions (i.e. s

� � is a vector), we will encode all along the
process these 3 dimensions into the R,G,B channels. Thus, the 3D texture contains
random RGB values.

3.2 Generating the turbulence
�
t

� �
x �

The various scales of noise are added using multipass rendering: The
�
u � v � w � tex-

ture coordinates values at the nodes of the object to be rendered are initialized with
the translated rotated and scaled geometric nodes coordinates T3 � � �x �

�
x1 � . The cur-

rent color is used to tune the scaling. It is initialized with α1 � α2 and α3 stored in R,G
and B, divided by 2 to incorporate an approximation of the normalization by ∑n

0
1
2i

(that is 2 for n infinite), then the object is rendered. To process the other passes,
we multiply the texture coordinates by 2, we divide the current color by 2, and we
render the scene again. For a correct addition to be done, we choose GL_ADD and�
1 � 1 � for coefficients in the blend operation. The iteration is repeated as many times

as required by the fractal depth n (usually around 4). A very efficient solution to
hide the texture repetition consists in rotating the texture at each iteration. As the
perturbation size is normally a fraction of the main pattern, the α are much less than
1, so that no overflow will occur.

INRIA

Perlin Textures in Real Time using OpenGL 11

Figure 3: textures with no characteristic function, purely defined by C � t � x � � .

3.3 Generating characteristic functions f
� �
x �

At this stage, some kinds of textures like grainy rocks or clouds simply need to
transform the turbulent noise into color using a colormap (see figure 3). For other
materials, the texture is defined by the turbulent perturbation of a characteristic
pattern. The perturbation is expressed by

�
x � �

t
� �
x � . The characteristic function is

f
� �
x � � �

x � 0 � � � 1 � 1 � 1 � for marble (see figure 1.1), as ideal features are vertical and
parallel. It is f

� �
x � ��� �x � 0 � 2 � �

x � 2 � 2 � � 1 � 1 � 1 � for wood (see figure 2.1), as ideal
features are vertical concentric cylinders. From that point, we will only deal with
these two generic examples.

We already have the perturbing term
�
t
� � computed from the previous section.

The evaluation of f
� � first needs to add to t

� � the displacement to be perturbed.

Perturbed displacement:
For this we use another 3D texture figuring the identity operator IDxyz, i.e. hav-

ing u � v � w stored in RGB at each texture pixel location (it is thus a 3D ramp). Then
we render the object again, with the additive blend still enabled, after having initial-
ized the

�
u � v � w � texture coordinates values at nodes with the translated rotated and

scaled geometric nodes coordinates R �
1

2 � T1 � � �x �

�
x0 � (as required by equation 2. As

identity is a separable function, one can also use 3 1D textures figuring IDx � IDy and
IDz (in fact it is the same, mapped using only one of u � v or w at a time). This avoids
using a 3D texture, but this needs 3 rendering passes. This is useful for low-end
graphics cards that do not implement 3D texture in hardware.

RR n˚3713

12 Antoine Miné and Fabrice Neyret

0 1

1

0 1

1

0 1

1

Figure 4: The identity function with modulo, in order to avoid overflow. Two other possibles
functions avoiding the modulo discontinuity.

Of course we cannot map the identity in negative values and up to infinity. The
function will have a saw tooth periodic shape, that is the same used by OpenGL to
repeat texture tiles all along a surface. For some textures, it can be a problem to
have the discontinuity due to the modulo. In such cases, we can use a triangular
characteristic function instead. A sine can also be used. These ‘identity’ functions
are represented on figure 4.

Overflow can occurs when adding the identity function and the perturbation.
Since the last has a limited amplitude A that can be known, we weight the identity
function so that it remains below

�
1 � A � , i.e. we set the current color to

�
1 �

A � � � 1 � 1 � 1 � .

Marble characteristic function:
As seen above, this function keeps only the

�
x � 0 � component and copies it in the

others components (we deal with frame transform in paragraph 3.3). This can be
done by applying the transform matrix�

��� 1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

����
�

We use the color matrix, that multiplies RGBA pixels values seen as a vector before
storing them in the frame buffer. As this should be done only once the iterative
sum it computed, and not on the fly, we have to copy the frame buffer onto itself,
in order to activate the color matrix transform. This copy should be limited to the
object bounding box area.

