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Abstract: This report develops a parametric model for automatic 3D building reconstruc-
tion based on a Bayesian approach from PLEIADES simulations. High resolution satellite
images are a new kind of data to deal with 3D building reconstruction problems. Their
“relatively low” resolution and low signal noise ration do not allow to use standard methods
developed for the aerial image case. We propose a parametric approach using Digital Eleva-
tion Models (DEM) and associated rectangular building footprints. The proposed method is
based on a Bayesian approach. A Markov Chain Monte Carlo technique is used to optimize
the energy model.
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Un Modéle Paramétrique pour la Reconstruction 3D
Automatique de Batiments a partir d’Images
Satellitaires Haute Résolution

Résumé : Dans ce rapport, nous développons un modéle paramétrique pour la recons-
truction automatique de batiments en 3D fondé sur une approche bayésienne & partir de
simulations PLEIADES. Les images satellitaires haute résolution représentent un nouveau
type de données permettant de traiter les problémes de reconstruction 3D de batiments.
Leur résolution “relativement basse” et leur faible rapport signal sur bruit pour ce type de
problémes ne permet pas l'utilisation des méthodes standard développées dans le cas des
images aériennes. Nous proposons une approche paramétrique utilisant des Modéles Numé-
riques d’Elévation (MNE) et les empreintes de batiments associées modélisées par rectangles.
La méthode proposée est fondée sur une approche bayésienne. Une technique de type de
Monte Carlo par Chaines de Markov est utilisée afin d’optimiser le modéle énergétique.

Mots-clés : Reconstruction 3D de batiments, approche bayésienne, technique de Monte
Carlo par Chaines de Markov, modéle paramétrique.
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Notations
S a set of sites s
I a set of intensities = associated with S : I = {z,/s € S}
R object space of a rectangle (C R%)
e rectangle configuration associated with I (€ RY)
N number of rectangles in C
S subset of S whose sites are inside the rectangle i € C
A; roof height space of element i € C (C R?)
F; roof form space of i (C R?)
T; mark space of element i : T; = A; X F;
T state space : T =T1 X ... x Ty
0 a element of T: 0 = (0,);ce
fo function from S; to R which associates the roof height at each site of S;
v neighborhood relationship defined on R

h(.) a posteriori density on T
(©)ten  Markov chain on T

m(.) target distribution defined on T
Dy sequence of temperatures

M collection of simple parametric models
Nyt number of models : Nyt = card(M)
7™ mark space of element i and model M,,

Uon bijection mapping from model M,, to M,
J jump matrix

INRIA
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1 Introduction

During the last decade, automatic 3D building reconstruction has been a topic of interest.
Several automatic methods giving satisfactory results have been developed using aerial im-
ages or laser scanning. Aerial images are the most popular data to deal with this problem.
Different techniques have been proposed such as perceptual organization [8], parametric
models [15] or structural approach [2]. Laser scanning is also very popular since the de-
crease of acquisition cost. Although laser measurements are very accurate, laser scanning is
known to have a low density of points. For instance, we can quote the parametric approach
of [6].

Nowadays, this problem can be tackled by another kind of data : the satellite images. The
new satellites own sensors which have sub-metric resolutions. The main advantages of satel-
lite data compared to aerial images are a high swath width and ground coverage. However,
such data have a “relatively low” resolution and a low signal noise ratio to deal with 3D
building reconstruction. Those drawbacks do not allow to use standard methods developed
for the aerial image case and lead us to propose a new method based on important a priori
knowledges concerning urban structures.

To do so, a new parametric method for automatic 3D building reconstruction based on a
Bayesian approach is developed. This study uses results obtained in the Ariana research
group [9] which provide rectangular building footprints based on marked point processes
from a Digital Elevation Model (DEM). These results are known to automatically provide
efficient building footprints (in 2D). A parametric model is preferred since it is less complex
and more robust to satellite data. A priori knowledges of models and their interactions, and
a likelihood which fits models to the DEM allow to define an energy. Markov Chain Monte
Carlo methods are used to optimize this energy.

