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Abstract:  In the context of content-based image retrieval from large databases, tradi-
tional systems typically compute a single descriptor per image based for example on color
histograms. The result of a query is in general the images whose descriptors are the closest
to the descriptor of the query image. Systems built this way are able to return images that
are globally similar to the query image, but can not return images that contain some of
the objects that are in the query. Recent advances in image processing techniques, however,
make this possible by computing local descriptors that are well suited for detecting similar
objects in images. Obviously powerful, this fine-grain image recognition also changes the
way the retrieval process is performed: instead of submitting a single query to retrieve sim-
ilar images, multiple queries must be submitted, their partial results post-processed before
delivering the answer. This paper first presents a family of local descriptors that support
fine-grain image recognition. Our technique is robust: it detects similar objects in color
images despite orientation changes (rotation of objects), translations, resolution changes,
illumination variations, and partial occlusions. Many multi-dimensional indexes have been
proposed to speed-up the retrieval process. These indexes, however, have been mostly de-
signed for and evaluated against image databases where each image is described by a single
descriptor. While this paper does not present any new indexing scheme, it shows that the
three most efficient indexing techniques known today are still too slow to be used in practice
with local descriptors because of the changes in the retrieval process.
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Une technique robuste pour reconnaitre des objets dans
des images, et les problémes bases de données que cela
pose

Résumé : Les systémes permettant la recherche d’image par le contenu calculent générale-
ment un seul et unique descripteur par image, par exemple selon un histogramme de couleurs.
La réponse & une interrogation est typiquement composée des images de la base dont les
descripteurs sont les plus similaires de celui de I’image requéte. Ce type de systéme permet
de retrouver au sein d’une grande base les images qui sont globalement similaires & 'image
requéte, mais ne permet pas de retrouver des images montrant certains objets contenus
dans I’image requéte. Toutefois, les avancées récentes en traitement d’image rendent cela
possible via le calcul de multiples descripteurs locaux qui sont bien adaptés a faire de la
reconnaissance d’objets de grain fin. Ce type de reconnaissance change bien évidemment
les capacités de reconnaissance d’un systéme, mais change aussi profondément la maniére
dont les recherches s’effectuent : au lieu de ne soumettre qu’une seule requéte et d’attendre
que le systéme retourne les images similaires, de multiples requétes consécutives doivent étre
soumises, et une phase de synthése des résultats partiels doit étre effectuée avant de rendre
une réponse. Cet article présente d’abord une famille de descripteurs locaux qui permet-
tent de faire de la reconnaissance robuste d’objets de grain fin: ils retrouvent des objets
similaires mais dont la position, ’orientation, ’illumination, le facteur d’échelle différent.
Par ailleurs, de nombreuses techniques d’indexation multidimensionnelles ont été proposées
pour accélérer les recherches sur disque. Ces index ont été majoritairement congus et évalués
dans le contexte de bases d’images & descripteur unique. Bien que cet article ne présente
pas de nouveau schéma d’indexation, il montre que les 3 meilleures techniques d’indexation
multidimensionnelles & ’heure actuelle sont encore bien trop lentes lorsqu’elles sont utilisées
conjointement avec des descripteurs locaux.

Mots-clé : reconnaissance d’images grain fin, indexation multimédia, indexation multidi-
mensionnels, bases d’images, recherche par le contenu, descripteurs locaux
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1 Introduction

Image processing and database techniques are together required to build large content-based
retrieval systems. Image processing techniques are needed to extract useful descriptors
from images. Descriptors are typically vectors of real numbers defining points in a high-
dimensional space. Descriptors encode information found in images, and they are used
during the search process. The similarity of two images is assumed to be proportional to
the similarity of their descriptors, which is measured as the (typically Euclidean) distance
between the points defined by the descriptors. Similarity search is therefore implemented as
a nearest-neighbor search or as a eg-range search within the feature space.

Traditional methods for computing descriptors include color histograms and correlo-
grams [SS94, HKM*97]. These schemes, used in QBIC [FBF+94], Virage, or Excalibur!,
typically compute a single descriptor per image. One descriptor therefore encodes informa-
tion that is global to one image. In this context, content-based retrieval is performed at
a coarse-grain level: the system returns the images that are globally similar to the query
image. The system can not detect, however, that two images contain similar objects, but at
different locations, in front of different backgrounds, from different viewpoints or differently
illuminated. To address this problem, modern image processing techniques have recently
focused on fine-grain image recognition. Fine-grain — or object — recognition in images typ-
ically requires to compute many descriptors per image. These descriptors are often called
local descriptors because one descriptor encodes information that is local to a (small) area
of an image. In general, an object in one image is represented by several descriptors.

The first contribution of this paper is the description of a method designed for fine-grain
image recognition that is very robust to changes in images. This method computes local
descriptors that are well suited for detecting similar objects in color images despite orienta-
tion changes (rotation of objects), translations, resolution changes, illumination variations
and partial occlusions. With respect to the region-based image recognition scheme proposed
by Natsev, Rastogi and Shim [NRS99], our method is robust to more changes (e.g., their
approach is not robust to rotations or illumination changes), is not based on multiple sliding
windows and is not based on wavelets which force these windows to be square-shaped.