To avoid touching the other objects on the screen during this operation on the
frame buffer, we use the stencils: during the very first object rendering we set the

INRIA

Perlin Textures in Real Time using OpenGL 13

stencil in order to mark pixels covered by the object, then during the copy pixels
operations we enable the stencil test. The stencil will be reset to zero during the
very last rendering pass.

It should be noted that as long as only the first component
�
x � 0 � is kept, we

can simplify the previous computations, replacing vector operations by scalar ones,
and directly storing the same value in the 3 components RGB to avoid the final
copy we need here. Thus we use a luminance 3D random texture, that OpenGL
will understand as R=G=B, and a 1D identity luminance texture containing u at
each texture pixel location. After rendering the scene, we directly obtain the result
without having to use the color matrix and the frame buffer copy. Avoiding the
matrix multiplication and the buffer copy a lot of time can be saved, especially on
low-end graphics cards.

Wood characteristic function:
For the wood, we have to compute � x � 0 � 2 � x � 2 � 2. We have first to build the

squares or the channels R and B. This can be done by copying the screen onto itself
while using the blending in a very special way: we as a blend coefficient the image
itself, which produces the squares (triangular identity function is used, to get the
symmetry around (0,0,0)). Then we use the color matrix to sum the 2 squares and
copy the result in all the components, with the matrix

1
2

�
��� 1 1 0 0

1 1 0 0
1 1 0 0
1 1 0 0

����
�

This implies that the frame buffer must be copied again onto itself, as explained
above (the blend operation being implemented in the pipeline after the color matrix
transform, we alas cannot achieve these 2 operations in a single pass). The square
root may be computed using a color map that would transform x into � x. This can
be done in the same pass as the color matrix transform. As we already use a color
map for the color, we will rather compile these two maps into one before rendering.

RR n˚3713

14 Antoine Miné and Fabrice Neyret

Including the rotation R2

As the rotation R2 has to be done before the evaluation of f
� � , as specified by

equation 2, actually each of the noise components will be used. Rotation can simply
be included in the color matrix, by multiplying this matrix by the rotation ([WE98]
does a large amount of geometric transforms using the color matrix, including rota-
tions, and even computes the Lambert shading with it).

To be noted that for most textures, the transform R2 is the identity matrix (T2

is only a diagonal scaling matrix): it is rare to want a preferred direction of distor-
tion that is different from the preferred direction of texture ‘grain’ (i.e. frequency)
encoded in T3.

3.4 Generating of a material with C
�
x � and f

� �
x �

As seen in the previous work, the color map not only gives colors to the texture,
but it really defines its main features, by selecting picks and plates, i.e. particular
ranges of values. OpenGL provides for color maps, that can even be used to increase
a texture resolution (the interpolation generates values between the texture pixels,
which are individually considered in the colormap). We let the user define some
key RGBA values that we interpolate to produce the map. In the wood case, we
store a key designed for a value c at the location c2 in order to take into account the

� transform. At rendering time the colormap is applied with a copy of the screen
buffer onto itself, which can be done on the same pass as the previous color matrix
transform.

INRIA

Perlin Textures in Real Time using OpenGL 15

4 Summary

Here is a summary of the algorithm, for the more complicated case that is the wood
texture.

--- Perlin noise pass
current color = (alpha1/2,alpha2/2,alpha3/2)
text coord at each node = T3.(x-x1)
set blend = ADD, coefs = 1,1
enable stencil set
iterate 1 to 4 times:

render
multiply text coord by 2
divide current color by 2

--- identity to be perturbed added
A = MAX(alpha1,alpha2,alpha3)
current color = (1-A,1-A,1-A)
text coord at each node = inv(R2).T1*(x-x0)
render
--- prepare the squares
set blend = ADD, coefs = SOURCE,0
enable stencil test
copy frame buffer onto itself
--- process c(f())
set color matrix to F_wood.R2
set the colormap
enable stencil reset
copy frame buffer onto itself

5 Results

As seen in the previous section, the whole process requires 2 to 5 rendering passes,
depending on the noise frequency range required, and also 2 block copies in the
frame buffer.