2 A Bayesian approach in a continuous state space

2.1 Rectangular building footprint by marked point processes

In this report, we use a building extraction algorithm based on previous work [9], [11]. The
authors aimed to extract the building outlines from altimetric descriptions of urban areas.
The model [10] is based on marked point processes. These mathematical objects are random
variables whose realizations are configurations of geometrical shapes. Objects are rectan-
gles, i.e. simple geometrical forms which allow to efficiently describe building footprints. A
data term based on a discontinuity detection is introduced. An a priori term incorporating
geometrical interactions between rectangles is also developed in order to regularize the rect-
angle configuration. An energy is associated to each rectangle configuration, and the global
minimum of this energy is then found by applying simulated annealing to a Reversible Jump
Monte Carlo Markov Chain sampler. Figure[l/shows a result provided by this method from
a DEM based on PLETADES simulations.

RR n° 5687
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Figure 1: (a) : a Digital Elevation Model (©IGN) (b) : extraction result

The results of this method will be used as input data to our problem. Let us consider S,
a set of sites and I = {x4/s € S}, a set of associated intensities defined for a given DEM.
R is the object space of a rectangle which is a subset of R®. So, a rectangle is defined by
five parameters : its center (x.,y.) and its length, width and orientation (L,l,#) as shown
in the figure[2.

The results of Ortner and al.|10] permit from a DEM defined by I = {zs/s € S} to
know the associated rectangle configuration € € RY (where N represents the number of
rectangles).

Definition 1 Let us consider i € R, ¢ > 0. We call :
e S;, the subset of S which sites are inside the rectangle i.

o Sf, the subset of S which sites are inside the rectangle ic = (x¢,ye, L + €,1 + €,0).

2.2 The proposed parametric model

The DEM defined by I and the associated rectangle configuration € are considered as known.
The set of data is denoted by D. It is given by :

D={z,€l/s€S;,icC}

INRIA
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Figure 2: Elements of the object space R

A parametric approach is used. We call T;, the mark space of element ¢ € C. T; = A; x F;
is composed of the roof height space A; and the roof form space Fj.
The roof height space A; is a compact of R? defined by :

Ai = {(HgaHC)/Hg S [HgminyHgmaw];Hc € [Hcmin7Hcmaw]}

where H, and H. represent respectively the getter of roof height and the roof top height of
the parametric model (see figure(3).

Roof heights are quite different in urban areas. Therefore, it is important to have well
defined roof height spaces A;. [Hgmin, Hgmaz) and [Hemin, Hemaz] must be relevantly fixed
for each rectangle. So, a getter of roof height and a roof top height are estimated by using a
method we have proposed and which is developed in Annex A. Those estimations allow to
center both intervals [Hgmin, Hgmaz] and [Hemin, Hemaz| for each rectangle.

The roof form space F; is a subset of R* such that :

F; = {(a,b,c,d)/(a,b) € [0,1)?, (¢c,d) € [0,L]*,a+b < I,c+d < Land(l—a—b)(L—c—d) = 0}

The term (I —a —b)(L — ¢ — d) = 0 constrains the roof top surface to be null (see figure(3).
Roof tops with a non-null surface are improbable. Therefore, the roof top of the proposed
parametric model is a point or a segment.

Definition 2 Let us consider 0; € T;, i € C and n > 0. 0; will be said n-weakly symmetric if
la—b| <n or|c—d| <n. 0; will be said n-strongly symmetric if |a —b| <n and |c—d| <.

Definition 3 Let us consider 0, € T;, i € C. We call fy,, the function from S; to R which
associates the roof height at each site of S;.

RR n° 5687
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Hc
Hg
c d
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b

Figure 3: Parametric model of buildings

2.3 Bayesian approach

Here the aim is to find the best configuration § € T = Ty x ... X T, where (1,..,N) = C
that follows prefixed criteria. We use a Bayesian approach known to be robust and useful
for parameter estimation problems.

