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THÈME 1





Static load-balancing techniques for iterative

computations on heterogeneous clusters
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Projet ReMaP

Rapport de recherche n̊4745 — February 2003 — 22Conclusionsection*.36 pages

Abstract: This paper is devoted to static load balancing techniques for mapping
iterative algorithms onto heterogeneous clusters. The application data is partitioned
over the processors. At each iteration, independent calculations are carried out in
parallel, and some communications take place. The question is to determine how to
slice the application data into chunks, and to assign these chunks to the processors,
so that the total execution time is minimized. We establish a complexity result that
assesses the difficulty of this problem, and we design practical heuristics that provide
efficient distribution schemes.
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Équilibrage de charges pour algorithmes itératifs sur

plateformes hétérogènes

Résumé : Ce rapport est consacré à l’équilibrage de charge pour algorithmes
itératifs sur plateformes hérérogènes. Les données sont réparties sur l’ensemble des
ressources. À chaque itération, les calculs indépendants sont transmis en parallèle
et les communications ont lieu. Le problème est de déterminer comment parti-
tionner les données et comment les répartir sur les ressources pour que le temps
total d’exécution soit minimal. Nous avons démontré un résultat de complexité qui
établit la difficulté de ce problème, et nous proposons des heuristiques pratiques qui
prouvent l’efficacité de la distribution.

Mots-clé : Grappes hétérogènes, équilibrage de charge, communications, com-
plexité.
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1 Introduction

In this paper, we investigate static load balancing techniques for iterative algorithms
that operate on a large collection of application data. The application data will be
partitioned over the processors. At each iteration, some independent calculations
will be carried out in parallel, and then some communications will take place. This
scheme is very general, and encompasses a broad spectrum of scientific computa-
tions, from mesh based solvers (e.g. elliptic PDE solvers) to signal processing (e.g.
recursive convolution), and image processing algorithms (e.g. mask-based algorithms
such as thinning).

The target architecture is a fully heterogeneous cluster, composed of different-
speed processors that communicate through links of different capacities. The ques-
tion is to determine the best partitioning of the application data. The difficulty
comes from the fact that both the computation and communication capabilities of
each resource must be taken into account.

An abstract view of the problem is the following: the iterative algorithm repeat-
edly operates on a large rectangular matrix of data samples. This data matrix is
split into vertical slices that are allocated to the computing resources (processors).
At each step of the algorithm, the slices are updated locally, and then boundary
information is exchanged between consecutive slices. This (virtual) geometrical con-
straint advocates that processors be organized as a virtual ring. Then each processor
will only communicate twice, once with its (virtual) predecessor in the ring, and once
with its successor. There is no reason a priori to restrict to a uni-dimensional par-
titioning of the data, and to map it onto a uni-dimensional ring of processors: more
general data partitionings, such as two-dimensional, recursive, or even arbitrary slic-
ings into rectangles, could be dealt with. But uni-dimensional partitionings are very
natural for most applications, and, as will be shown in this paper, the problem to
find the optimal one is already very difficult.

We assume that the target computing platform can be modeled as a complete
graph:

• Each vertex in the graph models a computing resource Pi, and is weighted
by the relative cycle-time of the resource. Of course the absolute value of the
time-unit is application-dependent, what matters is the relative speed of one
processor versus the other.

• Each edge models a communication link, and is weighted by the relative ca-
pacity of the link. Assuming a complete graph means that there is a virtual
communication link between any processor pair Pi and Pj . Note that this link
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4 H. Renard, Y. Robert, F. Vivien

does not necessarily need to be a direct physical link. There may be a path
of physical communication links from Pi to Pj : if the slowest link in the path
has maximum capacity ci,j , then the weight of the edge will be ci,j.

We suppose that the communication capacity ci,j is granted between Pi and Pj

(so if some communication links happen to be physically shared, we assume that
a fraction of the total capacity, corresponding to the inverse of ci,j, is available
for messages from Pi to Pj). This assumption of a fixed capacity link between any
processor pair makes good sense for interconnection networks based upon high-speed
switches like Myrinet [12].

Given these hypotheses, the optimization problem that we want to solve is the
following: how to slice the matrix data into chunks, and assign these chunks to
the processors, so that the total execution time for a given sweep step, namely a
computation followed by two neighbor communications, is minimized? We have
to perform resource selection, because there is no reason a priori that all available
processors will be involved in the optimal solution (for example some fast computing
processor may be left idle because its communication links with the other processors
are too slow). Once some resources have been selected, they must be arranged along
the best possible ring, which looks like a difficult combinatorial problem. Finally,
once a ring has been set up, there remains to load-balance the workloads of the
participating resources

The rest of the paper is organized as follows. In Section 2, we formally state the
previous optimization problem, which we denote as SliceRing. If the network is
homogeneous (all links have same capacity), then SliceRing can be solved easily,
as shown in Section 3. But in the general case, SliceRing turns out to be a difficult
problem: we show in Section 4 that the decision problem associated to SliceRing is
NP-complete, as could be expected from its combinatorial nature. After the proof of
this result, we derive in Section 5 a formulation of the SliceRing problem in terms
of an integer linear program, thereby providing a (costly) way to determine the
optimal solution. In Section 6, we move to the design of polynomial-time heuristics,
and we report some experimental data. We survey related work in Section 7, and
we provide a brief comparison of static versus dynamic strategies. Finally, we state
some concluding remarks in Section 8.

