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Abstract: We present two algorithms for the List Ranking Problem in the Coarse Grained Multicomputer
model (CGM for short): if p is the number of processors and n the size of the list, then we give a deterministic
one that achieves O

�
log p log � p � communication rounds and O

�
n log � p � for the required communication cost

and total computation time; and a randomized one that requires O
�
log p � communication rounds and O

�
n � for

the required communication cost and total computation time.
We report on experimental studies of these algorithms on a PC cluster interconnected by a Myrinet network.

As far as we know, it is the first portable code on this problem that runs on a cluster. With these experimental
studies, we study the validity of the chosen CGM-model, and also show the possible gains and limits of such
algorithms for PC clusters.
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Classement de listes sur des grappes de PC

Résumé : Nous présentons deux algorithmes pour le problème du classement de listes sur un multiprocesseur
à gros grain (CGM): si p est le nombre de processeurs et n la taille de la liste, nous proposons un algorithme
déterministe avec O

�
log

�
p � log � �

p � � phases de communication et un coût du temps de calcul et de communica-
tion de O

�
n log � �

p � � ; et un algorithme randomisé qui demande O
�
log p � phases de communication et O

�
n � pour

le coût en temps de calcul et en communication. Nous exposons les études expérimentales de ces algorithmes
effectuées sur une grappe de PC connecté avec un réseau Myrinet. Selon notre connaissance il s’agit du premier
code pour ce problème qui tourne sur une grappe. Avec ces études expérimentales, nous étudions la validité du
modèle CGM et montrons aussi les gains et limites possibles d’une telle approche.

Mots-clé : classement de listes, grappes de PC, algorithmes parallèles



List Ranking on PC clusters 3

1 Introduction and Overview

Why List Ranking. The List Ranking Problem, LRP, reflects one of the basic abilities needed for efficient
treatment of dynamical data structures, namely the ability to follow arbitrarily long chains for references. In
parallel, many graph algorithms use List Ranking as a subroutine. Before handling graph in parallel/distributed,
it is useful to know the possibilities and the limits of the LRP in a practical setting.

A linked list is a set of nodes such that each node points to another node called its successor. The LRP
consists in determining the rank for all nodes, that is the distance to the last node of the list. In this paper, we
work in a more general setting where the list is cut into sublists. Then, the LRP consists in determining for all
nodes its distance to the last node of its sublist. Figure 1 gives an example of the LRP. The circled nodes are
the last nodes of sublists.

list

distance

3 5 1 7 6 2 4

2 1 0 2 1 03

Figure 1: Example of the LRP

Whereas this problem seems (at a first glance) to be easily tractable in a sequential setting, techniques to
solve it efficiently in parallel quickly get quite involved and are neither easily implemented nor do they perform
well in a practical setting in most cases. Many of these difficulties are due to the fact that until recently no
general purpose model of parallel computation was available that allowed easy and portable implementations.

Some parallel models. The well studied variants of the LRP, see Karp and Ramachandran (1990) for an
overview, are fine grained in nature, and written in the PRAM model; usually in algorithms for that model every
processor is only responsible for a constant sized part of the data but may exchange such information with any
other processor at constant cost. These assumptions are far from being realistic for a foreseeable future: the
number of processors will very likely be much less than the size of the data and the cost for communication —
be it in time or for building involved hardware— will be at least proportional to the width of the communication
channel.

Other studies followed the available architectures (namely interconnection networks) more closely but had
the disadvantage of not carrying over to different types of networks, and then not to lead to portable code.

This gap between the available architectures and theoretical models was narrowed by Valiant (1990) by
defining the so-called bulk synchronous parallel machine, BSP. Based upon the BSP, the model that is used in
this paper, the so-called Coarse Grained Multiprocessor, CGM, was developed to combine theoretical abstrac-
tion with applicability to a wide range of architectures including clusters, see Dehne et al. (1996). It assumes
that the number of processors p is small compared to the size of the data and that communication costs between
processors are high. One of the main goals for algorithms formulated for that model is to reduce these commu-
nication costs to a minimum. The first measure that was introduced was the number of communication rounds:
an algorithm is thought to perform local computations and global message exchanges between processors in
alternation. This is called rounds. This measure is relatively easy to evaluate but focusing on it alone may
hide the real amount of data exchanges between processors, and, in addition the total CPU resources that an
algorithm consumes.

