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Résolubilité par radicaux d’un point de vue algorithmique

Résumé : Un des principaux résultats de la théorie de Galois est le fait que toute équation
polynomiale dont le groupe de Galois est résoluble peut étre résolue par radicaux. D’un point
de vue effectif, il est nécessaire d’obtenir une représentation adéquate du groupe et des racines
du polynoémes. Nous commencons par réduire le probléme au cas d’extensions cycliques de
degré premier, puis montrons dans ce dernier cas comment exhiber les radicaux, en utilisant
le travail de Girstmair. Nous donnons des exemples numériques dans les cas abéliens et non
abéliens. Ces résultats sont appliqués a la construction de corps de classes de Hilbert de corps
quadratiques imaginaires.

Mots-clés : Théorie de Galois, résolution par radicaux



Solvability by radicals from an algorithmic point of view 3

1 Introduction

The fundamental work of Galois has given the answer to one of the most difficult problems in
algebra: classify all polynomials whose roots can be expressed by radicals. A polynomial has
this property if and only if its Galois group is solvable. More recently [17], it has been shown
that testing solvability can be done in polynomial time. Once we know that an equation is
solvable, we may want to compute explicitely the tower of extensions involved, as well as the
radicals that enter the game. To these ends, we use a power-conjugate representation of the
group that enables us to reduce the problem to that of cyclic extensions, and further to cyclic
extensions of prime degree. At this point, we can find the radicals we are looking for.

This approach is well known. For instance, in [12, 14|, Huang explains how to solve the
n-th cyclotomic equation in polynomial time modulo ERH. In [13, 15], the construction is
used to factor polynomials with Abelian Galois groups over finite fields. The present paper
can be seen as a self-contained guide to implement the ideas given in these papers, adapting
the algebraic-numerical approach of [10] (already followed in [20] and announced as [21] in |3,
§8.6]).

After reducing the problem to cyclic cases in a first part of the article, we explain how to
solve the resulting equations by radicals. Numerical examples are given of all the phases, using
cyclotomic polynomials, but also Hilbert polynomials that define the Hilbert Class Fields of
imaginary quadratic fields, and some non-abelian cases as well.

2 From solvable to cyclic extensions

2.1 Group theory
A group G is polycyclic if there exist a sequence of subgroups Gy, G1, - .., G, such that

G:G()DGlD---DGT_leTZI

where for each i, G;/G;11 is cyclic. If g;G;11 generates G;/Gjt1, then gg, ..., gr—1 is called
a polycyclic generating sequence for G. A group G is polycyclic if and only if G is solvable
and all of the subgroups of G are finitely generated. Finding polycyclic generating sequences
for a polycyclic group is now routine in the systems handling groups efficiently, as GAP and
MAGMA. We refer the reader to [23] for a good introduction on polycyclic groups.

A finite solvable group G is a special case of polycyclic group. If G is the Galois group of
some polynomial, and happens to be solvable, then finding the sequences (G;) or (g;) is thus
easy, also considering that G has generally small cardinality.

Among all solvable groups, an important case is that of Abelian groups. In that case,
we can find the structure of G as a product of cyclic groups using SNF techniques (see [4]).
Again, this will be an easy task, since the matrices involved are of small size.

As a final result, all elements of G will be represented as

ag 01 Qp—1

9091 """ 9r1

where 0 < «; < h; where h; is the order of G;/Gj41.

2.2 The main theorems

The main theorem that we will use is the following:

RR n°® 4109



4 G. Hanrot , F. Morain

Theorem 2.1 Let M be a number field and let H(X) be an irreducible monic degree h poly-
nomial of M[X] with solvable Galois group G and splitting field L. Write h =[], p;, where
the p; are primes not necessarily distinct. There exists a chain of fields:

L=LyD>L;D---DL,=M
such that L;_1/L; is cyclic of prime order p; for i > 1.
Proof. Start from a polycyclic sequence for G:
G=GyrpGp--->pGr1pGr=1

where G;/Giy1 = ¢;Gi+1. By Galois theory, this sequence corresponds to a sequence of
subfields

L=KyDK{D>---DK, 1DK, =M

such that K;/K;y1 is Galois of cyclic Galois group < g; >= G;/Giy+1. Now, we can peel
< g; > as a product of cyclic groups of prime order to finish the proof. O

2.3 Building the intermediate fields

Let z1, x2, ..., zp be the roots of H and I' its Galois group. We assume that I' is isomorphic
to the abstract group G and that we know the isomorphism G — I'. We will note +; the
automorphism corresponding to g;. More generally, greek letters will denote automorphisms
and we will use I'; for the subgroup of I' isomorphic to G;.