2 Framework

In this section, we formally state the optimization problem to be solved. As already
said, the target computing platform is modeled as a complete graph G = (P,E).

INRIA



Static load-balancing techniques on heterogeneous clusters 5

Each node Pi in the graph, 1 ≤ i ≤ |P | = p, models a computing resource, and is
weighted by its relative cycle-time wi: Pi requires S.wi time-units to process a task
of size S. Edges are labeled with communication costs: the time needed to transfer
a message of size L from Pi to Pj is L.ci,j, where ci,j is the capacity of the link,
i.e. the inverse of its bandwidth. The motivation to use a simple linear-cost model,
rather than an affine-cost model involving start-ups, both for the communications
and the computations, is the following: only large-scale applications are likely to
be deployed on heterogeneous platforms. Each step of the algorithm will be both
computation- and communication-intensive, so that start-up overheads can indeed
be neglected. Anyway, most of the results presented here extend to an affine cost
modeling, τi + S.wi for computations and βi,j + L.ci,j for communications.

Let W be the total size of the work to be performed at each step of the algorithm.
Processor Pi will accomplish a share αi.W of this total work, where αi ≥ 0 for
1 ≤ i ≤ p and

∑p
i=1 αi = 1. Note that we allow αj = 0 for some index j, meaning

that processor Pj do not participate in the computation. Indeed, there is no reason a
priori for all resources to be involved, especially when the total work is not so large:
the extra communications incurred by adding more processors may slow down the
whole process, despite the increased cumulated speed.

We will arrange the participating processors along a ring (yet to be determined).
After updating its data slice, each active processor Pi sends some boundary data to
its neighbors: let pred(i) and succ(i) denote the predecessor and the successor of
Pi in the virtual ring. Then Pi requires H.ci,succ(i) time-units to send a message of
size H to its successor, plus H.ci,pred(i) to receive a message of same size from its
predecessor. In most situations, we will have symmetric costs (ci,j = cj,i) but we
do not make this assumption here. To illustrate the relationship between W and
H, we can view the original data matrix as a rectangle composed of W columns of
height H, so that one single column is exchanged between any pair of consecutive
processors in the ring (but clearly, the parameter H can represent any fixed volume
of communication).

The total cost of a single step in the sweep algorithm is the maximum, over all
participating processors, of the time spent computing and communicating:

Tstep = max
1≤i≤p

I{i}[αi.W.wi + H.(ci,succ(i) + ci,pred(i))]

where I{i}[x] = x if Pi is involved in the computation, and 0 otherwise. In summary,
the goal is to determine the best way to select q processors out of the p available, and
to arrange them along a ring so that the total execution time per step is minimized.
We formally state this optimization problem as follows:
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6 H. Renard, Y. Robert, F. Vivien

Definition 1 (SliceRing(p,wi,ci,j,W ,H)). Given p processors of cycle-times wi

and p(p − 1) communication links of capacity ci,j, given the total workload W and
the communication volume H at each step, determine

Tstep = min
1≤q≤p























min
σ ∈ Sq,p

∑q
i=1 ασ(i) = 1

max
1≤i≤q

(

ασ(i).W.wσ(i) + H.(cσ(i),σ(i−1 mod q) + cσ(i),σ(i+1 mod q))
)























(1)
Here Sq,p denotes the set of one-to-one functions σ : [1..q] → [1..p] which index the
q selected processors, for all candidate values of q between 1 and p.

From Equation 1, we see that the optimal solution will involve all processors as
soon as the ratio W

H
is large enough: in that case, the impact of the communications

becomes smaller in front of the cost of the computations, and these computations
should be distributed to all resources. But even in that case, we still have to decide
how to arrange the processors along a ring. Extracting the “best” ring out of the
interconnection graph seems to be a difficult combinatorial problem. Before assessing
this result (see Section 4), we deal with the much easier situation when the network
is homogeneous (see Section 3).

To conclude this section, we point out that this framework is more general than
iterative algorithms: in fact, our approach applies to any problem where independent
computations are distributed over heterogeneous resources. The only hypothesis is
that the communication volume is the same between adjacent processors, regardless
of their relative workload.

3 Homogeneous networks

Solving the optimization problem, i.e. minimizing expression (1), is easy when all
communication times are equal. This corresponds to a homogeneous network where
each processor pair can communicate at the same speed, for instance through a bus
or an Ethernet backbone.

Let us assume that ci,j = c for all i and j, where c is a constant. There are only
two cases to consider: (i) only the fastest processor is active; (ii) all processors are
involved. Indeed, as soon as a single communication occurs, we can have several ones
for the same cost, and the best is to divide the computing load among all resources.