It consists in defining the a posteriori density h using Bayes rule. We define the measurable
space (T,B(T),u(.)) associated to the Lebesgue measure u(.). We consider the random
variable © distributed in T which follows the density h defined as :

h(6) = 5 exp(~U(6) M)
where U is a Gibbs energy and Z a normalizing constant of the density. In most cases, the
normalizing constant cannot be computed or estimated since the state space dimension is
very large. Then, Z is not evaluated : the density h is not normalized.

The a posteriori density represents the probability of the configuration § € T knowing the
data D. Although it should rigorously be written h(6/D), it will be called h(6) in this
report. By using Bayes rule, we obtain :

hp(6)L(D/0)
9(D)

where L(D/0) is the likelihood. It represents the probability of observing the data D knowing
the configuration 6. h,(6) is the prior density which allows to regularize the configurations.

o) = o< hy(0)£(D/0) (2)

INRIA
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The Maximum A Posteriori (MAP) estimator is then used in order to obtain the configura-
tion which maximizes the a posteriori density A :

Orrap = argmax h(6) 3)
9

In the next section, we define the likelihood of our model (also called data term) and the
prior term (also called regularizing term).

2.4 Likelihood

Let us consider D;, the partial data of rectangle i defined as D = (J;. D;. By considering the
hypothesis of conditional independence (it means we disregard the covering of rectangles),
the likelihood can be expressed as :

L(D/0) = ] £(D:/6:) (4)
ic€C

L(D;/6;) represents the probability of observing D; knowing the configuration 6;. It is given
by :

L(Di/0;) = exp(=|fo, —x[ls) , i € C (5)
||.||; corresponds to the norm defined from the function space of S; to R by :
11l = — Td ; |£(5) (6)

More explicitly, we obtain :

L(D/Q)zexp(—zcad > Ifou(s —xs> (7)

i€C 9€S

So, the likelihood is linked to the error of the L; norm between the DEM and the parametric
model of the configuration . The L; norm is preferred to the quadratic norm since the DEM
is neither exact nor accurate. The quadratic norm is too sensitive to the DEM errors.

2.5 Regularizing term

The regularizing term allows to insert constraints about the configuration §. This term is
composed of an a priori related to roof forms and interactions between objects (i.e. energy
models of second-order U(6;,6;) where 6;,6; are elements of §). We want to favor some
configurations and penalize other ones.

To do so, a neighborhood between objects of # must be defined.

Definition 4 Let us consider 0; and 0;, two distinct elements of a configuration 6 which
are respectively associated with i and j € C. j is a neighbor of i if and only if S{ U S5 # <.
We note ivj, the set of neighbor pairs of the configuration 6.

RR n° 5687



10 Lafarge € Descombes € Zerubia € Deseilligny

Figure 4: Neighborhood relationship v - (a) : non neighboring rectangles (b) : neighboring
rectangles

The existence of a neighborhood is very important. It allows to consider the problem at
a higher level (i.e. by considering a building or a blockhouse as a collection of rectangles
instead of seeing it as a unique rectangle).

The prior density derives from the different energy terms developed in the following. It
is given by :
hp(0) = exp —[Us(0) + Un(0) + U(0)] (8)

2.5.1 Roof symmetry

In urban areas, a large majority of buildings have symmetric roofs. Models which are not
at least weakly symmetric are improbable models (see figure [5). We aim at favoring the
weakly and strongly symmetric models with respect to the other ones.

Let us consider ns(6) and ng (@), the numbers of objects of the configuration § which are -
weakly and 7-strongly symmetric respectively (7 is a parameter having a sub-metric value).
The constant negative potential w; and wp are associated with n(6) and np () respectively.
The energy related to the symmetry is then given by :

Us(0) = wyng(0) + wrnp(0) (9)

It can be noticed that the strongly symmetric models are more favored than the weakly
symmetric ones.