The extension L/K; has Galois group G/G1 =< go >. For ¢ in Gy, define:

h1

fe(X) = T (X = %(&(20)))-

i=1
By construction, vo(fe(X)) = fe(X) and therefore f¢(X) € K,[X]. Now, write:

hi1—1

fe(X) = XM 4> ey X7
=0

and define
9i(¥) = J] (v = cey)-
§eGy
The Galois group of g; is (contained in) G and one of the g;’s is irreducible, say g; =: Q1
and we have built K; as M[X]/(Q1(X)).

2.4 The cyclic case

We will illustrate the preceding ideas on the basic case of cyclic extensions. This will later be
used as a primitive in our code.

Let f(X) be a monic polynomial of degree d with cyclic Galois group C =< o >. We
let x1,...,xq be the roots of f in which z = % (z1). We suppose that d is composite,
otherwise, the decomposition is already finished.

INRIA



Solvability by radicals from an algorithmic point of view 5

Let L be the splitting field of f(X). Let ¢ = 0?. Let L; be the subfield of L fixed by
< 1) >, and ¢ be the restriction of ¢ to Ly. Define

P
= [I(X —21q10)

k=1

for 1 <14 < ¢ and expand it as

p
=D (=1 Feip Xt

k=0

The c; ;, are algebraic integers, since they are combinations of the algebraic integers x;. It is
easy to see that f; is fixed by v and therefore c; ;, is in L; for all 4, k. We also introduce

qg—1

5(Y) =¥ —ay)

=0

for 0 < j < p. At least one of the g; is irreducible. We select one of these, say Q1 = gj, which
defines L /M = M[X]/(Q1 (X)) = Mla]. Note also that ¢(c;,j) = ¢(141) mod q,j» Which gives us
an ordering on the roots of Q.

Let us rewrite the roots of Q1(X) as a1, ag, ..., ag. Fix a j. Then ¢p; is an element of
Ly and therefore there exists a polynomial A;(Y) = Y-~ a;,Y" with integer coefficients (in
M) such that:

co,j = Aj(a) g a;rof.

Applying ¢, we get:

p—1

T __ . T

(p CO’J CZ!] - : :a]a )) - z :aja"‘a’l"
r=0

In other words, we have at our disposal the values (a;, Aj(0;) = ¢;j)1<i<q Which define a
polynomial of degree g. The polynomial A; can be recovered by Newton interpolation. Finally,
a factor of f(X) over Ly is:

zp: pkA k

k=0

procedure CYCLICGALOIS(f(X), R, p, q)
{ R = (z1,22,...,2p4) contains the roots of f ordered in a cyclic way }
1. for i = 1..q do compute f;(X).
2. for j = 0..p — 1 do compute g;(Y) and select one which is irreducible Q1 (X).
3. Compute the polynomials A;(Y") for 0 < j < g using Newton interpolation.
4. return Q1(Y), its roots (ci,j,)o<i<q (in this precise order), and f1(X,Y).

RR n°® 4109



6 G. Hanrot , F. Morain

2.5 The final algorithm

One can deduce an algorithm from the proof of 2.1. Using the power-conjugate presentation
of G, we can order the roots of H in the following way. For a sequence A = (a1, ...,ax) of G,
and an element a of G, denote by a ® A the sequence of elements

(aai,aas,...,aag).

Starting from the subgroup A =< g,_1 >= (gr_l,g,?_l,...,gffll = 1), we re-build G as
Go® (g1 ®(---® < gr_1 >)---). Using this, it is easy to see that

Gi~g®(-®<gr1>).