In the former case (i), we derive that Tstep = W.wmin, where wmin is the smallest
cycle-time. In the latter case (ii), the load is most balanced when the execution time
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Static load-balancing techniques on heterogeneous clusters 7

is the same for all processors: otherwise, removing a small portion of the load of the
processor with largest execution time, and giving it to a processor finishing earlier,
would decrease the maximum computation time. This leads to αi.wi = Constant for
all i, with

∑p
i=1 αi = 1. We derive that Tstep = W.wcumul + 2H.c, where wcumul =

1
∑p

i=1
1

wi

.

We summarize these results as follows:

Proposition 1. The optimal solution to SliceRing(p,wi,c,W ,H) is

Tstep = min {W.wmin,W.wcumul + 2H.c}

where wmin = min1≤i≤p wi and wcumul = 1
∑p

i=1
1

wi

.

If the platform is given, there is a threshold, which is application-dependent, to
decide whether only the fastest computing resource, as opposed to all the resources,
should be involved. Given H, the fastest processor will do all the job for small values
of W , namely W ≤ H. 2c

wmin−wcumul
. Otherwise, for larger values of W , all processors

should be involved.

4 Complexity

The decision problem associated to the SliceRing optimization problem is the
following:

Definition 2 (SliceRingDec(p,wi,ci,j,W ,H,K)). Given p processors of cycle-
times wi and p(p − 1) communication links of capacity ci,j, given the total workload
W and the communication volume H at each step, and given a time bound K, is
it possible to find an integer q ≤ p, a one-to one mapping σ : [1..q] → [1..p], and
nonnegative rational numbers αi with

∑q
i=1 ασ(i) = 1, such that

Tstep = max
1≤i≤q

{

ασ(i).W.wσ(i) + H.(cσ(i),σ(i−1 mod q) + cσ(i),σ(i+1 mod q))
}

≤ K?

The following result states the intrinsic difficulty of the problem:

Theorem 1. SliceRingDec(p,wi,ci,j,W ,H,K) is NP-complete.

Proof. Obviously, SliceRingDec belongs to NP. To prove its completeness, we
use a reduction from HamCycle, the Hamiltonian Cycle Problem, which is NP-
complete [17]. Consider an arbitrary instance I1 of HamCycle: given a graph
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8 H. Renard, Y. Robert, F. Vivien

Gh = (Vh, Eh), is there a Hamiltonian cycle in Gh, i.e. a cycle that visits all the
vertices of G exactly once?

We construct the following instance I2 of SliceRingDec: we let p = |Vh|
(assume p ≥ 2 without loss of generality), and we define a complete interconnection
graph G = (P,E), whose edge costs are given by

ce =

{

ε if e ∈ Eh

2 otherwise

where 0 < ε < 1
2 is a small constant. We let W = H = 1 and wi = p for 1 ≤ i ≤ p.

Clearly, I2 can be constructed in time polynomial in the size of I1. Finally, we let
K = 1 + 2ε.

Assume first that I1 has a solution, i.e. that Gh possesses a hamiltonian cycle.
We use the edges of this path to build the ring. All processors are involved, and we
let αi = 1/p for 1 ≤ i ≤ p. The execution time and the communication time are the
same for all processors, we obtain that Tstep = 1

p
· p + 2ε = K, hence a solution to

I2.

Assume now that I2 has a solution. If a single processor were participating in
that solution, then we would have Tstep = 1.p ≥ 2 > K, a contradiction. Hence
there are q processors, with q ≥ 2, participating in the solution. If the ring used a
communication edge that did not belong to Gh, then the cost of that edge would be
2 and Tstep ≥ H.2 = 2 > K, again a contradiction. There remains to show that we
do use all the p processors in the solution. But otherwise, if q < p, one computation
load would be at least equal to 1

q
.W.p > 1, which would imply that Tstep > K.

Finally, q = p, and the edges of the solution ring define a Hamiltonian cycle in Gh,
thereby providing a solution to I1.

5 ILP formulation

When the network is heterogeneous, we face a complex situation: how to determine
the number of processors that should take part to the computation already is a
difficult question.

In this section, we express the solution to the SliceRing optimization problem,
in terms of an Integer Linear Programming (ILP) problem. Of course the complexity
of this approach may be exponential in the worst case, but it will provide useful hints
to design low-cost heuristics. We start with the case where all processors are involved
in the optimal solution. We extend the approach to the general case later on.

INRIA
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H.c1,5

H.c1,2

H.c2,1
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H.c3,2
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H.c5,1

α5.W.w5

p1 p2 p3 p4 p5

α4.W.w4
H.c3,4

α3.W.w3

α2.W.w2

α1.W.w1

processors

Figure 1: Summary of computation and communication times with p processors.