2.5.2 Getter of roof height alignment

The getter of roof heights of buildings are dependent of neighboring buildings. It is important
to define an interaction term which favors the getter of roof height alignment between
neighboring objects.

This term has to be :

e attractive for similar getter of roof heights (i.e. with a difference lower than half a
floor)

INRIA
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S

Figure 5: left : Roof which is strongly symmetric, center : weakly symmetric roof, right :
improbable model

e repulsive for different getter of roof heights (i.e. with a difference between half a floor
and one floor)

e neutral for distant getter of roof heights (i.e. with a difference higher than one floor).
Therefore, the interaction must follow the function f, (see figurel6), analytically defined as

follows :
fula) = {“’h< —#)? we0,Hl]

w (10)
1+C(wh—'H€)2 , T €]H,, 00|

where H, is a constant which represents to half a floor height (in practice we take H, = 1.5
meter). wp, is a constant positive potential. C' is a constant > 1. Then, the associated

fn(x)
A

Wy, -

Figure 6: Function f,

RR n° 5687
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energy is defined as :
Un(0) = Zgh(eiﬁj) (11)
w3

where g, is a symmetrical function given by :
9n(0i,0;) = fr(|Hg, — Hy,|)

2.5.3 Roof top linking up

The continuity of roof tops in urban structures is an important point in order to efficiently
regularize the model. It is important to develop an interaction which favors the continuity
of roof tops between neighboring buildings. More precisely, this term must favor both roof
top alignment and roof top linking up as we can see in figures 8 and[7. Figure[8 shows that
some configurations are improbable since roof tops exhibit a bad alignment. In the figure[7,
we can notice that roof tops must be connected in a single point in order to have a realistic
model.

Figure 7: left : realistic configuration, right : improbable configuration

We propose an interaction which attracts the roof top extremities of neighboring build-
ings (see figure[9). The associated energy is modeled as follows :

U.(0) = Z wy d(eg,, eq, ) (12)

where ey, is the point (in R?) corresponding to the roof top extremity of the object 6; and
w, a positive constant potential. d(.,.) is the distance related to the L2-norm in R?.

Therefore, this term penalizes configurations for which roof top extremities of neighboring
objects are disjoint.

INRIA
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Figure 8: left : configuration with roof top extremities which are not linked up, right : roof
top extremities well connected

€oi = €oj

eo Co

Figure 9: left : penalized configuration, right : regularized configuration

RR n° 5687
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2.6 Optimization using simulated annealing

We want to find the configuration § which maximizes the density h(6). The Gibbs energy
associated with h is not convex. A stochastic optimization based on a Markov Chain Monte
Carlo method (MCMC) seems to be well adapted to this problem. It consists in building
a discrete Markov chain (0;):en from the state space T which converges to the desired dis-
tribution 7. This chain must be ergodic so that the distribution asymptotically converges
towards 7 for all ©y. The transitions correspond to simple perturbations of configuration 6,
they are then simulated in a simple way. The aim is to simulate a chain, from any configu-
ration 6y, during a number of iterations large enough. The samples will be then distributed
by a law close to 7.

The Metropolis-Hastings algorithm [5] is used :

o define a matrix of perturbation proposal probability @ = (g;;): jer where
gi. = q(i — .) is the density of perturbation proposal probability from the state i,

e propose a new state j according to g(i — .),

e accept the perturbation ¢ — j with a probability «;; = min{R;;, 1} where R;; is the
Metropolis-Hastings acceptance probability defined as follows :
h(4)gi
R = —22, (13)
’ h(i)gi;

The Metropolis-Hastings acceptance probability is defined such as h is the stationary
measure of the chain (©;):en.

