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Abstract: Enabling the execution of Java applications on personal embedded devices
could bring great benefits to their users. For example, you could exchange your calendar
application with your neighbor, or send your favorite telephone game to your friends without
thinking if they have a compatible phone. Moreover, these devices will have to provide a
reliable execution environment as soon as they will be implied in critical or distributed
applications. Checkpoints capture/rollback recovery solves a part of this problem.

This paper presents the integration of a checkpoint mechanism in our own embedded
Java Virtual Machine named Scratchy. Our mechanism, is transparent for the user and has
a low overhead on the applications. We propose one global and two incremental methods
which are evaluated and compared each other. This mechanism can be used with the midlets
which are the standard Java applications for cell phones and PDAs.

We present two series of evaluations, the first is done with a benchmark and the second
with real applications. We show that the incremental methods give shorter capture times
than the global method, under certain conditions.
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Machine
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Mécanisme de points de reprise locaux pour les
applications Java embarquées

Résumé : Permettre I’exécution d’applications Java sur les téléphones portables ainsi
que les ordinateurs de poche pourrait apporter de réels avantages & leurs utilisateurs. Ils
pourraient, par exemple, s’échanger leur gestionnaire d’emploi du temps ou envoyer leur jeu
préféré & leurs amis, sans avoir a se préoccuper de la compatibilité matérielle. De plus, ces
appareils devront fournir un environnement d’exécution fiable dés qu’ils seront impliqués
dans des applications critiques ou distribuées. La capture et la restauration de points de
reprise résout une partie de ce probléme.

Ce rapport présente 'intégration d’un mécanisme de points de reprise dans notre propre
machine virtuelle Java embarquée, nommée Scratchy. Notre mécanisme, est transparent
pour l'utilisateur et présente un faible surcott pour les applications. Nous proposons une
méthode globale et deux incrémentales qui sont évaluées et comparées. Ce mécanisme peut
étre employé avec les midlets qui sont les applications Java standards pour les téléphones
portables et les PDAs.

Nous présentons deux séries d’évaluations, la premiére est faite avec un benchmark et la
seconde avec de vraies applications. Nous prouvons que les méthodes incrémentales donnent
des temps de capture plus courts que la méthode globale, dans certaines conditions.

Mots-clé : Systémes embarqués, capture de points de reprise, machine virtuelle Java
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1 Introduction

Wireless technologies are widespread. Nowadays, almost everybody has a mobile phone and
Pocket PC are more and more popular. One problem with this kind of devices is that they
are based on a specific architecture, so you can’t easily share your favorite applications with
your friends, unless they have a machine which is compatible with yours. Java addresses
this issue, if you have a Java Virtual Machine (JVM) [6] in your PDA, you can theoretically
execute every Java applications.

The Mobile Information Device Profile (MIDP) defines Java applications that are tar-
geted to wireless embedded devices : the midlets [9]. Our proposal mechanism is designed
for this class of applications, so it’s available for a large range of programs.

Fault tolerance [3] and more particularly checkpoints capture/rollback recovery is com-
monly used to improve the reliability of computer systems. In this paper we present three
checkpointing techniques for embedded Java applications. Our mechanism is added directly
in the JVM. In this way, it’s available for all Java based applications.

A checkpoint mechanism must ensure quick captures and as small as possible check-
points. We achieve this goal by integrating the checkpoint module in the garbage collector
of the JVM. This permits to decrease the time taken by the “garbage collection/checkpoints
capture” phase, and to reduce the checkpoints content to the useful Java objects of the
application.

Section 2 presents Scratchy’s garbage collector. Then, we present the principles of our
checkpointing mechanism in section 3. Section 4 presents an evaluation and a comparison
of the mechanism. Section 5 is dedicated to the related works, then we conclude.

2 Scratchy’s garbage collector

In Java, the JVM is responsible for the memory management. One element of this memory
manager is the garbage collector which regularly deletes the objects which are not used
anymore. Because our checkpoint mechanism is integrated in the garbage collector, we give
here its basic principles that are needed to understand the rest of this report.