5.1 When all processors are involved

Assume first that all processors are involved in an optimal solution. All the p
processors require the same amount of time to compute and communicate: otherwise,
we would slightly decrease the computing load of the last processor to complete its
assignment (computations followed by communications) and assign extra work to
another one. Hence (see Figure 1 for an illustration) we have

Tstep = αi.W.wi + H.(ci,i−1 + ci,i+1) (2)

for all i (indices in the communication costs are taken modulo p). Since
∑p

i=1 αi = 1,

we derive that
∑p

i=1
Tstep−H.(ci,i−1+ci,i+1)

W.wi
= 1. Defining wcumul = 1

∑p

i=1
1

wi

as before,

we have:

Tstep

W.wcumul
= 1 +

H

W

p
∑

i=1

ci,i−1 + ci,i+1

wi

(3)

Therefore, Tstep will be minimal when
∑p

i=1
ci,i−1+ci,i+1

wi
is minimal. This will be

achieved for the ring that corresponds to the shortest hamiltonian cycle in the graph
G = (P,E), where each edge ei,j is given the weight di,j =

ci,j+cj,i

wi
. Once we have

this path, we derive Tstep from Equation 3, and then we determine the load αi of
each processor using Equation 2.

To summarize, we have the following result:

RR n̊4745



10 H. Renard, Y. Robert, F. Vivien

Proposition 2. When all processors are involved, finding the optimal solution is
equivalent to solving the Traveling Salesman Problem in the weighted graph (P,E, d),
di,j =

ci,j+cj,i

wi
.

Of course we are not expecting any polynomial-time solution from this result,
because the decision problem associated to the Traveling Salesman Problem is NP-
complete [17] (even worse, because the distance d does not satisfy the triangle in-
equality, there is no polynomial-time approximation [9]), but this equivalence gives
us two lines of action:

• For platforms of reasonable size, the optimal solution can be computed using
an integer linear program that returns the optimal solution to the Traveling
Salesman Problem

• For very large platforms, we can use well-established heuristics which approxi-
mate the solution to the Traveling Salesman Problem in polynomial time, such
as the Lin-Kernighan heuristic [23, 18].

In the following , we briefly recall the classical formulation of the Traveling
Salesman Problem as an Integer Linear Programming (ILP) problem. This will
solve our problem whenever all processors are involved. In Section 5.2 we will extend
the ILP formulation to cope with the case where only a fraction of the computing
resources are involved in the optimal solution.

Consider the complete weighted graph G = (P,E, d), where |P | = p, and assume
that we start the tour, i.e. the processor ring, with processor P1. Let xi,j be integer
variables such that xi,j = 1 when Pj is the processor immediately following Pi in the
tour, and xi,j = 0 otherwise. Since exactly one processor precedes Pj in the tour,
we have

∑p
i=1 xi,j = 1 for each j. Similarly, we have

∑p
j=1 xi,j = 1 for each i. The

cost of the tour can be expressed as
∑p

i=1

∑p
j=1 di,j.xi,j .

But these equations are not sufficient: we have to exclude the case of two or
more disjoint sub-tours. To this purpose, we introduce p − 1 new integer variables
u2, u3, . . . , up with ui ≥ 0 and (p − 1)(p − 2) new constraints as follows:

ui − uj + p.xi,j ≤ p − 1 for 2 ≤ i, j ≤ p, i 6= j

Intuitively, ui represents the position on the tour at which Pi is visited, and the
constraints ensures that the tour does not split into sub-tours. Indeed, we follow the
proof in [11]. Suppose first that we have a Hamiltonian cycle (“starting” in P1): we
prove that the ILP problem has a solution. Let ui be the position on the path at
which Pi is visited (excluding P1, and counting from 0). For instance with p = 5 and

INRIA



Static load-balancing techniques on heterogeneous clusters 11

the tour P1 → P4 → P2 → P3 → P5 → P1, then u4 = 0, u2 = 1, u3 = 2, and u5 = 3.
We have 0 ≤ ui ≤ p − 2 for i ≥ 2. Therefore if xi,j = 0, ui − uj + p.xi,j ≤ p − 2 if
i 6= j, and the inequality holds. Next, if xi,j = 1, Pj is visited immediately after Pi,
hence uj = ui + 1, and ui − uj + p.xi,j = p − 1, and the inequality holds again.

Conversely, suppose that we have a solution to the ILP problem, and assume
that the tour splits into at least two sub-tours. Then, there is a sub-tour of r ≤ p−1
processors that does not include P1. Adding up the r equations for the r non-zero
values of xi,j of that sub-tour leads to r.p ≤ r.(p − 1) (all the ui occur twice and
cancel), a contradiction.

Finally, we are led to the following ILP formulation:

TSP integer linear programming formulation
Minimize

∑p
i=1

∑p
j=1 di,j.xi,j ,

subject to






















(1)
∑p

j=1 xi,j = 1 1 ≤ i ≤ p

(2)
∑p

i=1 xi,j = 1 1 ≤ j ≤ p
(3) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(4) ui − uj + p.xi,j ≤ p − 1 2 ≤ i, j ≤ p, i 6= j
(5) ui integer, ui ≥ 0 2 ≤ i ≤ p

Proposition 3. When all processors are involved, finding the optimal solution is
equivalent to solving the previous integer linear program.