In general, ignoring our descriptors, fine-grain image recognition impacts the retrieval
chain when searching for similar images. First, it increases the size of the database: Instead
of storing one descriptor per image, many of them must be stored for each image. The size
of the database is typically increased by two order of magnitude. Second, it changes the way
similar images are searched: Instead of searching the descriptors that are close to the unique
query descriptor (as it is the case with global descriptors), the system starts by computing
all the descriptors that describe the query image and then queries the database many times,
each time using a different local query descriptor. Each (partial) answer is kept around and
once all query descriptors have been used, answers are cross-checked and the set of similar
images is eventually returned to the user. For example, in the context of our experiments

nformation about these systems can be found at http://www.gbic.almaden.ibm.com/,
http://www.virage.com/ and http://www.excalib.com/.
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4 Amsaleg & Gros

(see Section 4.3), searching for the images containing objects that are similar to the ones in
the query image typically generates between 50 and 600 consecutive queries that search in
a database that is 50 to 600 times larger. This demanding process increases the impact of
the performance problems traditional multi-dimensional index techniques suffer from.

The second contribution of this paper is an initial exploration of the consequences of using
local descriptors together with up-to-date database multi-dimensional indexing strategies.
While this paper does not present any new indexing scheme, it experimentally shows that the
three most efficient indexing techniques known today are still too slow to be used in practice
with local descriptors. Using today’s DB indexing techniques with local descriptors requires
to add-up the response time of each individual query, which makes the global response
time far above what one might tolerate. We therefore list problems and enumerate several
potential solutions for building efficient content-based retrieval systems supporting fine-grain
image recognition as suggested by modern image processing techniques.

The remainder of this paper is structured as follows. Section 2 describes and evaluates
our local descriptors tailored for robust object recognition. Section 3 gives an overview
of the multi-dimensional indexing techniques used in databases. Section 4 evaluates the
performance of the three most efficient techniques known today on a large base of high-
dimension data in the context of local descriptors. Section 5 presents some open issues and
an initial set of solutions before concluding.

2 Local Descriptors for Robust Object Recognition

The descriptors we present in this section are an extension to color images of the fine-grain
recognition scheme for grey-level images originally proposed by [FtHRKV94] and exten-
sively used and evaluated by [SM97]. We built on this scheme because it is highly robust
to grey-level image transformations: it detects similar elements in images despite orienta-
tion changes (rotations), translations, resolution changes, illumination variations, partial
occlusions, changes of backgrounds or viewpoints, etc... Coping with color images instead
of grey-level images has a deep impact on the way the descriptors handle (i.e., absorb) the
variations of illumination. The main goal of this section is to present the original recogni-
tion scheme proposed by [FtHRKV94] and our extension to color images. First, however,
we briefly present an interesting example of a system using local descriptors published in
the DB literature.

In Walrus [NRS99], each image is broken-down into square sliding windows of varying
sizes. The signature of a window is computed by using the s? coefficients from the lowest
frequency band of the Haar wavelet transform for the window. These signatures are clus-
tered, and the centroid of each cluster is then used as the descriptor for the region. This
method provides invariance towards translations, scaling effects, partial occlusions and to
color shifts, i.e., when the values of the pixels are shifted from (r, g,b) to (r+a, g+ 5,b+7),
where a, 8 and =y are constant values. Color shifts, however, do not correspond to any natu-
ral variation of the illumination conditions (variation of illumination intensity). In addition,
wavelets force the sliding windows to be square-shaped, which forbids their scheme to be

INRIA
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invariant to rotations. Last, their scheme evaluates similarity on a common area criterion,
but does not consider the degree of similarity of the areas. Therefore, their scheme will favor
large regions that are roughly similar to small regions that are almost identical.

2.1 The local differential invariants

In [FtHRKV94], Florack et al. described a new methodology for computing highly robust
descriptors for fine-grain grey-level image recognition. Before going into details, their scheme
can be roughly outlined as follows.

Computing the local descriptors that encode information about a single image is done
in three steps. First, specific points in the image, called interests points, are selected. The
number of points in one image varies, since it depends on the shape of the signal of that
image. Second, the signal around each interest point is characterized by its convolution
with a Gaussian function and its derivatives up to the third order. Third, these derivatives
are mixed to enforce invariance properties and to make descriptors robust to the changes
mentioned above. A descriptor is typically a vector of real numbers having 7 or 9 dimensions.

Descriptors are then inserted into an index. To know which image a descriptor has
been computed from, image identifiers are stored together with the descriptors. Computing
descriptors over all the images is done off-line. The similarity retrieval proceeds as follows:
interest points are first identified in the query image, and the corresponding local descriptors
are then computed. Each descriptor of the query is used to probe the index. The index
returns similar descriptors found in the database (with respect to a nearest-neighbor or a
search), from which it is possible to determine the id of the associated image. It is therefore
easy to count the number of time each image id is returned by the index during the whole
retrieval process. At the end of this process (i.e., once all the local descriptors of the query
have been used to probe the index), the counters allow to rank the candidate images by
decreasing similarity.

We now present in more details the computation process of our descriptors.

2.1.1 Extracting Interest Points

Interest points are determined such that it is very likely that a point found in one image
will be also found in another image that slightly differs from the first one. Schmid, who ex-
tensively used Florack’s method, compared several point extractors in [SMB98] and showed
that the extractor introduced by Bigiin [BGW91] and improved by Harris [HS88] had the
best behavior.

This extractor looks for 2D singularities in the signal, and is based on the computation
of the eigenvalues of the matrix

RR n~ 4081
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where I, and I, are the convolution of the signal with the two derivatives 0G/dz and 8G/dy
of a Gaussian function. In general, there are many points in each image, typically between
50 and 600.

Dufournaud [DSHO0] pointed-out that descriptors could not be invariant to scale factors
if the points extracted were not invariant to scaling. Therefore, he proposed to extract the
points at different scales by varying the variance of the Gaussian function used. This allows
to cope with scale factors up to 7, rather than up to 2 as for the original method.