The LRP easily kicks out of the game any algorithm that hides some factor in the overall communication
or CPU: the obvious sequential algorithm performs so well, that the overhead would be —on the long run—
better invested into a more powerful sequential machine or just more memory, be it RAM or disk. So care must
be taken that only a small overhead arises in communication and CPU time.

Previous algorithms in the coarse grained models. The first proposed algorithm is a randomized algorithm
by Dehne and Song (1996) that performs in O

�
log p log � n � rounds with a workload (total number of local

RR n˚3869



4 Isabelle Guérin Lassous and Jens Gustedt

steps)/total communication of O
�
n log � n � (log � n � �

i � log � i � n � 1 � ). Then, Caceres et al. (1997) gives a
deterministic algorithm that needs O

�
log p � rounds and a workload/total communication of O

�
n log p � .

Previous practical work. Very few articles deal with the implementation sides of LRP. Reid-Miller (1994)
presents a specific implementation optimized for the Cray C-90 of different PRAM algorithms that give good
results. In Dehne and Song (1996), some simulations have been done, but they only give some results on the
number of communication rounds. Sibeyn (1997) and Sibeyn et al. (1999) give several algorithms for the LRP
with derived PRAM techniques and new ones. They fine-tune their algorithms according to the features of the
interconnection network the Intel Paragon. The results are good and promising, since more than 10 processors
are used.

In all these works, the implementations are specific to the interconnection network of the target machine
and do not seem to be portable. For instance, Sibeyn (1997) and Sibeyn et al. (1999) give no details on the
chosen language.

This paper. The use of PC clusters interconnected by high performance local networks is one of the major
current trends in parallel/distibuted computing. If a lot of works have been done on system-level and program-
ming environnement issues, little effort has been undertaken to the algorithmic level for this kind of network.

In this paper, we address ourselves to the problem of writing portable, efficient and predictive deterministic
code for LRP running on PC clusters. We considered several goals:

� Is it feasible to solve the LRP on PC clusters, because no previous studies on LRP use clusters?

� Is it possible to write portable code, therefore not optimized for PC clusters and that is nevertheless
efficient on this kind of machines? As far as we know, it would be the first portable proposed code on the
subject and running on PC clusters.

� Are we able to predict the behavior of the program on such machines? If it is the case, then we can say
that the chosen model is well adapted to PC clusters for this kind of problems.

We do not pretend to have the best implementation of the LRP on PC clusters, but we tried to respect the
three given goals at the same time. Especially, the implementation was done carefully –as we think– to have
the best possible results without loosing at portability level.

As explained previously, care must be taken that only a small overhead arises in communication and CPU
times. The deterministic algorithm of Caceres et al. (1997) is a factor log p away from optimality, whereas
Dehne and Song (1996) is a cator log � n. Therefore, in this paper, we also give two algorithms for the LRP:

� A deterministic algorithm that performs in O
�
log p log � p � communication rounds and the overall work-

load and communication costs are in O
�
n log � p � ,

� A randomized algorithm that requires O
�
log p � communication rounds and O

�
n � for workload/communication

costs.

Consider Table 1 for an overview of these different measures for the mentionned algorithms. The algorithm
of Sibeyn (1997), not expressed in the CGM model, has different measures. We mention them for its practical
interest.

To verify that the proposed algorithm is of practical relevance, we implemented it on a PC cluster with a
Myrinet interconnection network.

The paper is organized as follow: we give the main features of the CGM model in Section 2. Next, we
present a deterministic algorithm for solving the LRP in Section 3, and then we present a randomized algorithm
in Section 4. Section 5 concerns the results of the implementations on a PC cluster with a Myrinet interconnec-
tion network. Finally, we conclude in verifying whether our three goals given previously have been reached or
not.

INRIA



List Ranking on PC clusters 5

reference comm. rounds CPU time & communication
Dehne and Song (1996) log p log � n n log � n rand

Caceres et al. (1997) log p n log p det

we log p log � p n log � p det
we log p n rand

Sibeyn (1997) n aver

Table 1: Comparison of our results to previous work. O-notation omitted.