Moreover, this way of representing G enables us to go further. We can peel Go/G1 which is
cyclic of order hg, one cyclic group of prime order at a time. We can now describe the final
algorithm that uses CYCLICGALOIS as a primitive.

procedure GALOIS(H(X), R, G)
{H is of degree h and solvable Galois group G }
1. [Find structure| obtain a polycyclic generating sequence for G as go, g2, - - ., gr—1, where
gi is of order h; and their corresponding automorphisms +;.
2. |[Rebuild] I':=<id >;fori=r—1to0do T := ®T.
3. |Build roots of H(X) in the right order| take z in R and replace R by the sequence
(v(z)) for v in T.
4. k:=0.
5. [Solve] for i = 0..r — 1 do
{ at this point, R contains the roots of a polynomial of Galois group G; }
5.1 factor h; = [[;_; pij;
52 for j=1..s—1do
{ R contains the roots of a polynomial

of Galois group < g?i/niszi’j =1><git1>--<gr—1>}
Q(Y%), R, Hy(Yy,Yi—1) := CYCLICGALOISPRIME(Qg—1(Ys—1), R, pij, h/pi;);
h < h/pij;
k< k+1;

6. [End] return (H;(Y;,Yi—1))o<i<k-

We have in fact proven that:

Proposition 2.1 All the roots of H(X) over M are given as solutions of the system of equa-
tions:
Hy 1(Yr-1) =0, Hg 2(Yx 2, Yr 1) =0,..., Ho(X,Y1) = 0.

3 Solving by radicals

Using the preceding sections, we need concentrate on solving prime degree cyclic equations
by radicals. For this, we follow [10], in the continuation of [20]. We give the details so as to
make the article self-contained.

INRIA



Solvability by radicals from an algorithmic point of view 7

Suppose that d is a prime number. Let f(X) be a monic irreducible polynomial of degree
d in K[X] of cyclic Galois group I' =< ¢ >, and splitting field L. We suppose that the roots
of f are z1,...,x4, ordered in a cyclic way:

Bla;) =y if j < d and ¢lag) = 21. M

We make the conventions that x; = z; whenever 4 = j mod d and that 0 mod d = d.

Let m = [L1 : Q] = m and {f41,...,0m} be an integral basis of Li. Let also {p1,...,pm}
be all embeddings of Ly — C. Let ¢ be a primitive d-th root of unity (e.g. ¢ = exp(2in/d)).
We consider the following diagram of extensions:

L(C)
L/

T

Li(¢)
Ll/A 1

The extension L(¢)/L1(¢) is Abelian, of Galois group I isomorphic to I', with generator ¢
given by ¢(z;) = ¢(z;) and ¢(¢) = ¢. The extension L;(¢)/L1 is also Abelian and its Galois
group is A = {A1, ..., A\¢} where M\;(¢) = ¢*. Put:

d

yp =z 1<k <d (2)
7j=1

We can recover the z;’s from the y; with:

d
1 .
zj =) . (3)
k=1
From their definition, we see that the y;’s are algebraic numbers of L(¢). The y’s for k < d
cannot be all zero, since otherwise, we would have: z; = --- = 4 = y4/d. Suppose that
y1 #0. Put z(k) = yf*kyk, 1 < k < d. In particular, we get y¢ = 21 and
(k)
I k
VEk,yr = (ﬁ) Y1- 4)
We deduce
G N ) -
Vi doy =20 4+ Y | Ty | i) (5)
k=2

Solving f(x) = 0 is thus reduced to the computation of the z(¥)’s. Easy computations show
that z(¥) € Ly(¢).

A basis of L(¢)/L1(¢) is {1,¢,...,¢% 1}, We can write: 2k = E?;% cg-k)C_j, where cg-k)
is an element of L;. The Galois group of L(¢)/L; is the direct product of I' and A. The
conjugates of z#) in L(¢) are:

d—1
2 =nE®) =3 P <i<a (6)

=1

RR n°® 4109



8 G. Hanrot , F. Morain

and it is easily seen that the zl(k)’s are in L1(¢). Putting c((ik) = 0 and using the Fourier
transform, we get

Proposition 3.1 Forallk, 1 <k <d, and all j, 1 < j <d, we have

d
) =3Pt 1< j<d (7)
=1

Moreover dc(-k)

;s an integer of L1, since it is a combination of algebraic numbers.

We have also: c((ik) =0= z%k) + et z,(ik). If we replace z((ik) by its values, we find:

Corollary 3.1

d—1
el =" -1),1<5<d (8)
=1

Using the integral basis of L;/Q, we can write:
vk, del = gy -+ B B,

with cg? in Z. We write:

=Y i) (¢ - 1).