In practice, a simulated annealing is used : the density h()DLt is substituted to A where
Dy is a sequence of temperatures which tends to zero as ¢ tends to infinity. At the beginning
of the algorithm (i.e. when the temperature is high), the process is not really selective :
it allows to explore the density modes. When the temperature decreases, configurations
which have a high density will be favored. However, it is necessary to impose conditions
concerning the temperature decay to ensure that the algorithm converges. A logarithmic
decrease Dy = log(++t)7 where c is a constant high enough to allow the exploration of local
minima of energy, permits to be sure the algorithm convergences.
The unnormalized density h has been developed in the previous section. ) needs to be
defined. A simple approach consists in taking a symmetric matrix of perturbation proposal
probability (i.e. ¢;; = ¢;;). In that case, none perturbation proposal is favored with respect
to other ones : it is the Metropolis algorithm [7]. In this section, we use this algorithm
where g;; follows uniform distribution.

INRIA
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2.7 Results
2.7.1 Parameter setting

In most cases, the use of energy models implies parameter tuning. Those parameters mainly
correspond to potentials which weight the various energy terms. The likelihood is the ref-
erence term. The three other regularizing terms are weighted by one or two values (i.e. wy,
WF, Wh, Wa, wy). Those four parameters are chosen by trial and error.

It exists other parameters such as e which defines the neighborhood width (see definition
[1). The tuning of those parameters is simple because they have a physical sense in our
application. For instance, € has been set up to one meter, that is a distance which tolerates
small errors concerning the rectangle linking up and is smaller than the average width of a
street.

The cooling schedule of the temperature must be relevantly set up. A geometrical decrease
has been chosen. It gives satisfactory results and mostly allows to accelerate the optimization
process.

2.7.2 Results on PLETIADES simulations

Results have been obtained from DEMs developed at the French Geographic Institute (IGN),
using an algorithm based on [13]. We use multiple stereo pairs of PLEIADES simulations
(0.5 meter resolution - B/H=0.2) provided by the French Space Agency (CNES). Figure
[10}a represents a piece of a DEM showing the City Hall of Amiens (France). The associated
rectangle configuration € appears in yellow. Figure[10lb can be considered as the 3D ground
truth of that area. It has been semi-automatically established by the IGN from aerial images
(0.2 meter resolution) and ground maps [1].

Figure [10-c represents the top view result. Even if some roof tops are not perfectly linked
up (due to the parametric model), the result is good with respect to the ground truth. On
the figure [10td, we can see the importance of a priori knowledges with respect to getter of
roof height alignments and roof top linkings up.

We can notice by comparing figures[10-b and [10rc that the rebuilt model seems wider than
the real building. It is due to DEMs which have a default, i.e. they are “drooling” on the
building contours : the rectangular building footprint is then wider. Figure 11 presents
a result on a blockhouse (Amiens - France). Despite a satisfactory reconstruction, this
result shows the consequences of rectangle superposition and bad-positioning problems on
the 3D modeling. However, a post-processing could allow to compensate this default using
a convexity criterion.

Figure 12/ shows a result on a larger area which represents Amiens downtown. Figure 12-c
represents the associated error map which provides three pieces of information. First, it
provides the not found areas of the building extraction (in black). They correspond to low
flat buildings of inner courtyards that the building extraction method [10] cannot detect.
Then, we can see the false alarms of building extraction (in white - rate : 12%), mainly
located arround the reference building footprints (due to a “drooling” DEM). Finally, it
provides Z-errors between the reconstruction result and the 3D ground truth (red to yellow).

RR n° 5687
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The corresponding Root Mean Square Error (RMSE) of common building footprints is 3.2
meters. This value is satisfactory since we use 2.5 meter Z-resolution DEMs.

(c) (d)

Figure 10: (a) :DEM of Amiens City Hall (France) associated with its rectangle configuration
(b) : 3D ground truth (©IGN - established from aerial images (0.2 meter resolution) and
ground maps) (c) : result (top view) (d) : result (front view)

INRIA
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() (d)

Figure 11: (a) : DEM of a Amiens blockhouse (France) associated with its rectangle configu-
ration (b) : 3D ground truth ((©)IGN - established from aerial images (0.2 meter resolution)
and ground maps) (c) : result (top view) (d) : result (front view)

RR n° 5687
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Z-error (meter)

0
Il oot found building footprints

\ :l false alarms of building footprints

(©)