5.2 General case

How to extend the ILP formulation to the general case? For each possible value of
q, 1 ≤ q ≤ p, we will set up an ILP problem giving the optimal solution with exactly
q participating resources. Taking the smallest solution among the p values returned
by these ILP problems will lead to the optimal solution.

For a fixed value of q, 1 ≤ q ≤ p, we use a technique similar to that of Section 5.1,
but we need additional variables. Here is the ILP:

RR n̊4745



12 H. Renard, Y. Robert, F. Vivien

q-ring integer linear programming formulation
Minimize

∑p
i=1

∑p
j=1 di,j .xi,j,

subject to














































(1)
∑p

i=1 xi,j =
∑p

i=1 xj,i 1 ≤ j ≤ p
(2)

∑p
i=1 xi,j ≤ 1 1 ≤ j ≤ p

(3)
∑p

i=1

∑p
j=1 xi,j = q

(4) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(5)

∑p
i=1 yi = 1

(6) − p.yi − p.yj + ui − uj + q.xi,j ≤ q − 1 1 ≤ i, j ≤ p, i 6= j
(7) yi ∈ {0, 1} 1 ≤ i ≤ p
(8) ui integer, ui ≥ 0 1 ≤ i ≤ p

As before, the intuitive idea is that xi,j = 1 if and only if Pj is the immediate
successor of Pi in the q-ring. Constraints (1) and (2) state that the in-degree of each
node is the same as its out-degree, and will be equal to 0 or 1. Constraint (3) ensures
that the ring is indeed composed of q processors. From constraints (5) and (7), we
see that a single yi will be non-zero, and it represents the “origin” of the q-ring.
Assume the non-zero value is y1. For i = 1 and any value of j, constraint (6) will
be satisfied because of the term −p.y1. If neither i nor j is equal to the origin P1,
then constraint (6) reduces to constraint (4) of the TSP program, and assesses that
the q-ring is not split into sub-rings. In the solution, ui = 0 for the origin and the
non-participating nodes, and ui is the position after the origin (numbered from 0 to
q − 2) of node Pi in the ring.

We summarize these results as follows:

Proposition 4. The SliceRing optimization problem can be solved by computing
the solution of p integer linear programs, where p is the total number of resources.

6 Heuristics and experiments

After the previous theoretically-oriented results, we adopt a more practical ap-
proach in this section. We aim at deriving polynomial-time heuristics for solving
the SliceRing optimization problem.

Having expressed the problem in terms of a collection of integer linear pro-
grams enables us to compute the optimal solution with softwares like PIP [15, 14] or
LP SOLVE [4] (at least for reasonable sizes of the target computing platforms). We

INRIA



Static load-balancing techniques on heterogeneous clusters 13

compare this optimal solution with that returned by two polynomial-time heuris-
tics, one that approximates the TSP problem (but only returns a solution where all
processors are involved), and a greedy heuristic that iteratively grows the solution
ring.

6.1 TSP-based heuristic

The situation where all processors are involved in the optimal solution is very im-
portant in practice. Indeed, only very large applications are likely to be deployed on
distributed heterogeneous platforms. And when W is large enough, we know from
Equation 1 that all processors will be involved.

From Section 5.1 we know that the optimal solution, when all processors are
involved, corresponds to the shortest Hamiltonian cycle in the graph (P,E, d), with
di,j =

ci,j+cj,i

wi
. We use the well-known Lin-Kernighan heuristic [23, 18], to approxi-

mate this shortest path. By construction, the TSP-based heuristic always returns a
solution where all processors are involved. Of course, if the optimal solution requires
fewer processors, the TSP-based heuristic will fail to find it.

6.2 Greedy heuristic

The greedy heuristic starts by selecting the fastest processor. Then, it iteratively
includes a new node in the current solution ring. Assume that we have already
selected a ring of r processors. For each remaining processor Pi, we search where
to insert it in the current ring: for each pair of successive processors (Pj , Pk) in the
ring, we compute the cost of inserting Pi between Pj and Pk in the ring. We retain
the processor and the pair that minimize the insertion cost, and we store the value
of Tstep. This step of the heuristic has a complexity proportional to (p − r).r.

Finally, we grow the ring until we have p processors. and we return the minimal
value obtained for Tstep. The total complexity is

∑p
r=1(p − r)r = O(p3). Note that

it is important to try all values of r, because Tstep may not vary monotically with r.