2 The CGM model for parallel/distributed computation

The basic ideas that characterize the CGM model are:

uniformity A CGM consists of a small number p of uniform processing units (processors). ‘Small’ here means
magnitudes smaller than the size n of the input data.

code sharing All processors execute the same program.

simultaneous alternation The overall execution of an algorithm alternates concurrently between phases with
only computations local to the processors and communications between those processors. This is called
rounds.

implicit synchronization Synchronization of the different processors is only done implicitly during the com-
munication rounds.

Besides its simplicity, this approach also has the advantage of allowing design of algorithms for a large
variety of existing hardware and software platforms, and especially clusters. It does this without going into the
details and special characteristics of such platforms, but gives predictions in terms of the number of processors
p and the number of data items n only.

Usually the number of rounds is taken as the main cost of a CGM-algorithm and all efforts are made to
minimize this value. If not possible to bind it by a constant, at least a slowly growing function depending on p
only is desired. But, as already discussed in the introduction, this may fall to short, since the main bottleneck
for many parallel computation is the overall communication between the processors.

Nevertheless, we chose this model for at least two reasons:

� Given its features, algrithms written in this model should be portable on different parallel/distributed
machines and then implementable on clusters whatever their interconnection network may be,

� It is simple and allows to concentrate on the difficulties of the LRP in contexts like clusters.

3 A Coarse Grained Algorithm for List Ranking

3.1 Basics of the List Ranking Problem

The algorithm we propose to solve the LRP is based on two ideas given in PRAM algorithms. The first and
basic technique, called pointer jumping, was mentionned by Wyllie (1979). Algorithm 1 reflects the pointer
jumping technique.

It is easy to see that Jump is correct and that Invariant A is always satisfied if it was true at the beginning.
When called as Jump

�
L �

�
t � � where L is the list in question and t is the end of the list, it performs the while-

loop at most log � L � times and is thus a natural candidate for a parallelization. But we can even give stronger
statement than that.
RR n˚3869



6 Isabelle Guérin Lassous and Jens Gustedt

Algorithm 1: Jump
Input: Set R of n linked items e with pointer e � succ and distance value dist and subset S of R of marked

items.
Task: Modify e � succ and e � dist for all e

�
R
�

S s.t. e � succ points to the nearest element s
�

S according
to the list and s.t. e � dist holds the sum of the original dist values along the list up to s.

while there are e
�

R
�

S s.t. e � succ �� S do
for all such e � R do

A Invariant: Every e �� S is linked to by at most one f � succ for some f � R.
1 Fetch e � succ � dist and e � succ � succ;
2 e � dist += e � succ � dist;
3 e � succ = e � succ � succ

Proposition 1 Let R and S be inputs for Jump, and let � be the maximum length of an element x � R
�

S to the
next element s

�
S. Then Jump

�
R � S � executes the while-loop � log2 ��� times.

Because of Invariant A we see that Jump can easily be realized on a CGM: just let each processor performs the
statements inside the while-loop for the elements that are located at it. The invariant then guarantees that each
processor has to answer at most one query for each of its items issued by line 1. So none of the processors will
be overloaded at any time.

Corollary 1 Jump can be implemented in the CGM model such that it runs for R, L and � as above in
O

� � log2 �	� � communication rounds and requires an overall bandwith and processing time of O
�
n � log2 ��� � .

Corollary 1 shows that the CGM pointer jumping algorithm performs O
� � log2 n � � rounds to solve the LRP

and needs O
�
n � log2 n � � workload/total communications. According to the CGM model, this algorithm is un-

likely to lead to efficient code. Therefore, we have to used other techniques to solve the LRP. Nevertheless, the
pointer jumping technique is used as a subroutine of our algorithm.

3.2 The Algorithm

The second used PRAM techniques is a k-ruling set, see Cole and Vishkin (1989). Such a k-ruling set S is a
subset of the items in the list L s.t.

1. Every item x � L
�

S is at most k links away from some s � S.