Figure 12: (a) : 3D ground truth of Amiens downtown ((Q)IGN - established from aerial
images (0.2 meter resolution) and ground maps) (b) : result (c) : error map

INRIA
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2.7.3 Comments

The results are in general satisfactory. However, the computing time is high. For example,
5 minutes are necessary to obtain the result of Amiens city hall (see figure[10-c / image size
= 158 x 170) using a Pentium IV-3Ghz. It is the main problem of the proposed method.
However, it is important to notice that a large majority of buildings (close to 90%) have,
on the ground truth, a symmetric roof. Our state space T is a very high dimension space
where symmetric models are a particular case. It seems to be relevant to define a new state
space which takes into account this symmetry information, to avoid wasting time exploring
a space where a large majority of configurations are improbable. This is the topic of the
next section.

3 Improvements : towards a variable dimension space

We want to propose a parametric model of buildings which is more relevant than the previous
one in order to reduce computing time. It consists in taking into account the high occurrence
of symmetric roofs. The parametric model of the previous section is replaced by a collection
of simple and relevant models.

3.1 Model collection

Let us consider M = (M,,)me[1,n,], @ collection of simple parametric models, where Ny
is the number of models (here, Ny = 13). Figure [13 shows the different models used
in this collection (for more details, see annex B). All these models are particular cases of
the previous parametric model (see section [2). The state space is then strongly reduced.
The new one is composed of relevant models which are parametrically simple and at least
weakly-symmetric.

The Bayesian energy model defined in section [2/is used again. Those models have con-
tinuous state spaces 7™ | m € [1, Ny| with various dimensions (between 1 and 4 according
to the complexity). The dimension of state space T is then variable. In this case, the op-
timization method used in section [2/is not applicable any more. However, it is possible to
adapt the MCMC method to the case of a variable dimension state space as shown below.

3.2 RIJMCMC
3.2.1 Introduction

The Reversible Jump Markov Chain Monte Carlo method (RJIMCMC) has been introduced
by Green |4]. He has extended the formalism introduced by Hastings |5] by allowing the
Markov chain to realize small jumps between spaces of variable dimensions respecting the
reversibility assumption of the chain. Propositions are based on “small jumps” which means
only one object of the global configuration will be concerned by a new proposition. This
algorithm builds a Markov chain (6;):cn using :

RR n° 5687
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D=1
D=2
D=3
D=4

Figure 13: Collection of parametric models (top view) - D is the dimension of the parametric
models

e the objective law 7(.) of the chain defined on T and known up to a normalizing constant
(h(.) is the unnormalized density of 7 (.)).

e proposition kernels Q(.,.) defined on T x B(T).

e a symmetric measure 9(.,.) associated with Qx(.,.) and defined from T x 7 such as
the joint measure 7(.)Qk(.,.) is absolutely continuous with respect to 1y(.,.). This
assumption allows to ensure the existence of the Radon-Nikodym derivative fx(.,.)

defined as follows : J J
Vi (dz, dy)
The probability of accepting the proposition is min(1, Ry) where Ry is the Green ratio given
by :
_ Jely,x) _ m(dy)Qu(y, dr)
fk(x7y) W(d.fC)Qk(,I,dy)

The reversibility assumption is ensured due to the symmetry of the measure ¢,. RIMCMC
technique is especially well adapted to point processes as shown in [3].

fk(xvy) =

Ry (z,y) (15)
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3.2.2 Jumps between models

Let us consider two models M,, and M,, and a move (or jump) from = = (m,6,,) to
y = (n,0,). The idea of Green is to create a bijection between the spaces T(™ and 7). 4,
is completed by a simulation w;,, ~ @mn(Umn) 060 (O, Uy ), and 0, by vpm ~ ©nm (Vnm)
into (0., Vimn) such as the mapping W,,,, between (6,,, tmy,) and (0, v;yy,) is a bijection :