2.1.2 Computing Local Descriptors for Grey-Level Images

Once the points are extracted, the descriptors are computed using the signal around each
of the points. This computation is done in two steps. During the first step, the signal is
convoluted with a Gaussian function and its 9 first derivatives (the derivatives up to the
third order). These smoothed derivatives provide a basic description of the signal. During
the second step, the derivatives are mixed together to enforce invariance properties and to
make descriptors robust to the changes mentioned above. We describe below the way these
derivatives are mixed.

Gaining Translational and Rotational Invariance. Translational invariance is ob-
tained by the fact that the descriptors are computed around each interest point.

The angle of rotation of images can be algebraically eliminated from the ten derivatives,
providing nine resulting quantities invariant to rotations. If the smoothed signal is denoted
by I, and its derivatives by I, Iy, I ;..., these 9 invariant quantities are:

I

LI;
Iy

I; I (1)

€ij Lp LIy — Lige I 11 17)
I,-Z-jIjIka — IijkI,-IjIk
—€ii L ik I
Lje LI I

The function €;; is defined by €,y = —€ya = 1, €22 = €yy = 0. The Einstein’s notation
used in the formulas corresponds to a summation over each index: for instance, I; = ), I; =

Gaining Photometric Invariance. The descriptors are invariant to the variations of
illumination that are modeled by I + al + b. This model, although simple, describes quite
accurately what happens when the global intensity of the illumination varies slightly. It
is possible to withdraw these two new parameters a and b and to obtain 7 rotational and

INRIA
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photometric invariants: First withdraw the two first quantities of (1) and divide each of the
seven last ones by the appropriate power of I;I; such as to obtain ratios of degree 0 with
respect to I and its derivatives.

Gaining Scale Invariance. Invariance to scale is achieved by adopting a multi-scale
approach: the computation of invariants is repeated for various values of the variance of
the Gaussian, and all the resulting values are used to describe the image. The values of the
variance used here are related to the ones used during the extraction of the interest points:
the variance used to extract a point gives the variance to compute the associated descriptor.

2.1.3 Extension to Color Images

The method used to compute the local descriptors for grey-level images is very robust, as
evaluated by [SM97]. We therefore extended this method to cope with color images. Each
pixel of a color image is defined by 3 values which can be coded in many ways [Poy97]:
RGB, HSV, Lab, ... The RGB system is chosen because it facilitates the extension of the
descriptors to color images.

Extending the local descriptors does not change the way the interest points are extracted.
We still use Harris’s detector. The signal, however, is now characterized by 30 derivatives (10
per channel). Coping with color deeply changes the way these derivatives must be mixed
to gain invariance towards rotation and illumination variations. We detail these changes
below.

Gaining Rotational Invariance. Rotational invariance is obtained by withdrawing the
angle of rotation. 3 x 9 invariants can be computed with equations (1) applied on each
channel, and two other ones are chosen among the three following quantities (for numerical
reasons, it is wise to keep all three values in practice):

R.G,+R,G, R.B.+R,B, G.B,+G,B, 2)

Scale invariance is obtained by a multi-scale approach similar to the one used with grey-level
images.

Gaining Photometric Invariance. Photometric invariance is more complex with col-
ors because different illumination models can be considered. A general modelis (R',G’, B')T =
M(R,G,B)T +V where M is a 3 x 3 matrix and V a vector of dimension 3. Other models
are obtained by using a diagonal or scalar matrix for M and by possibly removing the vector
V. According to the number of parameters of the model, the dimension of the descriptors
varies between 18 and 29.

A very common model is obtained when M is diagonal. In this case, the three channels
remain independent when the image is transformed. The descriptors can thus be computed
on each channel like they were in the grey-level case, and by adding two more dimensions
using the formulas in (2). This provides descriptors of dimension 24.

RR n~ 4081



8 Amsaleg & Gros

Another case is that of a full rank M matrix when no rotational invariance is needed.
In this case, the vectors (R, G, B), (Rs, Gz, Bz), (Ry,Gy, By)... are all subjects to the same
linear or affine transform. The vector V' can be withdrawn by not considering the vector
(R, G, B). Remains the linear part. The basic invariant in this case are the coordinates of the
vectors with respect to three of them chosen as a reference frame. If we choose (for reasons
of symmetry) the three vectors (Ryz, Gz, Bez), (Rey,Gay, Bay), and (Ryy, Gyy, Byy) as
reference frame, then the invariants are:

X Ry Ry Rya

X Ry, Ree Rey X
Y Gay Gy Gew Y Gy Gow Gay Y
Z B,, By, B Z By, Bye B.y 2

where (X,Y, Z) is respectively equal to (Rs,Gz,B:), (Ry,Gy,By), (Razaz,Grza, Braz)--
The invariants to both rotations and a photometric model with full rank matrix M have not
been derived yet, as far as we know.

2.2 Evaluating the Recognition Capabilities of the Descriptors

In general, evaluating the recognition capabilities of descriptors is difficult. Experimental
results depend obviously on the intrinsic power of the descriptors, but also on the content
of the database. For example, it is really hard to retrieve only sunshines when querying
with a sunshine image a database containing solely sunshines and sunrises (they are not
so different, after all), but this is almost trivial when the database contains only images of
sunshines and of dark tropical forests. The impact of this subtle side-effect can be limited
when the database stores images specifically chosen to stress a particular aspect of the
descriptors. For example, the robustness to illumination variations of the descriptors can be
precisely evaluated if the database includes a series of identical images that differ only by
their illumination characteristics. The database we used to evaluate our color descriptors
contains such images in addition to other real-life non-specific images.