RR n˚3713

16 Antoine Miné and Fabrice Neyret

Figure 5: Left: minimal surface, 919 faces, about 35 frames per second. Right: the ‘Bunny’ big
mesh, 70,000 faces, about 2 to 3 frames per second.

For the minimal surface in figure 5.1 containing about 900 faces, we get 30 to
40 images per second on Onyx2 Reality Engine. For the well-know decimation
test object ‘Bunny’ on figure 5.2 containing about 70,000 faces, the rendering is no
longer real time, but still interactive with a few images per second. A remind is that
simplest scenes are ray-traced in at least ten minutes.

We have also test the program on a low-end architecture: The O2, that does not
contain any hardware for 3D textures, color maps and color matrix. We replace
the 3D texture by a 2D texture for the tests, which give sometime sufficient effects
(otherwise it kills the frame rate !). The geometry on figure 5.1 is then obtained
at 10 images per second. On O2 the rabbit already needs 1 second to render with
ordinary rendering. With Perlin noise, it needs several seconds.

INRIA

Perlin Textures in Real Time using OpenGL 17

6 Conclusion and Future Work

In this paper, we have presented a complete solution to the synthesis of Perlin noise
in real time on standard OpenGL meshes, using advanced OpenGL features. Al-
though some of these features are not yet implemented in hardware on low-end
graphics cards, they are simple and generic enough that they have a chance to ap-
pear soon on a wider market. This allows us to add a great amount of realism in
real-time for interactive applications, and to greatly speed-up the procedural texture
pass for realistic rendering. A library extending OpenGL has been developed from
this work, that will soon be made publicly available.

As future work, we consider the translation in hardware of other procedural tex-
tures, such as Worley’s textures[Wor96] that allows to produce nice cellular shapes
such as scales or rocks, also limited for the moment to the context of non real-
time quality rendering such as ray-tracing (being pixel-based). The principle of
this technique consists in choosing random points on surface or in volume, and to
consider nearest neighbor areas (i.e. Voronoï regions), to be combined with lower
order nearest neighbors. The per-polygon translation of this, in order to be OpenGL
compatible, would consist in using a texture containing a distance map represented
by a concentric ramp, centered on each random point, and to use the MINMAX blend
extension to keep only the min distance value.

RR n˚3713

18 Antoine Miné and Fabrice Neyret

References

[Arv90] J. Arvo. Graphics Gems II, chapter ,.10, page 396. Academic Press, 1990.

[CR98] Siggraph Course Notes CD-ROM. Advanced Graphics Pro-
gramming Techniques Using OpenGL. Addison-Wesley, 1998.
http://www.sgi.com/software/opengl/advanced98/notes/notes.html.

[EMP � 98] Ebert, Musgrave, Peachey, Perlin, and Worley. Texturing and Modeling, a Pro-
cedural Approach, chapter 2, page 66. AP Professional, 1998.

[Gra] Silicon Graphics. Performer white papers.
http://www.sgi.com/software/performer/whitepapers.html.

[KK89] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional
textures. In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89 Pro-
ceedings), volume 23(3), pages 271–280, July 1989.

[MN98] Alexandre Meyer and Fabrice Neyret. Interactive volumetric textures. In
George Drettakis and Nelson Max, editors, Eurographics Rendering Workshop
1998, pages 157–168, New York City, NY, July 1998. Eurographics, Springer
Wein. ISBN.

[NDW93] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide.
Addison-Wesley, Reading MA, 1993.

[Per85] Ken Perlin. An image synthesizer. In B. A. Barsky, editor, Computer Graphics
(SIGGRAPH ’85 Proceedings), volume 19(3), pages 287–296, July 1985.

[WE98] Rüdiger Westermann and Thomas Ertl. Efficiently using graphics hardware in
volume rendering applications. In Michael Cohen, editor, SIGGRAPH 98 Con-
ference Proceedings, Annual Conference Series, pages 169–178. ACM SIG-
GRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.

[Wor96] Steven P. Worley. A cellular texturing basis function. In Holly Rushmeier, edi-
tor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages
291–294. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Or-
leans, Louisiana, 04-09 August 1996.

INRIA

Unit é de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unit é de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit é de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unit é de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit é de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

http://www.inria.fr
ISSN 0249-6399