The only way to access a Java object is by its reference. The figure 1 presents a basic
class. Wheel and engine fields are references of others objects. Thus, we can access to a
Wheel object via a Car object. If we have an object whose reference is used by no object,
it won’t be used anymore. We can consider it as lost in memory and delete it.

Before the beginning of the garbage collection, every object is in the same object set
which is called the “from set”. In this set, some objects are tagged as root. The garbage
collector creates the “to set” by identifying each object that can be reached from the roots.
This identification is done by following the objects references. The identified objects are
moved from the “from set” to the to “set”. This identification is usually called a tracing.
Then, the garbage collector erases all the objects which remain in the “from set”. Next, it
exchanges the two sets and is ready to restart. This kind of garbage collector belongs to the
“mark-sweep” category [10]. In our case, object sets are represented by lists, so the creation
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4 Julien Pauty, Gilbert Cabillic

class Car {
public void drive();

public Wheel wheel;
public Engine engine;

public int max_speed;

}
Figure 1: A Java class example

of the “to set” is just a matter of pointers settings. The figure 2 illustrates the principle of
a mark-sweep garbage collector.

Before... ...after the"mark" phase

B g0t N
oG . Dﬁ@n

from set to set from set to set

D Object IE‘ Object tagged as root — Reference
Figure 2: Principle of a mark-sweep garbage collector

Our garbage collector is intended to be used with loop structures. The user defines,
before the loop, the roots of the objects used in the loop. The garbage collector is activated
at the beginning of the loop with the call gc.start (). After this activation, the “from set”
contains only the roots, and each new object will be added to it. At the end of the loop, we
do a tracing and delete unused objects inside the call gc.end ().

This scheme is well fitted for the midlets. These applications rely on a structure divided
into two parts. During the first, hardware drivers and application’s data are initialized, the
second part is the application’s main loop. To use our garbage collector with the midlets, we
only have to define the application’s roots in the first phase, activate the garbage collector
and delete unreachable objects at the end of the loop. An example use can be seen on figure
3.

3 Principles of the checkpointing techniques
A checkpoint mechanism saves the state of a program periodically on a stable storage. When
an error happens, the last saved and validated checkpoint is restored and the program is

restarted. An overview of the different checkpointing approaches is presented in [2]. In this
part, we present the principles of our checkpoint mechanism.

INRIA
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class Calendar{
public Data data;

static void main() {
Calendar cal = new Calendar();
GarbageCollector gc = new GarbageCollector();
gc.addRoot (cal);

cal.data.init();
cal.mainLoop(gc);

}

void mainLoop(GabageCollecor gc) {
wvhile (1==1) {
ge.start();
data.modify();
gc.end();
}
}
}

Figure 3: Example use of the scratchy’s garbage collector

3.1 Checkpoints’ content

The state of a Java program is mainly represented by its objects’ state. It also includes the
state of the program counters, the Java stacks and the state of the external resources like
the device drivers, the monitors or the files.

First of all, we must identify the object set S; that has to be saved. The application’s
objects are linked each other via references, so, to identify S; we just have to do a tracing
from the application’s roots. The garbage collector also does a tracing to construct the “to
set”. Let Sy be the “to set”. If this second tracing also begins at the application’s roots, we
have S; = S;. We decide to integrate the checkpoint mechanism in the garbage collector
module, so, we can do only one tracing and use its result for the garbage collection and
the checkpoints capture. Since the garbage collector’s tracing is done during the gc.end ()
call, we will save the checkpoints at this moment. Our mechanism is different from others
because classical methods use two tracings, one for each step, here we have only one.