2.2.1 Evaluation with Grey-Level Images

Schmid extensively evaluated the descriptors proposed by Florack. Her evaluations show
clearly the robustness of the descriptors in the context of grey images. The database used
for her experiments was made of about 1000 images: 200 pieces of art, 100 aerial images of
the downtown of Marseilles (France), and 720 images of 3D objects.?

The aerial images are the most challenging. They “look” almost similar (roofs do not
differ so much) and images composed of 3D micro structures (chimneys, antennas, cars seen

2This database can be browsed at
http://www.inrialpes.fr/movi/pub/Demos/Reconnaissance _Cordelia/en/reconnaitre objets.html
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from above, etc.). In her tests, the query images were not part of the database. These images
were taken during a subsequent pass over the city. This changes the viewpoint (the facades
of buildings become visible or disappear) and the composition of images (some cars have
moved). The plane, however, took all the images in a short time frame, making unchanged
shadows.

Query Best Answer Query Best Answer

Figure 1: Two queries made with image fragments and the most similar images found by
the retrieval system.

To illustrate the recognition power of the descriptors, we insert here two examples ex-
tracted from Schmid’s work. Figure 1 shows the best answer returned by the system (i.e., the
most similar image) when queried by a small image fragment. As stated above, viewpoints
differ between query and database images. Queries using fragments provide good results as
long as the size of the fragment stays above 10% of the size of the original image. Smaller
fragments degrade the results rapidly.

Figure 2 illustrates another interesting result. Several images of a dinosaur seen from
very different points of view were stored in the database. 3 different query images were
then cooked-up using a complex background on which a view (that is not in the DB) of the
dinosaur was superimposed. In addition, the left part of the third query image was deleted
(only the tail of the dinosaur remains visible). The system was then asked to return the
most similar image for each of these 3 query images. For all queries, the best answer is the
image of the dinosaur that is on the right of the Figure (it is the point of view in the DB
that is the closest to the one in each query). This result emphasizes the robustness of the
method caused by the locality of the descriptors and the by the counting process.

2.2.2 Evaluation with Color Images

To evaluate the recognition power of our extension to color images, we used a database made
of the 24 dimension descriptors derived from 1,816 real-life color images. 1,206 images come
from 50 seconds of a video. The remaining images come from a database of still images

RR n~ 4081
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Queries Answer

Figure 2: Three queries with cluttered complex scenes and the retrieved image (on the right)

found on the web®. The total number of descriptors computed from these images is 413,412
and the database occupies about 40 Mb on disk.

The still image database is composed of several sequences of images where one or two
parameters vary slowly. For instance, there are sequences with a variation of the intensity
of the light source, sequences taken by a rotating or a translating camera, ... This allows to
test specifically the robustness of the descriptors and of the retrieval method towards these
parameters. In all the figures below, the number of descriptors that characterize each query
image is indicated together with the query image. In addition, the number of descriptors
that matched is indicated together with each image returned by the system. Note that the
average noise level (i.e., the number of matches whatever the query is) is between 5 and 10.

Query Answers False Neg

iR

518

Figure 3: Robustness towards variation of illumination. An example with the query image,
the eight most similar images retrieved, and a false negative.

3http://www.inrialpes.fr/movi/pub/Images/index.html
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Evaluation of Photometric Invariance. Robustness towards intensity variation of the
main light source was tested using a sequence of 9 images presenting this variation. The
first image of the sequence was used as a query, and 7 of the other images were retrieved as
the most similar, as illustrated by Figure 3. The brightest image of the sequence is a false
negative: although it is very similar, it is quite saturated and many descriptors were thus
unusable.

Another interesting photometric variation occurs when the spectrum of the light source
varies. Such variations are handled correctly by a illumination model having a diagonal
matrix when it remain of small magnitude. This can be seen on the results shown on
Figure 4. For greater variations, a model with a full rank matrix is needed.

Query Answers

False Neg.

408

18

Figure 4: Robustness towards light spectrum variations. An example with the query image,
the six most similar images retrieved, and two false negatives.

The last case we studied is the motion of the light source (e.g., the sun which moves
during the day). Being robust to that motion enables for example to query the system using
a morning image of a landscape and to get evening images of that same landscape. The
results in this case are irregular and depend on the intensity of the shadows. As far as they
are not too dark, there is still enough information to compare light and dark objects. Some
results are illustrated by Figure 5 using a sequence of 7 images.

Evaluation of Geometric Invariance. We present here only one result using a sequence
where the camera is moving with a very general motion. The sequence is composed of 20
images and we chose the eleventh one as a query. 14 images of this sequence where found
as being the most similar to the query image, as illustrated by Figure 6.

Evaluation of the Robustness to Changes in the Composition of Images. In this
test we used a sequence of images in which various objects are added or removed. Then,

RR n~ 4081
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447

Answers

Figure 5: Robustness towards light source motion. An example with the query image and
the seven most similar images retrieved.

Query

255

Answers

Figure 6: Robustness towards geometric variations. An example with the query image and
the 15 most similar images retrieved.

INRIA
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Query Answers

247 166 153 108

63 31 26 21
Figure 7: Robustness towards variations in the composition of images. An example with a
query image and the eight most similar images retrieved.

334

we picked one of these images to be the query, and asked the system to return the most
similar images. An example of this is given by the Figure 7. Images with additional objects
are preferred over images with missing objects because they usually allow more matches
between descriptors.