(9n7 vmn) = \Ijmn(emu umn) (16)
The probability of acceptance for the move from M,,, to M,, is then :

min ﬂ-(nv en) Jnm@nm(vnm) a\I/mn (Gma umn)
ﬂ-(ma em) Jmn‘Pmn (umn) 8(9771; umn)

,1) (17)

where J,,,, is the probability of choosing a jump to M,, while in M,,, and ,,,,, the density
of Uy, (here, the wu,,, follow uniform distributions).
Finding the bijection V,,,, is a difficult problem when M,, and M,, differ from many di-
mensions [12]. In practice, the jumps are limited to moves from M,, to models with close
dimensions. It is the case in our problem : the Ny prefixed models differ from few dimen-
sions. The jumps from any model to any other one are then allowed.
For instance, we consider the jump from My to My (see figure 14). We move from 6, =
(Hy,H.) € T to 04 = (Hy,He,) € Ty (o € [0,L]). We then generate us4 according
to a uniform distribution on [0,L]. So, we have 0y = Uy4(02,us4) = Id(f2,u24) and
‘3‘1124(‘92#24) - 1.

9(02,u24)
Now, let us consider a more complex example : a jump from Mg to M;3. We move from
0 = (Hy,H.,8) € Ts to 613 = (Hy, He,0,) € Ths. It exits a bijection between 8 and
§: 0= LB In fact, B, § and « are variables belonging to [0,%], [0, %] and [0, L] re-
spectively. Then, in generating ug13 according to a uniform distribution on [0, L], 615 =

1 0 0 O
W 15(0 ) = A6 ywhere 4= |0 10 01 \We obtain |22ew@eusi) | _
613\U6,U613) = 6, U 13) where =lo o % ol e obtaln “B06uc1s) | — L
0 0 0 1

Thanks to the reversible assumption, it is important to notice that :
Ry (0, 0m) = (R (O, 0)] ! (18)
The Green algorithm can be resumed as follows :
Algorithm 1 At iteration t, if ) = (m,@fﬁ)),
o select model M,, with probability s,.,

o generate Upmp ~ Pmn(u)

e set (enavmn) = \I/mn(egrtl)y umn)
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o take Hﬁf) = 0,, with probability

O (052) )
6(952), Umn)

. 7T(7’l,9n) Jnm‘pnm(vnm)
min )
w(m, o ) JimnPrmn (Umn)

)

and take 95,1?1) = 9%) otherwise.

3.2.3 Adaptive cooling schedule

The choice of the initial temperature and of the decreasing schedule of the temperature is
an important parameter in simulated annealing. It exists a temperature, called the critical
temperature, for which the process chooses its energy shaft. Time must be spent at this
temperature in order to select the correct minima, of energy. Several adaptive cooling sched-
ules have been proposed as for instance in [9] or [14].

The idea consists in searching for the critical temperature by detecting high energy varia-
tions during some iterations. We then slow down the temperature decrease in order to have
a detailed exploration. Once the shaft is selected, we accelerate the temperature decrease.
In practice, different geometric decreases are used.

3.2.4 Adaptive jump matrix

The jump matrix J = (Jmn)m.ne(1,n,] denotes the probability that a proposed jump to
model M, is attempted starting from anywhere in T;,,. The convergence speed of the algo-
rithm directly depends on J. Proposing relevant jumps will favor the algorithm convergence.
J must be efficiently initialized in order to get a faster convergence. In figure[14| we can see
that some models are close in terms of roof structures : we call them neighboring models.
Jumps between neighboring models are then favored in the initial matrix J by imposing
Jmn = 2Jm with M, being a neighboring model of M,,, (M, being some model).
Moreover, matrix J must be able to evolve during iterations with respect to the previous
accepted and rejected propositions. More precisely, all N, iterations, we update J with
respect to rates of accepted propositions : the higher the acceptation rate of a jump, the
higher the jump coefficient of J.