As shown on the figure 3, the targeted applications are divided into two parts: an
initialization part and the main loop. The stacks and the program counters are in the same
state S at the end of the gc.end() call and at the beginning of the gc.start() call. This
state is also reached after the execution of the first part. Thus, if we restore the checkpoints
at the begin of the main loop, we don’t have to save S since it won’t change from one capture
to another, and it will be restored by the execution of the first part.

In fact, we remark that drivers are already initialized at the beginning of the first iter-
ation, so, we don’t have to save anything special about them in the checkpoints. If there
are Java objects associated with them, they will be saved, but, we don’t save any platform
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6 Julien Pauty, Gilbert Cabillic

dependent information related to the drivers. For example, for the display driver, we don’t
save in the checkpoints how the display is opened or what the resolution is. However, Java
objects related to the display will be saved and restored, and the initialization will be done
during the first part of the application. Therefore, the display will be saved and restored
without any dedicated code.

If the program is multi-threaded, we suppose that the threads are synchronized at the
end of the main loop. During the captures, the monitors will always be in the same state,
S0, it isn’t necessary to save it.

Because we don’t have to save the program counters, stacks’ state, drivers’ state and
monitors’ state, the only data we have to save is the objects’ state and the static fields of
the used classes.

3.2 Global checkpointing

Our first technique is global. We save every object and every static field. To get objects’
and static fields’ state, we use internal JVM’s functions. We can’t use serialization because
it’s not supported by MIDP for instant. Objects are stored linearly in a file. For each object
we save its fields, its class name and its references to others objects. The class name is
necessary to reconstruct the object during the restoration, and the references are used to
restore the links between objects.

We work with two files, one to save the current checkpoint and one where the precedent
checkpoint is stored. In this way, we always have a valid checkpoint to restore if the program
fails. If we use only one file, and if the application crashes during the capture, the checkpoint
won’t be complete and the restoration will be impossible.

To restore a checkpoint we just have to recreate the objects and to initialize them. We
must also update the static fields in the classes and restore the references between the
objects.

We divide the object set into two subsets, let the objects created before the main loop
be the subset B and let the objects created during the main loop be the subset M. We
can get another benefit from the integration of the checkpoint mechanism in the garbage
collector: the objects of the B set are created during the first part of the application, so, at
the beginning of the restoration they are already built. Thus, for B’s objects, we just have
to update fields’ value; we save cardinality of B objects creations.

3.3 Incremental checkpointing

Incremental checkpointing aims at decreasing the checkpoints’ size and getting shorter cap-
ture times. The main idea is to save only the objects that have been modified since the last
capture. Of course, the first capture must be global.

In this part, we present our two incremental techniques. The first, is a partial incremen-
tal technique since only the objects of the subset B are incrementally saved. The second
technique saves incrementally every object.

INRIA
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3.3.1 1F technique

As the global method, our first incremental method saves the checkpoints into one file. We
work with two files which are used alternately, so, from one capture to another, we keep the
same files. This method saves incrementally the set B and saves globally the set M with
the global method, so, in this part we only describe the saving method for the set B.

With this method, we must save the objects always at the same place in the files, other-
wise, we could modify objects that have been saved during the preceding captures. When an
object has been modified, it’s saved in each checkpoint file. If we save it in only the current
file, the other will contain an old state of the object. For example, we have the object A
which has been modified before the capture number N, and has been saved in the first file.
If A isn’t modified before the next capture, it won’t be saved. The second file will be the
most recent file and it won’t contain the most recent state for A. We must save A in each
file to avoid this situation.

With this method deleted objects are replaced by holes. That’s why we chose to save
incrementally only the set B. New objects are added to the set M. If we also save in-
crementally M, and if the application creates temporary objects continuously during the
execution, then M'’s size will increase monotonically. There is no object added to B during
the execution so it’s size is constant. Then, if we save incrementally only B the checkpoints’
size may change with M’s size, but it won’t grow monotonically.