All we need now are the values of pi(zl(k)) = pi(y1)% % pi(yix) which can be computed from:

d

pilyr) = pilw;)¢ ",

Jj=1

Using this, ¢ can be computed by means of the resolution of m x m linear systems, or by

gt
precomputing the inverse of the matrix M = (pz(zl(k)))

4 Implementation

4.1 Representation of the roots

We need a representation of the roots of H(X) suitable for our computations, meaning that
we also require the action on the roots to be computable. The most obvious representation of
the roots of H(X) are as floating point numbers to some precision. Alternatively, we can use
algebraic (polynomial) expressions for the roots of H(X), coming for example from a list of
automorphisms of L, obtained in a variety of ways: brute force factorization of H over L (see
[18]) or more subtle methods ([1], [2]).

The floating point approach is natural in the construction of Hilbert Class fields, see below.
The algebraic approach might be very costly. The choice of representation depends also on
the language the algorithms are to be implemented in.

INRIA



Solvability by radicals from an algorithmic point of view 9

4.2 Building cyclic extensions

The core of the algorithm is procedure CYCLICGALOIS. In a first step, we have to compute
the polynomials f;’s. We can compute a bound on the coefficients of f; since we know their
roots (Txg44). Denoting M = max |z;|, it is easy to find the bound

max (Z) M* (10)

for the coefficients c¢; ; for all 7 and k. Though generally pessimistic, this bound is realistic.

The second task is to compute polynomials A4;(Y) = 3?7 a;,Y" such that A;(c;) repre-
sents an integer of L;. The coefficients a;, are rational integers, but they can be written as
b;r/0 where ¢ is an integer called the defect of the power basis {1,¢,...,aq}. This number is
costly to compute in general, but is known to divide the largest square factor of the discrimi-
nant of the defining polynomial @Q1(Y’) of a. Once we have a floating point approximation of
a;jr, then da;, has to be a rational integer, easy to recognize. This also shows that we might
need more accuracy on the integers we use, forcing more precision on the roots of f.

In real life, one chooses an irreducible polynomial @1 (X) with the smallest possible value
of §. To get more precision, we can refine the roots of the polynomial we are considering via
an ordinary Newton iteration if needed.

Finally, we can check our computations by computing the resultant of @1 (Y) and f1(X,Y)
which must coincide with f(X). Note also that in many cases (cyclotomic, Hilbert Class fields),
we know how f(X), Q1(Y) should split modulo primes. This can be used to have another
check of the results.

4.3 Solving by radicals

The key point is to be able to find an integral basis of L;/M = M[f]. It is a relatively easy
task for small degree fields, but cumbersome for large ones (see [5]). We prefer using a power
basis, paying the price of a possibly huge denominator: each integer -y of L; will be written
v = Z;-n;()l a;0’ and its conjugates v; = p;i(y) = Z;-n;ol a;jpi(0)’. The determinant of the
matrix (p;(6)7) is an integer (algebraic integer fixed by the p;’s). The largest denominator of
the a;’s is the largest square dividing this determinant.

The only thing we have to know is the values of the p;(#), for instance as floating point

numbers. We will see on the numerical examples how this works.

5 Numerical examples

5.1 Cyclotomic extensions

This case is well known, but we give it as an easy example. Our approach recovers the well
known Gauss periods of such equations.

Let m be an integer > 1 and let (,; = exp(2im/m) denote an m-th root of unity and
®,,(X) its minimal polynomial:

on(X) = [] (X =G

(a,m)=1

RR n°® 4109



10 G. Hanrot , F. Morain

The Galois group of @,,,(X) is (Z/mZ)* which is Abelian. The action corresponding to element
a of (Z/mZ)* sends (m, on ¢%.