Some Results with the Images Extracted from a Video. When one image from a
video is used to query a database storing that video, the images found the most similar are
usually the neighboring images belonging to the same shot in the video. This is confirmed
by our results as illustrated on Figure 8.

3 Database Techniques for Multi-Dimensional Indexing

The descriptors presented above are robust and well suited to detect similar elements in
color images. It is therefore natural to integrate them in a large content-based retrieval
system. In this case, database indexing techniques are needed to enhance similarity-based
searches. We thus give in this section an overview of the techniques used in databases for
indexing still images. We first present the traditional approaches. We then focus on the two
strategies that provide today the most efficient support for multi-dimensional searches. We
chose these two strategies to built our own system. Their performance, however, is far too
slow to make the system usable in practice, as detailed in the next section.

RR n~ 4081



14 Amsaleg & Gros

Query Answers

Figure 8: Querying with an image extracted from a video: the most similar images come
from the same shot (except image #9).

3.1 Traditional Approaches

Still images indexing techniques can be classified in two families: data-partitioning in-
dex methods that divide the data space according to the distribution of data, and space-
partitioning index methods that divide the data space along predefined lines regardless to
the actual values of data and store each descriptors in the appropriate cell. All techniques
fill the data space with descriptors or with approximations of them.

Data-partitioning index methods all derive from the seminal R-Tree [Gut&4], in which
minimum bounding rectangles and overlapping are key concepts. Various strategies can
be used to determine which rectangles should be merged or kept separated at each level
of the tree [BKK96]. The SS-Tree [WJ96] is an extension of the R-Tree that relies on
spheres instead of rectangles. The SR-Tree [KS97] specifies its regions as the intersection of
a bounding sphere and a bounding rectangle since this reduces the space volume into which
searching.

In general, tree construction is usually achieved by splitting nodes in overflow into two
equally filled nodes, i.e., at the 50%-quantile. This fill factor enforces balanced trees and
maximizes disk usage. [BBK98|, however, demonstrates that in the general case, using a
50%-quantile leads to the unexpected effect that, in high-dimensional spaces, the probability
of accessing every index page gets close to 1. It is therefore likely that the whole index as

INRIA
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to be scanned during a search process. The resulting access pattern to disk pages severely
hampers the search performance since it is totally random.

Space-partitioning techniques like grid-file NHS84], K-D-B-Tree [Rob81], LSDD-Tree [Hen98]
typically divide the data space along predetermined lines regardless of data clusters. Actual
data are subsequently stored in the appropriate cells. These techniques are known to become
inefficient when the dimension of data gets above 10 to 16 dimensions. They also face the
problem of indexing large volumes of empty space. For example, dividing each of the 30
dimensions of a data space in two distinct regions creates 230 cells. This number is by far
greater than the typical number of points defined in a data space. In addition, when the
query point is near a cell boundary, the search process may have to lookup many cells in the
neighborhood, increasing the search cost. Furthermore, it is likely that most of these cells
are empty. The evaluation of the most recent approaches like [AGGR98| or [HK99] show
that they are efficient with low-dimensions and for a small amount of noise (e-search).

3.2 VA-File and Pyramid-Tree

All the techniques presented above generally work well for low-dimensional spaces. Their
performance, however, is known to degrade as the number of dimensions of the descriptors
increase, e.g., above 10 to 16, as evaluated by [WSB98]. This phenomenon is known as the
dimensional curse. In other words, navigating within the index becomes more costly than
a simple sequential scan in high-dimension spaces when searching nearest-neighbors.

Two innovative approaches, the Pyramid-Tree [BBK98] and the VA-File [WSB98], how-
ever, have been recently proposed to tackle head-on the dimensional curse phenomenon:
they have been designed specifically such that their behavior does not dramatically degen-
erates when the indexed data has many dimensions. These two strategies provide today
among the most efficient support for multi-dimensional similarity search. We therefore used
them for our performance evaluations (see Section 4).

The VA-File approach comes from the observation that the brute-force sequential scan
proves to be competitive in high-dimensions (it is often the fastest search technique). There-
fore, their approach tries to boost the sequential search by eliminating many useless com-
parisons using rough approximations of descriptors. Their method manages two different
sets of data: a file storing all the descriptors, and another file storing the geometrical ap-
proximations of these descriptors. The performance of this method is at its best when this
latter file fits in main memory.

To compute the geometrical approximations of the descriptors, the method first splits
each dimension d; in 2% slices (coded using b; bits), such that all slices are equally full. All
d dimensions are sliced this way. The intersection of slices define 2° cells, where b = > bi,
numbered from 0 to 2 — 1. To fill the index, all the descriptors are then read, and the
approximation of a descriptor is given by the cell number into which it falls. The file storing
the geometrical approximations of the descriptors therefore associates a descriptor id to a
cell number. Only cells in which at least one descriptor falls are kept in the file, avoiding
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the problem of managing many empty cells as mentioned above. Note that this file is small
since cell numbers are typically smaller than descriptors.

During a search, the algorithm first uses approximations to determine which cells are
close to the query point, and scans them in an increasing order of distance. Starting from
the closest cell, the algorithm sequentially fetches the associated descriptors and performs
distance calculations. This process is repeated until n nearest-neighbors are found, or as
soon as it is detected that the next candidate cell stores only descriptors that can not be
closest than the current m-th neighbor. Restricting the search to close cells and ordering
their investigation filters out cells that can not be part of the result, and therefore filters out
all the irrelevant descriptors. This reduces the number of records to fetch and the number
of comparisons and calculations to perform with respect to the traditional sequential scan.