2. No two elements s � t � S are neighbors in L.

The PRAM idea is to reduce the initial list by building a k-ruling set of size not too large and not too
small; and then to solve the LRP on the list made of the elements of the k-ruling set with the pointer jumping
technique; and finally computing the List Ranking on the elements of the intial list not selected in the k-ruling
set.

Algorithm 2 implements this technique in the CGM model to solve the LRP: the goal is to reduce the size
of the list with the build of a k-ruling set; since the new list can be stored in the main memory of one processor,
then the problem is solved sequentially; otherwise the algorithm is called recursively. The point, here, is to have
a small number of rounds (a slowy growing function depending on p for instance), compared to the O

�
logn �

rounds needed in the PRAM algorithms using the same techniques. At the same time, we have to pay attention
to the workload, as the total communication bandwidth.

Proposition 2 Suppose we have an implementation Rulingk of a k-ruling set algorithm then ListRankingk

can be implemented on a CGM such that it uses O
� � log2 k � � communication rounds per recursive call and re-

quires an overall bandwith and processing time of O
�
n � log2 k � � when not counting the corresponding measures

that calls to Rulingk need.
INRIA



List Ranking on PC clusters 7

Algorithm 2: ListRankingk

Input: n0 total number of items, p number of processors, set L of n linked items with pointer succ and
distance value dist.

Task: For every item e set e � succ to the end of its sublist t and e � dist to the sum of the original dist
values to t.

if n � n0 � p then
1 Send all data to processor 0 and solve the problem sequentially there.

else
2 Shorten all consecutive parts of the list that live on the same processor. ;
3 for every item e do e � lot � processor-id of e;
4 S � Rulingk

�
p � 1 � n � L � ;

5 Jump
�
L � S � ;

6 for all e
�

S do set e � succ to the next element in S ;
7 ListRankingk

�
S � ;

8 Jump
�
L �

�
t � � ;

Proof: The only critical parts for these statements are lines 5, 6 and 8. Corollary 1 immeadiately gives an
appropriate bound on the number of communication rounds for line 5. After line 5, since every element L

�
S

now points to the next element s
�

S line 6 can easily be implemented with O
�
1 � communication rounds. After

comming up from recursion every s � S is linked to t, so again we can perform line 8 in O
�
1 � communication

rounds. So in total this shows the claim for the number of communication rounds.
To estimate the total bandwidth and processing time observe that each recursive call is called with at most

half the elements of L. So the overall resources can be bounded from above by a standard domination argument

We use deterministic symmetry breaking to obtain a k-ruling set, see Jájá (1992). The inner (and interesting)
part of such a k-ruling algorithm is given in Algorithm 3.

Algorithm 3: RuleOut
Input: item e with fields lot, succ and pred, and integers l1 and l2 that are set to the lot values of the

predecessor and successor, resp.

if
�
e � lot � l1 ��� �

e � lot � l2 � then
1 Declare e winner and force e � succ and e � pred looser.

else
2 if l1 � � ∞ then Declare e p-winner and suggest e � succ s-looser ;
3 else

Let b0 be the most significant bit, for which e � lot and l1 are distinct;
Let b1 the value of bit b0 in e � lot;
e � lot : � 2 � b0 � b1.

Here an item e decides whether or not it belongs to the ruling set by some local value e � lot according to two
different strategies. By a winner (with e � lot set to � ∞) we denote an element e that has already be choosen to
be in the ruling set, by a looser (with e � lot set to � ∞) we denote an element e that certainly not belongs to the
ruling set. For technical reasons we also have two auxiliary characterizations, p-winner, potential winner, and
s-looser, suggested looser. The algorithm will guarantee that any of these two auxiliary characterizations will
only occur temporarily. Any p-winner or s-looser will become either winner or looser in the next step of the
algorithm. We give some explanations on specific lines:

line 1 First e looks whether this value is larger than the values for its two neighbors in the list. If this is so it
belongs to the ruling set.

RR n˚3869



8 Isabelle Guérin Lassous and Jens Gustedt

line 2 If this is not the case but its predecessor in the list was previously declared looser it declares itself a
p-winner and its successor an s-looser.

line 3 The remaining elements update their value e � lot by basically choosing the most significant distinct bit
from the value of the predecessor.