Let us give a non-trivial example. Take (Z/40Z)* which has structure C(2) x C(2) x C(4)
and is equal to < 31 > x < 11 > X < 17 >. We illustrate here the symbolic approach.
Letting ¢ denote a primitive 40-th root of unity, the roots of ®49(X) correctly ordered are:

[¢17,¢%¢%, ¢, ¢7T, ¢, ¢3¢, 7L 0, ¢, ¢ 0T, 00, ¢ ¢
We will decompose Q(¢) as a tower of four degree 2 extensions. We begin with:
AX) = (X =X = ¢,
f2(X) = (X = ) (X (),

fo(X) = (X = ¢M)(X —¢*)
yielding:
g (V) =Y®4+2Y7 +3Y°® +4Y° 4+ 5Y* + 4V + 3Y2 +-2Y + 1,
92(Y) =Y® 4+ 2Y° +4Y* + 8Y2 + 16.
We select go(Y) since g1(Y) = (Y*+ Y3+ Y2 +Y +1)2 is not irreducible. The roots of go in

the correct order are:
C17+<-33 CQ_I_C C11+C21'

Continuing this way, we finally find:

Hy=Y? - 2Y3 —4,Hy =Y} —YV3Yo+ 4, H = Y2 + Yy, Hy = Y§ — 1Yy +1/2Y7.

5.2 Non Abelian cases

Our first example comes from Allombert’s paper [2], in which the Galois group of the polyno-
mial
T(z) = 2z —72% — 212" 4 238218 — 24527 — 1848216
+47322'5 4 1861z — 1853623 + 1685622 +
14819z — 324312'° + 88972° + 166602° — 13533z
+3922°% + 35142° — 15472* + 16123 + 4922 — 14z + 1.

is computed.

This Galois group is isomorphic to the semidirect product C(7) x C(3), generated by o1
and o9, with 0901 = 0102. If the roots (all real) of T are numbered in increasing order, oy
and o9 are given as product of cyclic permutations as

(1,10,2)(3,11,7)(4,8,6)(5,15,21)
(9,13,14)(12, 17, 20)(16, 19, 18),
oy = (1,6,14,5,17,11,16)
(2,13,12,18,8,21,3)
(4,7,9,19,15, 10, 20).

gy =

INRIA



Solvability by radicals from an algorithmic point of view 11

The right sequence of subgroups for G is G> < o1 > pl, since < g9 > is not a normal
subgroup of G.

To construct the subfield corresponding to < o1 >, we use a symmetric function of the
roots corresponding to an orbit under the action of g9. For instance, we look for the minimal
polynomial of aq + a5 + ag + a1 + 14 + a1 + @17, which is ¥ — Ty? + 49. It remains to
compute the root x of T in terms of y. This is done by using the interpolation procedure
described at the end of subsection 2.4, and then we are left with the following cyclic equations
to solve

=Ty 449 = 0
z’ —yxb + (3y% — 6y — 42)2° — (59 — 14y — 63)z*
—(Ty* — 17y — 91)2® + (12¢y% — 33y — 147)z? — (5y* — 15y — 56)x
+4% /7 -2y —5 = 0.
We give a second example. A root of the polynomial
S(z) = z'? -4z — 3220 4 1312% + 31328
—13952" — 9492° + 53442° + 5752 — 581723
—1300z + 288z + 64
defines the Galois closure of the field generated by a root of z* — 1722 — 31z +13. S has Galois
group Ay, and is generated by o1, 09,03 of order 3, 2 and 2, with the relations o901 = 0109073,

0301 = 01092, 0309 = 0903. Again, if we order the (all real) roots of S increasingly, the o; are
given as

o1 = (1,2,4)(3,12,11)(5,7,8)(6, 10,9),
oo = (1,10)(2,7)(3,4)(5,12)(6,8)(9,11),
o3 = (1,5)(2,11)(3,8)(4,6)(7,9)(10,12).

Since a sequence of subgroups corresponding to G is G> < 01,09 > > < 01 > b1, we thus
compute the minimal polynomial of a; + a5 (an orbit under the action of o3) and find the
irreducible degree 6 polynomial s(y) = y% — 4y — 33y* + 33y + 12492 + 60y + 8. The action
of o9 on the roots of g is given by (1,6)(3,5)(2,4), so that 81 + (G is a root of the polynomial

t(z) = 23 — 42% — z + 11. If we compute simultaneously the expressions for y and z in terms
of z and y, we end with the following sequence of cyclic equations to solve

24222411 = 0
v —2y—6224+424+20 = 0

o — zy + (87y° — 374yt — 2759y° +
3697y? + 9682y + 2324)/12 = 0.

6 Constructing Hilbert Class fields

This part of the article was the original motivation for our work, before we realized it could
be easily extended to the general solvable case. It will serve as an example of Galois extension
over a number field which is not Q.