6.3 Platform description

We experimented with two platforms, one located in ENS Lyon and the other in the
University of Strasbourg. Figure 2 represents the Lyon platform, which is composed
of 14 processors, whose cycle-times are described in Table 1. Table 2 shows the
capacity of the links, i.e. the inverse of the bandwidth, between each processor pair
(Pi, Pj).
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Figure 2: Topology of the Lyon platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

0.0291 0.00874 0.0206 0.0451 0.0206 0.0291 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206

Table 1: Processor cycle-times (in seconds per megaflop) for the Lyon platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

P0 0.198 1.702 1.702 0.262 0.198 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262

P1 0.198 1.702 1.702 0.262 0.198 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262

P2 1.702 1.702 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P3 1.702 1.702 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P4 0.262 0.262 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P5 0.198 0.198 1.702 1.702 0.262 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262

P6 1.702 1.702 0.248 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P7 1.702 1.702 0.248 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P8 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P9 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P10 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P11 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P12 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

P13 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

Table 2: Capacity of the links (time in seconds to transfer a one-megabit message)
for the Lyon platform.

Similarly, Figure 3 represents the Strasbourg platform, which is composed of
13 processors, whose cycle-times are described in Table 3, while Table 4 shows the
capacity of the links.

INRIA



Static load-balancing techniques on heterogeneous clusters 15

sekhmet

shaitanlattice

merlinlancelot

router router

dinadan guenievre

nestea

darjeeling

marathon

pellinorecaseb

gauvain

Switch

Figure 3: Topology of the Strasbourg platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

0.00874 0.00874 0.0102 0.00728 0.00728 0.0262 0.00583 0.016 0.00728 0.00874 0.0131 0.00583 0.0131

Table 3: Processor cycle-times (in seconds per megaflop) for the Strasbourg platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 0.048 0.019 0.017 0.019 0.147 0.151 0.154 0.147 0.048 0.017 0.016 0.151

P1 0.048 0.048 0.048 0.048 0.147 0.151 0.154 0.147 0.017 0.048 0.048 0.151

P2 0.019 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.019 0.019 0.151

P3 0.017 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.017 0.018 0.151

P4 0.019 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.019 0.019 0.151

P5 0.147 0.147 0.147 0.147 0.147 0.151 0.154 0.147 0.147 0.147 0.147 0.151

P6 0.151 0.151 0.151 0.151 0.151 0.151 0.154 0.151 0.151 0.151 0.151 0.151

P7 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

P8 0.147 0.147 0.147 0.147 0.147 0.147 0.151 0.154 0.147 0.147 0.147 0.151

P9 0.048 0.017 0.048 0.048 0.048 0.147 0.151 0.154 0.147 0.048 0.048 0.151

P10 0.017 0.048 0.019 0.017 0.019 0.147 0.151 0.154 0.147 0.048 0.018 0.151

P11 0.016 0.048 0.019 0.018 0.019 0.147 0.151 0.154 0.147 0.048 0.018 0.151

P12 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.154 0.151 0.151 0.151 0.151

Table 4: Capacity of the links (time in seconds to transfer a one-megabit message)
for the Strasbourg platform.

6.4 Results

For both topologies, we compared the greedy heuristic against the optimal solu-
tion obtained with integer linear programming softwares, when available. Since
LP SOLVE fails to compute the result when more than five processors are involved,
we only report the results of the PIP software. Tables 5 and 6 show the difference
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between the greedy heuristic and the optimal solution (computed with PIP) on the
Lyon and Strasbourg platforms. The numbers in the tables represent the minimal
cost of a path of length q on the platform, i.e. the value of the objective function
of the ILP program of Section 5.2 (multiplied by a scaling factor 6000, because PIP
needs a matrix of integers).

PIP is able to compute the optimal solution for all values for the Strasbourg
platform, but fails to do so between 9 and 13 processors for the Lyon platform (note
that we used a machine with two gigabytes of RAM!). When all processors are
involved, we also tried the LKH heuristic: for both platforms, it returns the optimal
result. The conclusions that can be drawn from these experiments are the following:

• the greedy heuristic is both fast and efficient, within 11.2% of the optimal for
the Lyon platform, and 6.8% for the Strasbourg platform

• the LKH heuristic is very reliable, but its application is limited to the case
where all resources are involved

• integer linear programming softwares rapidly fail to compute the optimal so-
lution

`
`

`
`

`
`

`
`

`
`

`
`

`
`

Heuristics
Processors

3 4 5 6 7 8 9 10 11 12 13 14

Greedy
1202 556 1152 906 2240 3238 4236 5234 6232 7230 8228 10077

PIP
out of out of out of out of out of

878 556 1128 906 2075 3071 memory memory memory memory memory 9059

Table 5: Comparison between the greedy heuristic and PIP for the Lyon platform.

`
`

`
`

`
`

`
`

`
`

`
`

`
`

Heuristics
Processors

3 4 5 6 7 8 9 10 11 12 13

Greedy 1520 2112 3144 3736 4958 5668 7353 8505 10195 12490 15759

PIP 1517 2109 3141 3733 4955 5660 7348 8500 10188 12235 14757

Table 6: Comparaison between the greedy heuristic and PIP for the Strasbourg
platform.