Berchtold, Bohm et Kriegel propose, with the Pyramid-Tree [BBK98|, a method that
divides a space [0, 1]¢ in 2 x d pyramids. The top of each pyramid is placed at the center of
the data space (0.5, ..., 0.5). The base of each pyramid has a surface of d — 1 dimensions.
Each pyramid is assigned a different number. Each pyramid is then cut in slices that are
parallel to its base. The nature of pyramids is such that the slices close to their tops are
smaller than the ones near their bases. This division of the data space has the interesting
property to create a number of cells that increases linearly (and not exponentially) with the
number of dimensions.

Dividing the data space in sliced-pyramids enable to map any point of the multi-dimensional
space into a pair (pyramid number, height in the pyramid). Because of this mapping, a B™-
Tree index can be used instead of a multi-dimensional index structure. BT-Trees are known
to be very efficient for this type of data and for range queries. A given slice of a specific
pyramid is stored as a page of the BT-Tree. In addition to their efficiency, Bt-Trees are
known to nicely cope with concurrent updates and can be made failure resistant. These two
properties are very desirable and often lack to other solutions.

4 Performance Evaluations

This section summarizes the evaluation of the performance of the VA-File, the Pyramid-Tree
and the sequential scan. As mentioned earlier, these 3 techniques proved to be efficient in
the context of nearest-neighbor or e-range searches with global descriptors within a multi-
dimensional space. We therefore measured their performance when used together with
local descriptors. The first experiment shows the performance of the techniques when the
dimension of the descriptors increases. The second experiment shows the impact of the
size of the database on the response times. Last, the third experiment, which is the most
relevant to this paper, shows the influence of the (large) number of descriptors forming a
single query on the response times. We first describe our experimental setup.
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4.1 Experimental Environment

We used the source code of the VA-File and of the Pyramid-Tree provided by their respective
authors to perform our performance evaluations.* We also implemented our own version of
the sequential search. All the algorithms were ran on a SUN Ultra 5 workstation running
SunOS 5.7. Tts CPU is a 333 MHz UltraSPARC-IIi, with 384Mb of main memory and 8Gb
of local secondary storage. All the response times reported here have been obtained using
getrusage().

We analyzed the codes of the VA-File and of the Pyramid-Tree to insert at the appro-
priate places timer start and stop instructions. We slightly changed the metric used by the
Pyramid-Tree to compute the distances between points in the data space: it was Lo, and we
changed it to Lo. Without this patch, the nearest-neighbors returned by the Pyramid-Tree
would not have been identical to the ones returned both by the VA-file and the sequential
search. This patch seems to have no significant impact of the response-time.

4.2 Implementation of a Sequential Search Strategy

In addition, we implemented a sequential search strategy. This implementation assumes
that all the query descriptors fit in main memory.® All query descriptors are read at once at
the beginning of the search. Then, each descriptor of the database is read sequentially and
compared against all the query descriptors. The sets of neighbors for each query descriptor
are maintained dynamically.® The result is delivered once the end of the database is reached.
This implementation behaves somehow like a join in which the smaller relation is fully fetched
before reading tuple after tuple the larger relation. Our implementation of the sequential
search is less than 300 lines of C++.

4.3 Overview of the Database

For the different experiments shown afterward, two databases where created. The first
one has already been described (see Section 2.2.2). It is made of 413,412 descriptors of 24
dimensions derived from 1,816 real-life color images. The distribution of the descriptors
along each dimension is far from being uniform. For example, the second component varies
from about -20 to about 36, and 99.14% of the values are between -1 and +1. Since many
performance evaluations published in the literature assume uniformity of data distribution,
we generated our second database in which the 24 x 413,412 values have been picked
between 0 and 1 using a random uniform generator. Queries use images and random vectors
that are different from those stored in the databases.

4We are grateful to Roger Weber who graciously gave us his implementation of the VA-
File. The source code of the Pyramid-Tree is available on the Web page of Stefan Berchtold
(http://www.stb-gmbh.de/ berchtol/)

5There are on average 150 descriptors in each query, and this occupies only about 15K in main memory
in the case of 24 dimensions (150*24*sizeof(float) = 150%24*4 = 14,400.)

1f we assume that 10 nearest-neighbors are maintained for each query descriptor, then, about 100K are
required to store the all these neighbors when 150 descriptors are in the query.
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Figures 9 and 10: Database storing 413,412 descriptors, 150 descriptors in each query,
increasing dimension of descriptors

4.4 Experiment 1: Influence of the Dimensionality of Data

The first experiment shows the influence of the dimensionality of data on the performance
of the three technique we study here. For this experiment, we first computed the 413,412
descriptors having 24 dimensions using real data from the database described above. These
descriptors were then truncated to 2, 4, 7, 10, 15, 20 et 24 dimensions. The other dimensions
are used to get intermediate results. 413,412 descriptors following a uniform distribution
have then be randomly generated for the same dimensions, but also for greater dimensions
(up to 1,000) for experimental purpose. The sizes of the resulting databases is given by
Table 1.

dimension size || dimension size || dimension size
2 3,307,296 15 | 24,804,720 100 165,364,800

4 6,614,592 20 | 33,072,960 250 413,412,000

7 | 11,575,536 24 | 39,687,552 500 826,824,000

10 | 16,536,480 50 | 82,682,400 1000 | 1,653,648,000

Table 1: Size in bytes of the databases for various dimensions of the 413,412 descriptors
stored

Once the databases created, a query containing 150 descriptors was computed using an
image outside the database or new random numbers. We then truncated them to the appro-
priate dimensions in order to create the requests that will query the real and the synthetic

INRIA

100



Robust Object Recognition in Images, and the related DB Problems 19

databases. The response times given by the Figures 9 and 10 are the cumulative response
times of 150 consecutive databases interrogations, each returning 10 nearest-neighbors.