RR n°® 4109



12 G. Hanrot , F. Morain

6.1 Theoretical setting

The theory of Hilbert Class fields is very rich and we cannot give details here. We refer the
reader to [7, 8, 9, 5] for more details. Our interest in constructing such objects is related
to primality proving [3|, where the reader can find more motivation. Constructing cyclic
extensions of prime degree of quadratic fields has been the subject of the articles [11, 16, 19].
Here, we are satisfied with an algorithmic approach to the explicit construction of our tower
of fields. Ultimately, we will be using this for finding roots of the defining polynomials over
finite fields.

The only thing we need to know is that we are given a polynomial Hp(X) corresponding to
the imaginary quadratic field K = Q(v/—D) of discriminant —D and class number h = h(—D).
This polynomial defines a Galois extension called the Hilbert Class Field Ky of K, it is the
maximal unramified Abelian extension of K. We can also compute the roots of Hp(X) as
floating point numbers and we know the action of the Galois group on the roots (see [3] for
more details). See the references given above for more details. The Galois group turns out to
be isomorphic to the class group Cl(—D) of K: It is Abelian, and if A is small, computing a
SNF is easy, and very often it is cyclic (following the Cohen-Lenstra heuristics [6]). The cases
where it is not is mostly dominated by the case where D has a large number of prime factors,
forcing a large 2-Sylow subgroup. This case corresponds to a large number of genera in the
class group and yields a large number of intermediate quadratic fields leading to the genus
field of Q(v/—D). In this case, an algorithm has already been explained in [3, §7.3].

We are now ready to apply the machinery developped in the preceding sections to this
case. Note that since Ky /K is unramified, for any intermediate field Ky D L D K, the
discriminant of L is A(L) = (=D)“¥] and that all defining polynomials Q;(X) of L have
discriminant §2A(L) for rational integer § (we can be more precise by studying the prime
factors of D).

Remember that we will first decompose our Galois group as cyclic extensions of prime
degree. Then, we will find roots of our polynomials by radicals.

6.2 Solving H;(X,Y) by radical

We assume that H;(X,Y) is a degree p polynomial in X with coefficients in Li(Y) =
K[Y]/(Q1(Y)) where Q1(Y) is a degree ¢ (not necessarily prime) polynomial with rational
integer coefficients. The polynomial H; is a factor of our polynomial H(X) of degree pg and

roots v,...,Upq (ordered in a cyclic way as usual). Remember that the roots of the polyno-
mials (fi(X))1<i<q are @1, ..., T;p where z;; = vy j_1)q for 1 < j < p. The roots of @ are
Wi, ..., wq where w; = §(x;1,...,%;p), in which S designates a symmetrical function of the

input. For ease of manipulation, the roots of Hy, namely the z; ; will be renamed z; = z1 ;.

We denote as usual o the Galois action v +— vo + -+ + vpg + v1. The automorphism
1 = o generates Gal(L;/K). We compute (w;) = w1 since (w;) = S((z4,1),-..) and
P(vi) = o(v;) = vis1.

Remember that an integral basis of K is {1,w} where w = (1 ++/—D)/2 if D is odd and
w = y/—D/4 otherwise. Denote by 7 the ordinary complex conjugation that sends v/—D onto
—+/—D. The extension L;/Q is generalized dihedral and has Galois group the semi-direct
product of < 7 > and < >.

INRIA
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We will take as integral basis for L; /Q the numbers

B = wt !l for1<i<gq,
Tl wwtt forg41<i<2g.

The embeddings from L; to C are taken to be

_ [yt for1<i<y,
pi = Tt~ for g+ 1<1i < 2q.

Since the extension L/L; is unramified, the determinant (p;(3;)) must be equal to (—D)?disc(Q1)?,
a quantity that we can compute using integer arithmetic. The defect is then easy to determine.

(k)

We have to compute the coefficients c; .. We may rewrite system (9) for 1 <14 < q as:

gor "
() _ 3 b ~ S GG
pilde;”) =3 eiiwit w ) el =) (e, +we i (11)
r=1 r=1 r=1
We first solve the interpolation problem W (w;) = pi(dcg-k)) and then we recover the cgﬁ,) using

real and imaginary part.