The figure 4 illustrates this capture method. The left part represents capture 6 and the
right part illustrates the capture 7. Between the capture 5 and 6 the object 0bj a has been
modified, so, it must be saved in each file. Between the capture 6 and 7 the object 0bj ¢
has been modified and the object 0bj b has been deleted. Thus, obj b is replaced by a hole
in the files and obj ¢ is saved.

Capture 6 : obj_a modified Capture 7 : obj_c modified, obj_b deleted

Object set to save

Object set to save

\ date 6 date 6
obj_a obj_a
obj_b hole
obj_c obj ¢
File 0 File 0
date 5 date 7
obj_a obj_a
obj_b hole
obj_c N obj_c
File 1 File 1

Figure 4: Principle of the 1F method
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8 Julien Pauty, Gilbert Cabillic

Since the checkpoint’s files have the same structure, the restoration method is similar to
the global method, with an extra management of holes.

3.3.2 NF technique

Now, we present our second incremental technique. This time, we save incrementally every
object of the application. To avoid the problem of the file size and the holes, we choose
to use two files per object and two index files (see figure 5). Therefore, for each object we
have the file for the last valid state and the file for the next capture. For each capture, the
first thing to do is to save the modified objects in the free files, then we create the index file
where we put the filenames where objects are stored. The static fields are saved at the end
of the index file.

The figure 5 illustrates this method. We have the object obj a which has been modified
between the capture 5 and 6. The index file 0 indicates that the actual valid file for this
object is the file 0bj a.0, so during capture 6 the object will be saved in the obj a.I file.
Between the captures 6 and 7, the object 0bj c is deleted and the object obj b is modified,
so, we save obj b and delete the files associated with the obj c.

Capture 6 : obj_a modified Capture 7 : obj_b modified, obj_c deleted

Object set to save Object Set to save
date 6 . i date 6 . .
ob] &l obj_a.0 obj_a.l ob] &l obj_a.0 obj_a.l
obj_b.1 obj_b.1
obj_c.0 - - obj_c.0 -
Index fileo | °PI-P0| | obib-1 Index file 0 obj_b-1
date 5 date 7 Objects files
obj_a.0 obj_a.l (2 files per object)
obj_b.1 - - obj_b.0
obj_c.0 Objects files Index file 1
Index file 1 (2 files per object)

Figure 5: Principle of the NF method

Restoration is not the difficult part of this method, we look in the index file to see what
objects we have to recreate, then we find the corresponding files, create and update the
objects.

INRIA
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4 Performance evaluation

In this section we evaluate our three techniques. The evaluation is done via a benchmark
and two applications. The benchmark is useful to observe the mechanism’s behavior when
the number of saved objects increases. Applications are used to put the mechanism in real
life situations.

4.1 Experimental conditions

Scratchy is targeted to mobile devices, such as PDAs or cell phones. It can also run on a
classical PC under Linux, which eases the development and the tests. Our evaluations have
been done under such conditions: on a PC running Linux. The first remark we make is that
these conditions are different from those where Scratchy is supposed to be used. The results
that we’ll get must be interpreted remembering those extra experimental conditions.

Each test is done twice. The first time, we measure the capture time excluding the time
taken by disk operations. In this way, we get more system independent results. Nevertheless,
we mustn’t forget that measured times are processor dependent. The second time, we include
the time taken by the disk operations, so, we get results linked to our testbed.

4.2 Performance evaluation with a benchmark

The first series of tests is done with a benchmark. This program is intended to observe the
program’s behavior when the number of saved objects increases. For the global method the
benchmark creates n objects and takes a checkpoint, so, each time we save n objects. The
benchmark is executed with 0 < n < 10000. For the incremental techniques, we create a
fixed number of objects n, we modify m objects and take a checkpoint, so we save m objects
each time. We choose n = 10000. For the first incremental method we measure the capture
time for the object set B. For the second incremental method, we measure the capture
time for all objects. We present the results for the global method and for the incremental
methods separately.