In Figures 4 and 5, we plot the number popt of processors in the optimal solution
as a function of the ratio W/H. As expected, when this ratio grows (meaning more
computations per communication), more and more processors are used in the optimal
solution, and the value of popt increases. Because the interconnection network of the
Lyon platform involves links of similar capacities, the value of popt jumps from 1
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(sequential solution) to 14 (all processors participate), while the greedy heuristic
returns a solution with 6 processors in between. The big jump from 1 to 14 is easily
explained: once there is enough work to make a communication affordable, rather
use many communications for the same price, thereby better sharing the load.

The interconnection network of the Strasbourg platform is more heterogeneous,
and there the value of popt jumps from 1 (sequential solution) to 10, 11 and 13 (all
processors participate), while the greedy heuristic closely follows this evolution.
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Figure 4: Optimal number of processors for the Lyon platform.

7 Related work

Load balancing strategies have been widely studied, both for homogeneous platforms
(see the collection of papers [26]) and for heterogeneous clusters (see chapter 25
in [6]). Distributing the computations (together with the associated data) can be
performed either dynamically or statically, or a mixture of both.

The vast majority of the literature deals with dynamic strategies, that calls for
periodic re-mapping phases to remedy observed load-imbalance. Even though we
target static schemes, we briefly discuss a few important references in the field of
dynamic approaches. Simple paradigms are based upon the idea “use the past to
predict the future”, i.e. use the currently observed speed of computation of each
machine to decide for the next distribution of work [7, 8, 5]. Several authors [25, 24,
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Figure 5: Optimal number of processors for the Strasbourg platform.

27, 19] propose a mapping policy which dynamically minimizes system degradation
(including the cost of remapping) for each computation step. Other papers [28, 13]
advocate local schemes where data is exchanged only between neighbor processors.
Generally speaking, there is a challenge in determining a trade-off between the data
distribution parameters and the process spawning and possible migration policies.
Redundant computations might also be necessary to use a heterogeneous platform
at its best capabilities.

In the context of a library oriented approach, dynamic strategies are difficult to
introduce, because they imply a complicated memory management. Static strate-
gies are less general but prove useful if enough knowledge can be injected in the
scheduling and mapping decision process. In other words, if the characteristics of
the target platform (processor speeds and link capacities) and of the target appli-
cation (computation and communication costs associated to each data chunk) are
known rather accurately, then excellent performance can be achieved through static
strategies. However, sophisticated data distribution schemes (like the ones presented
in this paper) are mandatory to achieve such a good performance.

Several authors have dealt with the static implementation of linear algebra ker-
nels on heterogeneous platforms. Matrix multiplication has been studied by [22, 2].
LU and QR decomposition have been discussed by Barbosa et al. [1]. Static parti-
tioning schemes to map a two-dimensional data matrix onto heterogeneous resources
have been investigated by Crandall and Quinn [10], Kaddoura, Ranka and Wang [21],
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and Beaumont et al. [3]. The main conclusions of these papers are drawn for three
kinds of problems:

• Distributing independent chunks of work to uni-dimensional (linear) arrays of
heterogeneous processors is easy (see the algorithm in [2])

• Distributing independent chunks of work to two-dimensional processor grids is
difficult. We have to search for the best distribution of work for each proces-
sor arrangement along the two-dimensional grid, and there is an exponential
number of such arrangements as the grid size increases (see [1, 2])

• Relaxing the geometrical constraints induced by two-dimensional grids leads
to irregular partitionings [10, 21, 3] that allow for a good load-balancing but
are much more difficult to implement

In this perspective, this paper shows that the first problem, i.e. distributing inde-
pendent chunks of work to uni-dimensional processor arrays, is no longer easy when
communications are taken into account in addition to computations.

Finally, a survey of static load balancing techniques for mesh computations has
been written by Hu and Blake [19]. On the same subject, see also the paper by
Ichikawa and Yamashita [20].

8 Conclusion

The major limitation to programming heterogeneous platforms arises from the ad-
ditional difficulty of balancing the load. Data and computations are not evenly
distributed to processors. Minimizing communication overhead becomes a challeng-
ing task.

Load balancing techniques can be introduced dynamically or statically, or a mix-
ture of both. On one hand, we may think that dynamic strategies are likely to per-
form better, because the machine loads will be self-regulated, hence self-balanced, if
processors pick up new tasks just as they terminate their current computation. How-
ever, data dependences, in addition to communication costs and control overhead,
may well lead to slow the whole process down to the pace of the slowest processors.
On the other hand, static strategies will suppress (or at least minimize) data redis-
tributions and control overhead during execution. Furthermore, in the context of a
scientific library, static allocations seem to be necessary for a simple and efficient
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memory allocation. We agree, however, that targeting larger platforms such as dis-
tributed collections of heterogeneous clusters, e.g. available from the metacomputing
grid [16], may well enforce the use of dynamic schemes.

One major result of this paper is the NP-completeness of the SliceRing prob-
lem. Rather than the proof, the result itself is interesting, because it provides yet
another evidence of the intrinsic difficulty of designing heterogeneous algorithms.
But this negative result should not be over-emphasized. Indeed, another impor-
tant contribution of this paper is the design of efficient heuristics, that provide a
pragmatic guidance to the designer of iterative scientific computations. Implement-
ing such computations on commodity clusters made up of several heterogeneous
resources is a promising alternative to using costly supercomputers.