6.2.1 Checking the results

The theory of class fields tells us that rational primes which are norm in Q(v/—D) split
completely in K. In practical terms, this means that for primes of the form P = (z?+ Dy?)/4
for rational integers « and y, the polynomial Hp(X) has h roots in F,. It does also mean that
all intermediate polynomials in our tower of extension split modulo p. Checking the result is
then easy by trying a small number of these splitting primes.

6.3 The complete construction for D = 239

Let us explain how to build the Hilbert Class Field L of Q(v/—239). We find that CI(—4 x 239)
is cyclic of order 15. The defining polynomial of K is

H(X)=XY—6X" +2X1 48X 4 4x" —27X'° 4+ 13X° + 15X

—4X7 - 20X +13X°% + 5X* —4X3 —4X? +4X —1

whose roots in cyclic order are:

k Vi k Vg

11 0.857443485 — 0.622922603: 9 | —1.063392841 + 0.8922926864
21 0.563313291 — 0.6345668397 10 | —0.722147984 — 0.410736930:
3| —0.611580428 — 0.644478138: | 11 | 0.531754522 — 0.284231291%
4| 0.531754522 4 0.2842312914 12 | —0.611580428 4- 0.644478138%
5 | —0.722147984 + 0.410736930z | 13 | 0.563313291 + 0.634566839:

6 | —1.063392841 — 0.892292686¢ | 14 | 0.857443485 + 0.6229226034
710.769636684 + 0.1148614037 | 15 | 5.349946540

81 0.769636684 — 0.114861403%

One of the possible tower extensions is:
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L}L(‘Cs)
5
5 L
Ll(ﬁ”ii 4 _Li(Gs
3
KG) 2|3

| 2

We first find the intermediate fields and then solve each equation by radicals.

6.3.1 Building L,

To find the polynomials g;’s, one uses the floating point values given above. Using the algo-
rithms of the preceding sections, we find that:

jlg; disc(g;)/(—239) | d(g;)
0lY3—-8Y2—-Y -1 32 3
1]Y34+21Y2+20Y + 27 532 53
21Y3—24Y2 —9Y — 27 38 81
3|Y3+10Y2—31Y +23 34 9
41(Y -2)3 0] ——

We select jo = 0. Finally, a factor of H(X) over L; is given by

Hi(X,Y)=X°—-2X*+ (-Y?/34+Y +4/3)X3-3Y X? + (-2Y?/3 +3Y — 1/3) X Y.

6.3.2 Using radicals

We have L; = K (w;) where w; is a root of Q1(Y) =Y? —8Y2 —Y — 1. The roots of @, are

w1 = —0.068990 — 0.343694, wo = —0.68990 + 0.34369¢, w3 = 8.1380,

obtained from the roots of H as:

The matrix M is:

W1 = V1 - V4 - V7 - V10 - V13,

W2 = V2 - VU5 - U8 - V11 - V14,

W3 = V3 - Ve - V9 - V12 ~ V15-

i | pi(B1) pi(B2) pi(Bs) pi(Bs) pi(Bs) pi(Bs)

1 1. —0.06899 — 0.3437¢ | —0.1134 + 0.04742% | 0.5+ 7.7307 | 2.622 — 0.70517 | —0.4232 — 0.85261
2 1. 8.138 66.23 0.5+ 7.730: | 4.069 + 62.913 33.11 4+ 511.9:

3 1. —0.06899 + 0.3437¢ | —0.1134 — 0.04742¢ | 0.5 + 7.730: | —2.691 — 0.36147 | 0.3099 — 0.9000:
4 1. —0.06899 + 0.3437: | —0.1134 — 0.04742¢ | 0.5 — 7.730¢ | 2.622 + 0.7051¢ | —0.4232 + 0.8526%
5 1. 8.138 66.23 0.5—7.730: | 4.069 — 62.913 33.11 — 511.9:

6 1. —0.06899 — 0.3437¢ | —0.1134 + 0.04742% | 0.5 — 7.730¢ | —2.691 + 0.36147 | 0.3099 + 0.9000:

INRIA
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which has determinant (3% x 239)2(—239)3, so that (32 x 239)05-? € 5Z. The coefficients cg-
are given in Table 1.