4.2.1 Without disk operations

We present on figure 6 the results for the global method. The curve is linear with small
variations due to independent OS activities. By linearizing the curve, we get the equation
which gives the time ¢4 to capture n objects with the global method:

tg =6,8n %1074 (1)

Next, we present on figure 7 the results we get for the incremental methods. The vari-
ations for the two methods are also linear. We can’t compare directly the two incremental
methods each other with these curves, because for the 1F method the benchmark measures
only the capture time of the B set, for the NF method it measures the capture time for every
object. Nevertheless, we can compare the incremental methods with the global method to
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7ms

6 ms

5ms

4ms

3ms

Capture time

2ms

ims

0Oms

— Global method

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of saved objects

Figure 6: Capture times for the global method without disk operations

see if they can decrease the capture time. To achieve this, we draw an horizontal line that
represents the capture time for 10000 objects.

35ms

30ms -

25ms -

Capture times

10ms

5ms

20ms -

15ms -

— 1F method
—— NF method

Capture time of 10000 objects with the global method

Oms . . . . . . . . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of modified objects

Figure 7: Capture times for the incremental methods without disk operations

For the 1F method, the curve is always under the horizontal line. We conclude that
the capture time with this method, for the object set B, is always less or equal to the
global capture time. Let tg be this time and tpg be the time to capture B with the global
method. We have tg < tgg. The set M is saved in the same way with the 1N method and

INRIA



Local Checkpointing for Embedded Java Applications 11

the global method, so, the capture time t;; for M is the same for the global and the 1F
method. Let ¢;n be the total capture times for the 1N method. We have t1xy = tp + tm
and tg = tpg + tu, S0, we always have t; v < tg.

For the NF method, if m > 1400, the time taken by the global method is shorter than
the time taken by the NF method. For an application which modifies too much objects this
method will be slower than the global method. Let typ be the capture time for the NF
method.

We give now the two equations of the linearized curves:

tg =3.8m*10"* 4+ 3n % 107" withO<m <n (2)
tnr =2,9m*107% +2nx 1074 + 0.8 with 0 <m < n (3)
Then, with the equations (1), (2), (3), we give the two inequalities (4) and (5) that give

the maximum number of modified objects to keep shorter capture times with the incremental
methods.

mp <n (4)
4,80 x1074 -0,8
2,9% 103 ()

mnr <

4.2.2 With disk operations

We now present results with disk operations times. Capture times for the global method
are represented on the figure 8. These results are linked to the testbed. We present them
to show the behavior of the mechanism when we really take checkpoints on the disk.

For the global method the curve is still linear. We observe that capture times increase
significantly when disk operations times are included. For example, the capture time for
7000 objects is 4.8ms without disk accesses times and 12.1ms with. In this case, the disk
operations time represents 60% of the total time.

This performance fall is normal because the base algorithm is relatively fast if we exclude
disk operations. In fact, even if disk accesses are buffered by the system, they are fairly
numerous and this bottleneck is difficult to avoid. This is one of the main issue with
checkpoint mechanisms.

Now, we linearize the curve and obtain the equation:

tg =1.7n %1073 (6)

The figure 9 presents the results for the incremental methods. As for the global method,
the capture times increase when disk operations are included. The curves are also linear.
This time, the capture times for the 1F method are not always less or equal than those
obtained via the global method. For an application of 10000 objects, the number of modified
objects mustn’t exceed 1100 for the 1N method and 500 for the NF method.
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18 ms

— Global method

16 ms

14 ms

12 ms
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8ms

Capture time
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2ms
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Number of saved objects
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Figure 8: Capture times for the global method with disk operations

350 ms

— 1F method
—— NF method
Capture time of 10000 objects with the global meth
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250 ms

200 ms

150 ms

Capture times

100 ms

50ms

oms I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of modified objects

Figure 9: Capture times for the global method with disk operations

If we compare capture times with or without disk accesses, we note that the mechanism
spends most of its time in disk operations. This aspect is reinforced with the incremental
methods because they make more disk operations than the global one. For the NF method
we must open as many files as we have objects to save. For the 1F method, many seek
operations are necessary to jump over the holes or to go to the position where the current
object must be saved.