The performance of the algorithms using real data are illustrated by Figure 9. In this
case, the performance of the Pyramid-Tree severely degrades above 7 dimensions. Beyond,
the response time of this technique is too big to remain competitive. The VA-File and
the sequential search clearly exhibit better performance, and degrade less rapidly when the
dimension of the data increases. The performance of the sequential search is linear with the
dimension, which is normal and without surprises. Sequentially searching 150 descriptors
among 413,412 descriptors takes approximatively 14 seconds in a 2-dimensions data space,
and about 66 seconds for 24 dimensions.

The performance of the VA-File and of the sequential search are rather similar, except
when the number of dimensions is small. In this case, for 2 dimensions, a VA-File search
takes about 24 seconds, and about 52 seconds in 7 dimensions (25 seconds are needed in 7
dimensions for the sequential search). When the number of dimensions grows, the VA-File
can divide its data space in smaller cells, thereby augmenting the efficiency of its filtering
strategy. On the other hand, less dimensions makes the filtering less selective, and exploiting
the approximations in addition to computing many actual distances is part of the observed
overhead.

The performance corresponding to the experiments that use uniform data are given by
Figure 10. This Figure does not show any response time of searches for data having more
than 100 dimensions since they become too high to remain significant. In this Figure, the
Pyramid-Tree is again the technique having the worst response time. Below 15 dimensions,
the sequential search performs better than the VA-File, for similar reasons as the ones
mentioned above. When data has 50 dimensions, the VA-File returns its answer (recall
that 150 consecutive queries must be submitted before returning the answer) in about 104
seconds while the sequential search needs 134 seconds. In this case, the VA-File strongly
benefits from the uniformity of data, from the geometrical approximations and from its
filtering strategy. Above 50 dimensions, the sequential search becomes faster than the VA-
File. With 100 dimensions, the sequential search needs 256 seconds and the VA-file 336.
These results are confirmed by those given in the article presenting the VA-File (see their
Figure 12). This article says that above 45 dimensions, the approximation files becomes too
large to fit in main memory, increasing the number of I/Os and the overall response time.

Regardless of the nature of the data stored in the database (real or uniform), the response
times needed to search the 10 nearest-neighbors of 150 descriptors in a rather small database
are big: around a minute for both the sequential scan and the VA-File with 24 dimensions.
These response times are above what one might tolerate if these techniques were part of
a real system. The next experiment investigates further the influence of the size of the
database on the response times.

4.5 Experiment 2: Influence of the Database Size

The Figures 11 and 12 show the impact of the size of the database on the response times
of the 3 techniques we evaluated. For this experiment, we reused the 413,412 descriptors
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Figures 11 and 12: 24 dimensions descriptors, 150 descriptors in each query, increasing the
size of the database

previously computed with 24 dimensions, and generated new databases by keeping only
100,000, 200,000, 300,000 and 400,000 of them. The requests are made of the same 150
descriptors in 24 dimensions as above. We could not easily create larger databases since the
amount of real data we could use was limited. It is easy, however, to create uniform databases
of arbitrary sizes. We therefore created such databases, and the larger we generated contains
1,000,000 descriptors (96Mb), and this could correspond to more than 6,500 images if we
assume that an image is described by 150 local descriptors on average.

Figure 11 shows the case with real data. What was observed in the previous experiment
can be found here again. That is, the Pyramid-Tree is more expensive than other techniques,
and that the VA-File is slightly better than the sequential. Still, 15 seconds are needed to
perform a search of a database made of only 100,000 descriptors.

Figure 12 shows the case with uniform random data. For a database made of 1,000,000
descriptors the response time for the sequential scan or for the VA-File is of about 3 minutes
(160 seconds). This result clearly forbids the use of these techniques in a real system indexing
millions of images (and therefore many more descriptors). Furthermore, our request has only
150 descriptors, and they are, in the general case, more numerous. The next experiment
focuses on this problem, and shows the influence of the number of descriptors in a request
on the response times.
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Figures 13 and 14: Database storing 413,412 descriptors having 24 dimensions, increasing
the number of descriptors in each query

4.6 Experiment 3: Impact of the Number of Descriptors in a Re-
quest

All the descriptors used in this experiment have 24 dimensions. To generate the queries used
here, we searched in our real database images for which 100, 200, 300 and 400 descriptors
were computed. We also made-up an artificial query that has only one descriptor since
this is the typical case for which the database techniques have been designed for. Forging
synthetic queries is trivial, and the largest one had 1,000 descriptors.

The results of this experiment given by the Figure 13 (for real data) and by the Figure 14
(for uniform distribution) show again that only the VA-file and the sequential scan remain
interesting. The response time, however, rapidly grows with the number of descriptors in
the query. For example, 400 real descriptors cause the response time to jump to 121 seconds
for the VA-File and to 185 for the sequential. With uniform data, 997 and 1,042 seconds
are needed respectively for the VA-File and the sequential with 1,000 descriptors.

The number of descriptors in each query is directly related to the number of interest
points detected in the query image (see Section 2). This number can clearly be very big
depending on the image and on the detection strategy. It is crucial that the cost of a query
having many descriptors does not increase as illustrated by this experiment.