Line 2 is necessary to avoid conflicts with regard to Property 2 of a k-ruling set. Such an element can only be a
winner if its successor has not simultanously decided to be a winner.

Line 3 ensures that –basically– the possible ranges for the values e � lot goes down by log2 in each application
of RuleOut. The multiplication by 2 (thus a left shift of the bits by 1) and addition of the value of the chosen
bit is done to ensure that neighboring elements always have different values e � lot.

The whole procedure for a k-ruling set is given in Algorithm 4.

Algorithm 4: Rulingk

Constants: k � 9 integer threshold
Input: Integers q and n, set R of n linked items e with pointer e � succ, and integer e � lot
Output: Subset S of the items s.t. the distance from any e �� S to the next s

�
S is � k.

A Invariant: Every e is linked to by at most one f � succ for some f
�

R, denote it by e � pred.
B Invariant: q � e � lot � 0.
1 range : � q;

repeat
C Invariant: If e � lot �� � ∞ then e � lot �� e � succ � lot �

B’ Invariant: If e � lot �� � � ∞ � � ∞ � then range � e � lot � 0.

for all e � R that are neither winner nor looser do
2 Communicate e and the value e � lot to e � succ and receive the corresponding values e � pred and

l1 � e � pred � lot from the predecessor of e;
3 Communicate the value e � lot to e � pred and receive the value l2

� e � succ � lot;
4 RuleOut

�
e � l1 � l2 � ;

5 Communicate new winners, p-winners, loosers and s-loosers;
6 if e is p-winner � e is not looser then declare e winner else declare e looser;
7 if e is s-looser � e is not winner then declare e looser;
8 Set e � lot to � ∞ for winners and to � ∞ for loosers;

9 length : � 2range � 1; range : � 2 � log2 range � � 1;

until (R contains only elements that are winners or loosers) � �
length � k � ;

return Set S of winners.

Proposition 3 Rulingk can be implemented on a CGM such that it uses O
�
log � q � communication rounds

and requires an overall bandwidth and processing time of O
�
n log � q � . Moreover, k is the maximum distance of

an element x
�

R
�

S to the next element s
�

S.

Proof: Invariant C is always satisfied if it was true at the beginning: after line 4, neighboring elements have
always different values e � lot. After this line only winners and loosers modify their value e � lot. Or according to
the algorithm RuleOut and lines 6, 7 and 8, if e is a winner then e � succ is a looser therefore the two values
e � lot are different. Because of Invariant C, we can see that two elements of S are not neighbors in R.

range is the maximum e � lot value that an element of R may have. Let b be the number of bits used
to represent the value e � lot. When considering only non-winner and non-looser elements, after line 4, the
maximum possible value for e � lot is 2

�
b � 1 � � 1 that is 2 � log2 range� � 1. Moreover, the number of bits used

to represent e � lot is � log2 b � � 1. The number of bits decreases as long as b � � log2 b � � 1, that is b � 3. By

recurrence, it is easy to show that, if bi is the number of bits to represent e � lot at step i, and � log � i �
2

�
q ����� 2,

INRIA



List Ranking on PC clusters 9

then bi � � log � i �
2

�
q ��� � 2. Then, after m � log �2q steps, bm � 3 ( � log � m �

2

�
q � � � 1 with the definition of log �2).

Therefore, after log �2q � 1 steps, the maximum value range is always 5. Then, length which is the maximum
length of an element x

�
R
�

S to the next element s
�

S, is equal to 9. Winners and loosers do not modify the
values of range and length. Therefore, if it exists non-winner or non-looser elements, the loop is repeated at
most until length be equal to 9 that is at most log � q � 1.

If the loop is exited when R contains only winner and looser elements then we claim that the distance
between two winners in R is at most 3. Indeed, all the loosers have at least one neighbor that is a winner. An
element e can become a looser in two ways: either it has a winner neighbor, either it is a s-looser and it is not a
winner (line 7). Or if it is a s-looser, its predecessor f is a p-winner (line 2 of RuleOut). Moreover, f is not a
looser, because f � pred is a looser (line 2 of RuleOut) and f � succ � e is not a winner by hypothesis. Then f
is a winner. Therefore the distance between two elements in S is at most 3. Moreover the number of iterations
of the loop is bounded by

�
log � q � 1 � and the maximum distance of an element x � R

�
S is at most 2

� � k � .
We can perform O

�
1 � communication rounds in lines 2, 3 and 5. So the total communication rounds

number is bounded by O
�
log � q � .