INRIA
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We linearize the curves and give the corresponding equations:

tlF = 15m % 10_3 (7)
tnr = 33.7Tmx 1073 (8)

Then, we obtain the inequalities (9) and (10) that give, for each method, the maximum
number of modified objects to keep shorter capture times with the incremental methods.

mip < 0.11n 9)
mnr < 0.05n (10)

These inequalities show that there mustn’t be more than 11% of modified objects for the
1N method and more than 5% for the NF method. Even if these limits seem very low, we’ll
see that they are sufficient to decrease the capture time for some applications.

4.2.3 Results analysis

First of all, without the disk operations time, we have an incremental method that is always
quicker than the global method. This result would be conserved on a PDA or a cell phone,
since this comparison isn’t dependent on the processor frequency. Capture times would
certainly be greater but the 1N method would still be quicker than the global one.

The second series of tests shows us that the time taken by the storage part could be very
important, so, the storage device must be well chosen. On an embedded wireless device,
the checkpoints may be saved in memory, thus, the time for the storage shouldn’t be as
important as with a hard disk. Nevertheless, the checkpoints shouldn’t be stored only in
memory, because it’s not a reliable storage support, since the content of the memory is
lost when the device is powered off. One solution could be to send the checkpoints via
the network to servers or wireless access points. We could also use flash memory, with the
drawback that the number of write operations are limited with this kind of memory.

4.3 Performances evaluation with applications

We now evaluate our three methods with two Java midlets: a 3D maze and a minesweeper.
This evaluation is intended to study the behavior of our mechanisms with real applications.
The applications are midlets, so it will confirm that our mechanism works with this class of
applications. In these tests, we take a checkpoint at each iteration of the applications’ main
loop.

4.3.1 Without disk operations

We measure the mean capture time for each application and for each method. Results are
presented in table 1. For the maze, only the 1F method gives shorter capture times because
it modifies too many objects in its main loop. For the minesweeper the incremental methods
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14 Julien Pauty, Gilbert Cabillic

are both quicker than the global method. This time, the NF method is also quicker than
the global method because the minesweeper modifies very few objects.

Maze Minesweeper

G | 0.80ms | 0.054% | 0.41ms | 53.4%
1F | 0.51ms | 0.050% | 0.18ms | 31.6%
NF | 1.80ms | 0.260% | 0.22ms | 35.3%

Table 1: Capture times without disk operations

We also measure the part of the total execution time taken by the checkpoints capture.
The results show that the maze has much more longer iterations than the minesweeper. By
taking a checkpoint every fifty or hundred iterations we could greatly reduce the part of the
minesweeper. If we exclude disk operations time, we capture around 1300 checkpoints per
second with the minesweeper. Five checkpoints per second is sufficient for such application,
in this way the part would be less than 0.01%.

‘ B Garbage collector time O Capture time
4,5
Maze
4 —
3,5
3 B
2,5
2 B
Minesweeper
1,5 1 —
1 B
N l] il
0 p
G 1F NF G 1F NF
OCapture time 1,60 | 2,50 | 3,40 0,84 | 0,25 | 0,45
B Garbage collector time | 0,73 | 0,73 | 0,73 0,25 | 0,25 | 0,25

Figure 10: Interrupt times (in ms) for the maze and the minesweeper without disk operations

We also measure the time taken by the garbage collector. Thus, we get the total interrupt
time for the couple garbage collector/checkpoint mechanism. This time is interesting because
it represents the total time spent by the JVM doing useless tasks from the point of view
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Local Checkpointing for Embedded Java Applications 15

of the application. Thus, it must be as small as possible. Results are presented on figure
10. We remark that the time taken by the garbage collector isn’t negligible, it can represent
more than 58% of the total interrupt time. The garbage collector time is constant because
the algorithm is the same for each method.