References

[1] J. Barbosa, J. Tavares, and A. J. Padilha. Linear algebra algorithms in a
heterogeneous cluster of personal computers. In 9th Heterogeneous Computing
Workshop (HCW’2000), pages 147–159. IEEE Computer Society Press, 2000.

[2] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert. A proposal
for a heterogeneous cluster ScaLAPACK (dense linear solvers). IEEE Trans.
Computers, 50(10):1052–1070, 2001.

[3] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix multiplica-
tion on heterogeneous platforms. IEEE Trans. Parallel Distributed Systems,
12(10):1033–1051, 2001.

[4] Michel Berkelaar. LP SOLVE: Linear Programming Code. URL:
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml.

[5] F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, edi-
tors, The Grid: Blueprint for a New Computing Infrastructure, pages 279–309.
Morgan-Kaufmann, 1999.

[6] R. Buyya. High Performance Cluster Computing. Volume 1: Architecture and
Systems. Prentice Hall PTR, Upper Saddle River, NJ, 1999.

[7] M. Cierniak, M.J. Zaki, and W. Li. Compile-time scheduling algorithms for
heterogeneous network of workstations. The Computer Journal, 40(6):356–372,
1997.

INRIA

http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml


Static load-balancing techniques on heterogeneous clusters 21

[8] M. Cierniak, M.J. Zaki, and W. Li. Customized dynamic load balancing for
a network of workstations. Journal of Parallel and Distributed Computing,
43:156–162, 1997.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

[10] P. E. Crandall and M. J. Quinn. Block data decomposition for data-parallel
programming on a heterogeneous workstation network. In 2nd International
Symposium on High Performance Distributed Computing, pages 42–49. IEEE
Computer Society Press, 1993.

[11] Ian Craw. Class notes, Linear Optimisation and Numerical Anal-
ysis, Mathematical Sciences, University of Aberdeen. URL:
http://www.maths.abdn.ac.uk/~igc/tch/mx3503/notes/node96.html.

[12] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, San Francisco, CA, 1999.

[13] E. Deelman and B.K. Szymanski. Dynamic load balancing in parallel discrete
event simulation for spatially explicit problems. In PADS’98, 12th Workshop
on Parallel and Distributed Simulation, pages 46–53. IEEE Computer Society
Press, 1998.

[14] Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22:243–268, September 1988. Software available at
http://www.prism.uvsq.fr/~cedb/bastools/piplib.html.

[15] Paul Feautrier and Nadia Tawbi. Résolution de systèmes d’inéquations linéaires;
mode d’emploi du logiciel PIP. Technical Report 90-2, Institut Blaise Pascal,
Laboratoire MASI (Paris), January 1990.

[16] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan-Kaufmann, 1999.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1991.

[18] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130, 2000.
Software available at http://www.dat.ruc.dk/~keld/research/LKH/.

RR n̊4745

http://www.maths.abdn.ac.uk/~igc/tch/mx3503/notes/node96.html
http://www.prism.uvsq.fr/~cedb/bastools/piplib.html
http://www.dat.ruc.dk/~keld/research/LKH/


22 H. Renard, Y. Robert, F. Vivien

[19] Y.F. Hu and R.J. Blake. Load balancing for unstructured mesh applications.
Parallel and Distributed Computing Practices, 2(3), 1999.

[20] S. Ichikawa and S. Yamashita. Static load balancing of parallel PDE solver for
distributed computing environment. In PDCS’2000, 13th Int’l Conf. Parallel
and Distributed Computing Systems, pages 399–405. ISCA Press, 2000.

[21] M. Kaddoura, S. Ranka, and A. Wang. Array decomposition for nonuniform
computational environments. Journal of Parallel and Distributed Computing,
36:91–105, 1996.

[22] A. Kalinov and A. Lastovetsky. Heterogeneous distribution of computations
while solving linear algebra problems on networks of heterogeneous computers.
In P. Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger, editors, HPCN Europe
1999, LNCS 1593, pages 191–200. Springer Verlag, 1999.

[23] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21:498–516, 1973.

[24] D.M. Nicol and Jr P.F. Reynolds. Optimal dynamic remapping of data parallel
computations. IEEE Trans. Computers, 39(2):206–219, 1990.

[25] D.M. Nicol and J.H. Saltz. Dynamic remapping of parallel computations with
varying resource demands. IEEE Trans. Computers, 37(9):1073–1087, 1988.

[26] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in
parallel and distributed systems. IEEE Computer Science Press, 1995.

[27] J. Watts and S. Taylor. A practical approach to dynamic load balancing. IEEE
Trans. Parallel and Distributed Systems, 9(93):235–248, 1998.

[28] M-Y. Wu. On runtime parallel scheduling for processor load balancing. IEEE
Trans. Parallel and Distributed Systems, 8(2):173–186, 1997.

INRIA
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