Now that we have completed the work for L/L;, we can do the same for L; /K. A root u
of @1(Y) is computed via:

y® = —9Cw — 557¢2 + 9(3w — 566(3,

(—134¢3% —134¢3) o2
(—1114 — 18w) (32 + (—1132 + 18w) (3

u=1/3 +1/3y+8/3.

6.4 A noncyclic group
The group C1(—6052) is of type C(4) x C(4). We can solve

H(X)= X" —18709X" 4 15423X "™ — 58444X "3 1 91636X'? — 135810X !

+149345X 10 — 28445 X? + 52950X 8 — 28445X 7 + 149345X 6
—135810X° + 91636 X* — 58444 X3 + 15423X2 — 18709X + 1

via:
H3(Y3) = Y — 9504Y3 + 20736,

185
HQ(YQ,Y3) :Y22_ (%Y3—3/2> YQ+YE§,
173 3 264113 _, 197537 13805

H(Y1,Y5) :Yf—( +—> Y1 + Yo,

6884352 "2 T 573696 “2 47808 "2 3984

3880212577117 .,  14518417424055149 _ 4
22144525053387840 © 1 | 4428905010677568 !
17261595060101471 _ 5  33006143257103761 _, 45112147405227119 _ ,
4428905010677568 ~ 1 | 2768065631673480 ' _ 2768065631673480 .

_ 571443627990205 N 22333117995863 N 59520033928081
92268854389116 ' ' 30756284796372 ' 12815118665155

Ho(Yo, 1) =Y§ - Y1 Yy —

7 Conclusions

We have described algorithms to compute the roots of solvable equations by radicals. Even
the first part, replacing an equation of large degree by the solution of intermediate equations
of small degree is already useful.

In ECPP [3], we use the explicit construction of class fields to build elliptic curves with
complex multiplication by the ring of integers of some imaginary quadratic field K. We
then have to find roots of the corresponding polynomials in some possibly large finite field.
Following our work, we have to solve intermediate equations of rather small degree compared
to the original problem. This accelerates this part of the algorithm and has an impact on the
choice of which fields to be used. We will come back on this point in a forthcoming article [22].
In this context, we do not use radicals usually, since for this to be faster than other methods
such as Cantor-Zassenhaus’s, we might want roots of unity defined in our field, which cannot
be assured at all.
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jlr cgkr) /5 jlr cgkr) /5 Jjlr cgkr) /5 jlr cgkr) /5
1|1 | —74054/717 11| —1147/717 1|1 |446/239 11110
1]2|—27905/239 1]219000/239 1]2|—3182/239 112)4
13| —130495/717 1|3 |—21113/717 1]3|—424/239 113]|—-1
14| —4135/717 1[4 | —32/239 14| —47/717 1140
1|5 —1550/239 11]5]403/239 1{5|—89/239 11510
1|6 |—12665/717 16| —185/239 16| —85/717 1160
2| 1| -51719/717 2|1|-3673/717 2|11633/717 21]-4/3
22| —19605/239 2|2 |4293/239 22| —2242/239 2121
2| 3| —242350/717 2| 3| —21242/717 2|3 | —2203/717 213]-2/3
214]860/239 24| -302/717 24| —-53/239 21410
2151970/239 2|5 |—-699/239 2|5 |182/239 21510
2|6 | —4140/239 2|6 |-=775/717 216 | —45/239 21610
3|1|—49139/717 3|1|—-1325/239 3|1 |1474/717 3(1]-4/3
32| —18635/239 3|2|3594/239 3 12| —2060/239 31211
3|3 | —254770/717 | |3 |3 | —7339/239 3|3|—2338/717| [3]3|-2/3
34| —-860/239 3|41302/717 314 153/239 31410
35| —970/239 3|5 |699/239 35| —182/239 31510
3|6 |4140/239 3|6 |775/717 316 |45/239 31610
411|—-26063/239 4|1 | —1243/717 4111]1291/717 41110
412 | —29455/239 4|2 |9403/239 412|—3271/239 4124
413 | —47720/239 43| —21668/717 413 | —1357/717 413 -1
414|4135/717 414132/239 414 |47/717 41410
4151 1550/239 4|5 | —403/239 4|5 |89/239 41510
416 |12665/717 416 |185/239 416 |85/717 41610

Table 1: Coefficients for D = 239.
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