4.3.2 With disk operations

In this part we present the same results as for the preceding one, except that we include
the disk operations times in the capture times. We also present restoration times and the
volume of saved data.

Capture times Now, we redo the tests and include the time taken by the disk operations.
Results are presented in the table 2.

We remark that, as for the benchmark, performances fall. This time, we can see that, for
the maze, the global method gives the shortest capture times. Both incremental methods
give worse results because they imply many disk operations which are a real bottleneck. For
the minesweeper, both incremental methods are quicker than the global method, and the
1F method gives the best capture time.

Maze Minesweeper
G | 1.60ms | 0.25% | 0.84ms | 74%
1F | 2.50ms | 0.35% | 0.25ms | 41%
NF | 3.40ms | 0.47% | 0.45ms | 53%

Table 2: Capture times with disk operations

We also measure the part of the total execution time taken by the checkpoint capture.
For the maze, this part is still reasonable. For the minesweeper the part is bigger with disk
operations than without. This result is awaited since the checkpoints capture is longer and
the loop’s useful time is the same with or without the disk operations. If we capture five
checkpoints per second for the minesweeper, the part of the total time is less than 0.01%.

The time taken by the garbage collector doesn’t change if we include the disk operations
times. We present the global results on figure 11. The part taken by the garbage collector
is less important this time because the capture times have increased.

Restoration times Generally, the restoration times get less emphasis than the capture
times. However, they are really interesting since the checkpoints are destined to be restored.
We present in table 3 the mean restoration time for each application and each method.
These results include the disk operations time. Restoration times are globally the same for
the global method and the 1F method. This is normal because the checkpoints files have
the same structure (except the holes). Restoration times are greater for the NF method
because we need to open one file per saved object.
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B Gabage collector time O Capture time

Maze

2,5

1,5 1

Minesweeper

N

G 1F NF G 1F NF
O Capture time 0,80 | 0,51 1,80 0,41 0,18 | 0,22
B Gabage collector time | 0,73 0,73 0,73 0,25 0,25 0,25

Figure 11: Interrupt times (in ms) for the maze and the minesweeper with disk operations

Maze | Minesweeper
G 3.8ms 1.6ms
1F | 4.0ms 1.7ms
NF | 15.4ms 6.6ms

Table 3: Restoration times

Volume of saved data Now we present in table 4 the mean volume of saved data for each
method and each application. We also compare the volume of saved data for the incremental
methods to the volume saved with the global one.

Maze Minesweeper

G | 226000 | 100% | 136000 | 100%
1F | 196000 | 87.0% | 2650 1.9%
NF | 98000 | 43.0% | 2380 1.8%

Table 4: Checkpoints size (in bytes)

The minesweeper modifies very few objects during its execution, that’s why, for the
incremental methods, the volume of saved data is very small. For the maze, the volume
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of saved data is much more important for the 1N method than for the NF method. This
seems contradictory since the capture times are greater for the NF method. This shows
that, for the testbed, the volume of saved data has less influence on the capture time than
the number of open files operations, which are fairly numerous with the NF method.

4.3.3 Results analysis

The first series of tests shows that it’s possible to have shorter capture times with the
incremental methods for standard applications, if we exclude the time taken by the disk
operations. The 1F method is the quickest for both applications. The NF method gives
shorter times only for the minesweeper because the maze modifies too many objects. These
results confirm those we get with the benchmark.

The second series of tests shows us that it’s possible to decrease the capture times with
the incremental methods, for at least one application, even if we include the disk operations
times. We can expect at least equivalent or even better results for the incremental techniques
on a PDA, if we save the checkpoint in a storage device quicker than a hard disk.

Restoration times are very short, so for the user, their is no difference between a normal
start of the application and a start including a checkpoint restoration. If we don’t take too
much checkpoints per second, the time taken by the captures is negligible compared to the
total execution time, so the mechanism is totally transparent from the user point of view.