5 Conclusion and Perspectives

The dimensional curse phenomenon makes existing multi-dimensional indexing techniques
barely efficient when content-based retrieval is performed on a (traditional) global similarity
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criteria. Fine-grain image recognition, supported by local descriptors, magnify even more
this phenomenon. While performance problems are clearly seen in our experiments, worse
results are expected if the techniques were used in a more realistic environment, where the
size of the image bank is far bigger than our database (up to several Gb), where the de-
scriptors have many more dimensions (couple hundreds) or where the number of descriptors
used for one query is much greater (thousands).

To fully exploit the power of fine-grain image recognition, it is therefore crucial to come-
up with new indexing techniques specifically designed to efficiently support the use of local
descriptors. We therefore list in the following several directions for future investigations
aimed at tempering the above mentioned effects.

Numerous local descriptors per queries creates redundancy. When local de-
scriptors are used, recognition is based on multiple consecutive searches, each returning
information which, once accumulated and post-processed (cross-checking), gives the final
answer. Some images stored in the database will belong to this final answer because several
descriptors of the query matched with several descriptors associated to these images. There
is therefore a certain form of redundancy in the information used during the complete search
process (because all these query descriptors are associated with a single query image) and
in the information returned (because an image is found similar since many of its descriptors
match). It is possible to use this redundancy in (at least) two ways.

First, the search process can be restricted such that it checks only the descriptors that are
in the same cell than the one in which each query descriptor falls.” This avoids the typical
and mandatory lookup of all neighboring cells during nearest-neighbors searches, which is
known to be expensive since many cells must be visited. If the search process returns,
for each query descriptor, only the nearest-neighbors that are in the same query cell, and
ignores other potential neighbors that are in adjacent cells, than the search cost would be
reduced. The result of each query, however, is clearly a rough approximation of what would
be returned if the normal search process was enforced. The quality of this approximation
is improved as the time goes by since many query descriptors are used to get the images
that are similar to one image. Cross-checking what is returned by each individual search is
a natural way to consolidate the final answer and fully uses the observed redundancy.

This search process therefore needs only to determine the cell in which one query de-
scriptor falls, fetch sequentially the descriptors stored in that cell, and computes actual
distances.® This simple strategy is repeated until all query descriptors are used this way. It
has the interesting property to trade accuracy (of the final result) for efficiency.

The second way to use the redundancy is to stop the search before having used all query
descriptors. In this case, the search is greedy, and each partial result returned by each
individual query is immediately processed and updates the (in-progress) final result. When

"The meaning of the word cell, in this section, includes the notions of leaves for tree-based indexing
schemes, and the traditional cells defined in space-partitioning index methods, etc...

81t is unlikely that all query descriptors fall in empty cells. If too many empty cells are found, then the
search can switch-back to its regular behavior.
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this current (not yet complete) final result has a high probability to be the complete final
answer, the search is stopped, the remaining query descriptors are skipped, and the result
is returned to the user.

Note that this second search strategy is orthogonal to the first one mentioned above.
Both might be combined to search only the relevant cells (ignoring adjacent cells) for a
limited number of query descriptors.

Exploit the distribution of data to accelerate the queries. Not all descriptors
carry the same amount of information: some are associated to many images, some others are
more rare. Therefore, the matching of two descriptors returns a more or less discriminative
information, making the associated database image to be more or less likely part of the
final result. In this case, a Bayesian formalism may help in determining the probability
for each match to help converging towards the final result. In addition, it is possible to
sort the descriptors in the query such that it starts with the descriptors that are the most
informative. It is therefore possible to stop the search as soon as the probability of having
the final answer is high enough, or as soon as the search starts using the descriptors that do
not help converging. This technique has the interesting property to refine the search as the
time goes by. In addition, the search accuracy can easily be made controllable by the user.

Change the management of memory to benefit from consecutive queries.
Traditional techniques assume that a single search within the database is sufficient to return
the final answer. Therefore, was is fetch in memory during a search benefits to the next
query only by chance: if the second query is lucky enough to use some of the data brought in
memory by the first query, than its response time is enhanced because some data is already
cached. A better mechanism can be designed when local descriptors are used. In this case,
we know in advance that a large amount of consecutive queries will be submitted to the
database. Therefore, it may be interesting to pick the next query descriptor with respect
to what is already in the cache. That is, the next descriptor used to query the database
can be the one which is the most likely to have its nearest neighbors already in memory,
brought in by previous descriptors. Therefore, instead of consuming all the query descriptors
sequentially as the natural search process does, descriptors are picked in a memory conscious
way. In addition, since all the query descriptors are known before hand, prefetching might
be used to remove cache misses from the critical path.

Use several low-dimension indexes instead of a unique high-dimension index.
It is known that the cost of content-based retrieval grows fast when the dimension of data
increases. It is therefore potentially interesting to evaluate if querying many low-dimension
indexes in parallel instead of a unique high-dimension index gives good results. These “small”
indexes must be constructed in such a way, and their use must be such that the result they
return is identical to what would return a regular index.

A small index would store the same descriptors as the ones stored by the large index.
These descriptors, however, would be truncated and would keep only specific dimensions
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chosen with care. A particular dimension might be kept by more than one small index. A
query would then have to be transformed in multiple sub-queries, each interrogating a given
(small) index. If these index are physically stored on different machines, then large grain
parallelism is possible.

This scheme tries to limit the problem of dimensionality curse by enforcing multiple
interrogations of low-dimension data for which efficient indexing schemes exist. On the
other hand, additional processing steps are needed, and the global size of the database
(i.e., the size occupied by all the descriptors, and not by the images) is increased. These
disadvantages must be put in perspective with the potential enhancements provided by the
parallelization and the efficiency of each sub-query.
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