Proposition 4 If p � 17, ListRankingk can be implemented on a CGM such that it uses O
� � log2 p � log �2 p �

communication rounds and requires an overall bandwidth and processing time of O
�
nlog �2 p � .

Proof: In each phase of ListRankingk, Rulingk is called with the parameter q equal to p � 1. According
to Proposition 2, k is at most equal to 9, therefore if p � 17 � � log2 k � � log �2 p. Then, ListRankingk uses
O

�
log �2 p � communication rounds per recursive call.
At each recursive call, the number of elements of S is at most half the elements of L. After � log2 p � steps,

n � n0
p . Therefore ListRankingk uses O

� � log2 p � log �2 p � communication rounds. With the same argument,
the overall bandwidth and processing time is bounded by O

�
nlog �2 p � .

4 A randomized algorithm with better performance

Now we will describe a randomized algorithm for which we will have a better performance than for the deter-
ministic one, as shown in Section 5. It uses the technique of independent sets, as described in Jájá (1992).

An independent set is a subset I of the list-items such that no two items in I are neighbors in the list. In fact
we need such a set I for the algorithm that only has internal items i.e. that does not contain a head or tail of one
of the sublists. These items in I are ‘shortcut’ by the algorithm: they inform their left and right neighbors about
each other such that they can point two each other directly. Algorithm 5 solves the LRP with this technique in
the CGM model.

It is easy to see that Algorithm 5 is correct. The following is also easy to see with an argument over the
convergence of ∑i εi, for any 0 � ε � 1.

Lemma 1 Suppose there is an 0 � ε � 1 for which we ensure for the choices of I in “independent set” that
� I � � ε � L � . Then the recursion depth and number of supersteps of Algorithm 5 is in O

�
log1

�
� 1 � ε � � L � � and the

total communication and work is in O
� � L � � .

Note that in each recursion round each element of the treated list communicates a constant number of
times (at most two times). The values for small can be parametrized. If, for instance, we choose small equal
to n

p , then the depth of the recursion will be in O
�
log1

�
� 1 � ε � p � , and Algorithm 5 will require O

�
log1

�
� 1 � ε � p �

communication rounds. Also the total bound on the work depends by a factor of 1 � �
1 � ε � from ε.

The communication on the other hand does not depend on ε. Every list item is member of the independent
set at most once. So the communication that is issued can be directly charged to the corresponding elements of
I. We think that this is an important feature that in fact keeps the communication costs of any implementation
quite low.

So it remains to see, how we can ensure the choice of a good (ie not too small) independent set.
RR n˚3869
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Algorithm 5: IndRanking(L) List Ranking by Independent Sets
Input: Family of doubly linked lists L (linked via l � v � and r � v � ) and for each item v a distance value

dist � v � to its right neighbor r � v � .
Output: For each item v the end of its list t � v � and the distance d � v � between v and t � v � .
if L is small then send L to processor 1 and solve the problem sequentially;
else

independent set Let I be an independent set in L with only internal items and D � L
�

I;
��� D foreach i � I do Send l � v � to r � v � ;
��� D foreach i � I do Send r � v � and dist � v � to l � v � ;
I ��� foreach v � D with l � v � � I do

Let nl � v � be the value received from l � v � ;
Set ol � v � � l � v � and l � v � � nl � v � ;

I ��� foreach v � D with r � v � � I do
Let nr � v � and nd � v � be the values received from r � v � ;
Set r � v � � nr and dist � v � � dist � v � � nd � v � ;

recurse IndRanking
�
D � ;

��� I foreach v � D with ol � v � � I do Send t � v � and d � v � to ol � v � ;
D ��� foreach i � I do

Let nt � v � and nd � v � be the values received from r � v � ;
Set t � v � � nt � v � and d � v � � dist � v � � nd � v � ;