4.4 Tracing gains

In this section we present the gain we get by doing only one tracing. We measure the mean
time for a tracing for each application and present the results in table 5. To get the total
time if we had two tracings we add the capture time plus the garbage collection time plus
the tracing time. Let tor be this time. Then, we get the gain by dividing the tracing time

by tZT-

Maze | Minesweeper
G | 0.45ms 0.18ms
1F | 0.34ms 0.12ms
NF | 0.37ms 0.14ms

Table 5: Tracing times
Gains are in the table 6. They are not negligible, we obtain a real speed improvement.

For the 1F method we save 22% of the total time tor. The gain is less important if we
include the disk operations times, because t27 is bigger and the tracing time constant.
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Without Disk With Disk
Maze | Minesweeper | Maze | Minesweeper
G | 22% 19% 14% 13%
1F | 22% 22% 10% 20%
NF | 13% 23% 8% 16%

Table 6: Gains obtained by using only one tracing

5 Related works

In the area of embedded systems and more particularly PDAs, checkpointing has been
proposed for applications distributed over multiple PDAs. An approach around “mutable”
checkpoints is presented in [1]. The distributed checkpoint is composed of local checkpoints
(one for each node). The problem of the local checkpoints capture is not detailed. Our
techniques could be used to take these local checkpoints and build a working distributed
checkpoint mechanism for PDAs.

A checkpointing tool for Palm OS has been proposed in [5]. This tool has been tested
for some games. The approach rely on the fact that the data used in the programs is
declared at the same place, so, by putting two special variables around the data zone, the
mechanism can detect the boundaries and save the entire block. This work proposes only
global checkpointing and is specific to the Palm OS. Our checkpointing mechanism is only
dependent on the JVM, it’s available for all the architectures supported by the JVM.

Checkpointing techniques have been developed for classical applications programmed in
C. In [8], a C to fault tolerant C compiler under Unix is presented. A library to checkpoint
C program under Unix is proposed in [7]. These tools checkpoint a complete C program.
We could apply such techniques directly to the JVM, but it would oblige us to checkpoint
the entire JVM. This would imply bigger checkpoints than with our solution.

Checkpointing incrementally Java programs is proposed in [4]. This method puts the
checkpoint mechanism directly in the applications. Checkpointing is proposed via interfaces
that have to be implemented in the classes which must be checkpointed. This approach is
interesting for new applications, but, for the existing ones, the code must be modified to add
the checkpoint mechanism. In fact, our mechanism requires also some code modifications,
but they represent less than ten lines.

6 Conclusion and future works

Embedded personal devices become more and more pervasive. There is no doubt that they
will be implied in distributed applications. Such programs need a reliable execution envi-
ronment. This can be achieved with the checkpoints capture/rollback recovery technique.
This paper presented three local checkpointing techniques for embedded Java applica-
tions. The checkpoint module was integrated in the JVM. We analyzed the mechanism’s
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behavior with two series of evaluations. These evaluations showed that the incremental
methods can decrease the capture times. Our mechanism is transparent for the user and
doesn’t affect much the programmer. We also demonstrated that our mechanism is usable
with the Java midlets.

Our future works will focus on the evaluation of the mechanism on a real cell phone, with
the JVM executed over a real time embedded system like Symbian OS. We plan to study
the use of micro optical disks or IBM micro drives to address the stable storage problem.
We will mainly concentrate on performance and energy consumption.

We’ll also make the mechanism smarter by enabling it to choose the frequency capture.
This frequency will be calculated in order to limit the overhead to a value specified by the
user. The mechanism will also choose the best method according to the application.

Starting from our checkpoint mechanism, we’ll study the feasibility of a processes migra-
tion mechanism. Indeed, we must save the state of the process before moving it. Processes
migration could, for example, enable us to save energy by moving a MP3 player from our
PDA to our desktop computer when we enter office, and to transfer it back to the PDA
when we leave.
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