Let us consider p,,., the quotient of the accepted proposition number by the refused propo-
sition number for the jumps from M,,, to M,, established during [¢t,t+ N,]. N, must be high
so that p,,, are robust. At iteration t + N, S, is updated as follows :

T pJom + (1 — p)# (19)

where p is a coefficient belonging to ]0,1]. The fact that p # 0 ensures the Markov chain
irreducibility.
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Figure 14: Jumps between neighboring models

3.3 Results

The results are identical to those of section 2l The model collection allows a correct de-
scription of urban scenes. The main advantage is the computing time which is shorter.
Computing time is improved of a factor 2. Although the adaptative jump matrix introduces
new parameters p and N, to be set up, it allows a better convergence. In practice, we take
p = 0.8 and N, = 10, 000.

Figure 15 shows the convergence of both algorithms. We can see that using RIMCMC
algorithm allows a faster convergence compared to Metropolis algorithm.

4 Conclusion

Results obtained by the proposed approach show that the use of a parametric model is
well adapted to deal with high resolution satellite images in a fully automatic context.
The 3D building reconstruction, and especially the roof reconstruction, is close to reality
: the RMSE between the reconstruction result and the 3D ground truth is 3.2 meters. It
is a satisfactory result with respect to a 2.5 meter Z-resolution DEM. Computing times
have been improved by using a model collection (that reduces space data) and a RIMCMC
optimization. However, it seems to be necessary to correct two drawbacks : artifacts due to a
non optimal rectangle overlapping and roof top linking up impossibility at some areas. Both
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Figure 15: Energy convergence - (a) Metropolis (section(2) (b) RIMCMC (section 3)
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defaults should be eliminated in the future by using post-processing based on improvements
of rectangular building footprints.
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Annex A : roof height estimations

Here, we describe a method to estimate the roof top height and the getter of roof height
from a rectangular building footprint. In fact, we estimate those heights for each rectangle
of the footprint by computing means on rectangle masks.

Getter of roof height estimation

The first step consists in selecting an area of the rectangle which is close to the getter of roof
by defining a mask (see figure[16). The mask width is proportional to the rectangle width
by a factor % Then, we select pixels of DEM which belong to the mask and we rank them
by increasing order. If we call N, the number of selected pixels, we compute the mean of
pixel values which are ranked between 0.3N, and 0.7N,. The result gives us the getter of
roof height estimation of the considered rectangle.

V) Estimation mask

Figure 16: Mask of the getter of roof height estimation

Roof top height estimation

The principle is similar to the Getter of roof height estimation. We define a mask close
to the roof top (see figure [17).The mask width is proportional to the rectangle width by a
factor i. We rank as previously the N, pixels of the DEM which belong to the mask. We
compute the mean of pixel values which are ranked between 0.85/N. and 0.95N, in order to

obtain the roof top height estimation of the rectangle.

-

] Estimation mask

»hlm
-—

Figure 17: Mask of the top roof height estimation
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Annex B : collection of parametric models

We detail a collection of simple parametric models used in section Those models have
continuous state spaces with various dimensions (between 1 and 4). Figure[18| presents the
13 models. H, and H, are the parameters of the roof height which correspond to the getter
of roof height and the roof top height respectively. «, 3, v and ¢ are the parameters of the
roof form. They belong to [0, L], [0, £], [0,1] and [0, L] respectively.

For instance, model M; is a flat roof : it is a very simple model which owns an unique
parameter (H,). In the contrary, Model M3 is a more complex roof. It owns 4 parameters
(HW H.,o, a)'

Models My to M7 have a roof top which is oriented following the rectangle length. In the
contrary, the roof top of models Mg to M3 are oriented following the rectangle width.
Five models are strongly symmetric (M;, Mg, Mg, Mg and M11). The other ones are weakly
symmetric.
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M1
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P=Hg
=2 M&
P=(Hg, Hc) P=(Hg, Hc)
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. v L .
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e

P=(Hg, He, 5, 7) P=(Hg , He, 5, )

Figure 18: Collection of models M (top view and 3D view) - D, the dimension of the models

- P, the parameters of the models
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