Lemma 2 Suppose every item v in list L has value A � v � that is randomly chosen in the interval 1 � � � � � K, for
some value K that is large enough. Let I the set of items that have strictly smaller values than its right and left
neighbors. Then I is an independent set of L and with probability approaching 1 we have that � I � � 1

4 � L � .
Proof: Clearly I is an independent set. For the probability observe that if we chose A � v � at random the
probability that a neighbor w has a random value A � w � that is greater than A � v � is K � A � v �

K and that both neighbors
have a greater value is �

K � A � v �
K 	 2 �

�
K � A � v � � 2

K2 � (1)

Since the expected value for A � v � is K � 2 this gives an overall probability of

�
K � K � 2 � 2

K2
�

�
K � 2 � 2

K2
� 1 � 4 � (2)

For the implementation side of Algorithm 5 we have to be careful not to spend too much time for

1. initializing the recursion, or

2. chosing (pseudo) random numbers.

In fact, we ensure 1 by an array that always holds the active elements, ie those elements that were not found
in sets I in recursion levels above. By that we do not have to copy the list values themselves and the recursion
does not create any additional communication overhead.

For 2, we ensure at the beginning that the list is distributed randomly on the processors. Then every
item v basically uses its own (storage) number as value A � v � . To ensure that these values are still sufficiently
independent in lower levels of recursion we choose for each such level R a different large number NR and set
A � v � � NR 
 v mod K.

INRIA
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5 Implementation

Our main tests for the two algorithms took place on a PC cluster1. It consists of 12 PentiumPro 200 PC with 64
MB memory each. The PC are interconnected by a Myrinet2 network of 1 � 28 Gb/s and with 5 µs latency.

The implementation of the algorithm was done –as we think– quite carefully in C++ and based on MPI,
one well-known library for message passing between processes. The cluster is equipped with the Linux OS,
the g++ compiler from the EGCS project and the MPI-BIP implementation (that is an implementation of MPI
over Myrinet). The use of C++ allowed us to actually do the implementation on different levels of abstraction:

1. one that interfaces our code to one of the message passing libraries,

2. one that implements the CGM model itself, and

3. the last that implements this specific algorithm.

One of our itentions for this hierarchical design is to replace message passing in 1 by shared memory later
on. This is out of the scope of the study here, but this shows our wish to have portable code.

This later goal seems to be well achieved, since we have been able to run the code on a large variety of
architectures: a PC cluster, SUN workstations, an SGI Origin 2000 and a Cray T3E. There, the general outlook
of the curves looks similar, certainly that the constant factors are dependent on the architecture.

There are many different aspects to consider when discussing an implementation of a parallel algorithm.
The most prominent among these is certainly the gain of effective execution time that one expects. First, we
will present the execution times obtained for the two algorithms. Then, we will show in the following that here
the CGM model allows a relatively good prediction of what we may expect. Finally, we will show that PC
clusters are also good candidates for handling very large lists.

5.1 Execution time.

Figure 2 gives the execution times per element in function of the list size for Algorithm 2, whereas Figure 3 is
for Algorithm 5. To cover the different orders of magnitude better, both axis are given on a logarithmic scale.
The lists were generated randomly with the use of rendom permutations.

For each list size, the program was run (at least) 10 times and the result is the average of these results. For
a fixed list size, very small variations in time could be noted.

p varies from 2 to 12 for Algorithm 2 and from 4 to 12 for Algorithm 5. Algorithm 5 is more greedy in
memory, therefore the memory of the processors is saturated when we use 2 or 3 PC.

All the curves stop before the memory saturation of the processors. We start the measures for lists with 1
million elements, because for smaller size, the sequential algorithm performs so well that using more processors
is not very useful.

According the chosen algorithm, absolute speedups (ratio between the sequential algorithm and the parallel
one) can be obtained or not. Algorithm 2 is always slower than the sequential one. Nevertheless, the parallel
execution time decreases with the number of used PC.

For Algorithm 5, from 9 PC the parallel algorithm becomes faster than the sequential one. The parallel
execution time decreases also with the number of used PC. The absolute speedups are nevertheless small since
for 12 PC for instance the obtained speedup is equal to 1 � 3.

If we compare the two algorithms, we can note that:

� The use of a larger amount of processors in all cases lead to an improvement on the real execution times
of the parallel program, which proves the scalability of our approach,

1http://www.ens-lyon.fr/LHPC/ANGLAIS/popc.html
2http://www.myri.com/
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Figure 2: Execution times per element for Algorithm 2
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Figure 3: Execution times per element for Algorithm 5

� Algorithm 5 is more efficient than Algorithm 2. This easily can be explained by the fact that Algorithm 5
requires less communication rounds and smaller workload and communication costs. Moreover, the
theoretical complexity of Algorithm 2 stands for p � 17, whereas we use at most 12 PC. This can explain
these results. We also noted that for Algorithm 5, the size of I is about one third of L (compared to the
theoretical 1

4 ). If we are not able to explain so far, it results that Algorithm 5 works better than expected.
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� Algorithm 5 is greedier in memory than Algorithm 2, therefore we can not use this algorithm with a
cluster having less than 4 PC.

5.2 Verification of the complexity.

A positive fact that we can deduce from the plots given above is that the execution time for a fixed amount of
processors p shows a linear behavior as expected (whatever the number of used processors may be). One might
get the impression from Figure 3, that Algorithm 5 deviates a bit more from linearity in n (the list size) than
Algorithm 2. But this is only a scaling effect: the variation between the values for a fixed p and n varying is
very small (less than 1µs).

For increasing amount of data and fixed p the number of CGM-rounds remains constant. As a consequence,
the total number of messages is constant, too. So do the costs for initiating messages, which in turn correspond
to the offsets of the curves of the total running times. On the other hand, the size of messages varies. But
from Figures 2 and 3, we see that the time for communicating data is also linear in n. Therefore, we can say
that, for this problem (that leads to quite sophisticated parallel/distributed algorithms) and for PC clusters, the
local computations and the number of communication rounds are good parameters to predict the qualitative
behavior. Nevertheless, they are not sufficient to be able to predict the constants of proportionality and to know
the algorithms that will give efficient results or not (as noticed for Algorithm 2).

If moreover, we take the overall workload and communication into account, we see that Algorithm 5 having
a workload closer to the sequential one, leads to more efficient results.

5.3 Taking memory saturation into account

This picture brightens if we take the well known effects of memory saturation into account. In Figure 2 and
Figure 3, all the curves stop before the swapping effects on PC. Due to these effects the sequential algorithm
changes its behavior drastically when run with more than 4 million elements. For 5 millions elements, the
execution is a little bit bigger than 3000 seconds (which is not far from one hour), whereas Algorithm 2 can
solve the problem in 21 � 8 seconds with 12 PC and Algorithm 5 does it in 9 � 24 seconds with 12 PC.

We see also that to handle lists with 18 millions elements with Algorithm 2 we need 71 seconds and with
17 millions elements with Algorithm 5 18 seconds. Therefore, our algorithms perform well on huge lists.

6 Conclusion

To conclude, we are going to study the three goals given in the introduction:

� The proposed algorithms were implemented on a PC cluster, as shown in Section 5. We think that the
CGM model (and more generally the coarsed grained models) is well adapted to design algorithms and
code on clusters,

� The written code is independent of the architecture of the target machine (here a PC cluster). As explained
above, the code was used on different machines. This shows that our code is portable. As fas as we know,
this is the first portable code on List Ranking that runs on PC clusters as well as on mainframe parallel
machines.

Section 5 showed that Algorithm 5 is faster than the sequential algorithm if 9 or more PCs are used. Even
if the obtained speedups are small, it is nevertheless possible to obtain speedups for such challenging
problems like the LRP on a cluster with few PCs. We showed that it is possible to solve the LRP on very
large lists with the two proposed algorithms. We think that this is a first step towards handling graphs in
parallel on such low cost machines.

RR n˚3869
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� Section 5 showed that it was possible to predict the behavior of the curves and that no dramatic deviations
from the expectations were obtained. We found that the CGM model with the distinction into local
computation steps and global communication rounds allows us to know whether or not the behavior of a
code will be correct on clusters. Nevertheless, we saw that it was not sufficient to deduce the constants
of proportionality. If we take the overall workload and communication costs into account, then we have
a better estimation of the results, as was shown in Section 5.
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