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Abstract: This paper considers a number of schemes for computing an approximate invariant
subspace associated with the smallest eigenvalues of a sparse symmetric (real) matrix. The approach
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Equations de correction et décomposition de domaine dans le
calcul de sous-espaces invariants

Résumé : Dans ce papier, sont étudiés plusieurs schémas pour le calcul des plus petites valeurs
propres d’une matrice creuse symétrique réelle. L’approche choisie consiste à utiliser une équation
dite de “correction” qui peut aboutir à des schémas connus du type des méthodes de Jacobi-Davidson
ou d’Olsen. Nous considérons le cas de corrections par blocs en comparant deux algorithmes. Ce
point de vue est ensuite appliqué au cas des méthodes de décomposition de domaines.

Mots-clé : valeurs propres, espaces invariants, correction, Jacobi-Davidson, Olsen, algorithmes par
blocs, décomposition de domaine



Domain decomposition and invariant subspaces 3

1 Introduction

A number of schemes have been developed in recent years for enhancing the convergence of subspace-
based methods for computing eigenvalues and eigenvectors of large matrices. These approaches
essentially take the viewpoint that the eigenvalue problem is a nonlinear system of equations and
attempt to find a good way to correct a given approximate eigenpair

���� �� , by introducing to the most
recent subspace of approximants, an information that is not redundant with this subspace. In prac-
tice, this means that we need to solve the correction equation, i.e., the equation which updates the
current approximate eigenvector, in a subspace that is orthogonal to the most current approximate
eigenvectors.

Several methods can be mentioned including the Trace Minimization method [12, 11], the
Davidson method [4, 9] and the Jacobi-Davidson approach [14, 13, 16]. Most of these methods
update an existing approximation by a step of Newton’s method and this was illustrated in a number
of papers, see, e.g., [8], and in [17].

One can think of the problem as that of solving ���	� ��

� ����� , but since there are ���	�
unknowns, a constraint must be added, for example, � � ��� � � . If the current approximate eigenpair
is � ���� �� � , it is assumed that ���� ��� � � , and that � � is the Rayleigh quotient of �� . We define the residual��� ���� � � � �� . If a correction � �! to

��"� �� is sought, then we write the equations to be satisfied as
# ���$� ��%
&� �'� 
)( ���� �  &� � �

���� �  
�+* ���� �  &� � ��,
Ignoring second order terms, this yields the system of equations,

�-�$� ��.
&�/ �0�� � � � � (1)

�1�� *  � � , (2)

The above equations can be solved in a number of ways, for example as an �-�2�3� �54 �-�6�3� � linear
system. A simpler solution is to invoke the orthogonal projector 7 � 
 �8�� �� * . Multiplying the first
equation by 7 , and observing that 79��:�$� � 7 �9�;� , yields,

7<�-�$� ���

�+ � � � , (3)

Note that this system is degenerate - i.e., it has an infinite number of solutions
 
. Among all the

solutions of this system, we require one that is orthogonal to �� , i.e., one such that 7  �  
. This

can be enforced by solving 7<���$�=�� 

� 7  ?> � � � , for
 �>

, and defining the solution to be
 � 7  ?>

(instead of
 ?>

). This
 

will satisfy the equation (1). Indeed,

�-�$� ���

�+ � 7<����� ���
&�/ �$� 
 �@7 � �-�$� ���

�+ � � � �=�� �� * ����� ���
&�/ � � � �=���� *A 
and therefore, (1) is satisfied with � �B� *  . In addition (2) is trivially satisfied because

 � 7  C> .
Note that the correction � to � � can be ignored since the new approximate eigenvalue will just be
defined as the new Rayleigh quotient. So we are left with the equation,

7<�-��� � �%
&� 7  � � � , (4)
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4 Philippe & Saad

The Jacobi-Davidson scheme, the Trace Minimization method and a number of related algo-
rithms are based on the above development. In other methods, the projection is not considered since
the matrix � is not used exactly. Instead, � is replaced by a “preconditioner” when solving the
system ��� � � ��

�+ � � � in place of the system (3). This viewpoint is most useful in a Davidson
approach to build a subspace for a projection technique [17].

The Newton-type framework just described determines one vector at a time and it is interesting
to explore situations where a block of vectors must be corrected. This is important in many practical
applications. We will explore a few block correction schemes which are derived in a manner that is
similar to what was done above for the one-dimensional case.

One of the possible applications of these schemes lies in domain decomposition methods. In
these methods, one can consider the invariant subspaces obtained from subdomains as approximate-
ly invariant for the global operator. Such an approximations can be very rough and one may be
tempted to correct them in some way. This techniques is taken to the limit and exploited in a quite
effective way in the Automated Multi-Level Substructuring (AMLS) algorithm [2, 7]. In AMLS, the
subspaces are corrected by adding correction terms from the interface variables.

INRIA



Domain decomposition and invariant subspaces 5

2 Block correction

This section examines a few schemes for “correcting” a given approximate invariant subspace. We
are given a subspace in the form of a certain basis � � # ��� � � � ������� , ��� ( and would like to find a
correction � of the same dimensions as � , such that ���	� is a better invariant subspace than � .
Schemes of this type are well-known for the case when 
 � � , and they lead to the standard Olsen’s
method or Jacobi-Davidson scheme.

2.1 Correction of an orthonormal basis

Let us assume that ����
���� � is an orthonormal basis of an approximate invariant subspace of
����
������ . In particular, � * � � 
 . Let � � � * ��� the interaction matrix whose eigenvalues are
approximations of eigenvalues of � . The residual of the corresponding subspace is :

� � ��� ����� (5)� � 
 ����� *�� ��� , (6)

The last expression shows that
�

lies in a space that is orthogonal to � , i.e.,

� * � ��� , (7)

The goal is to obtain ��� � �6� �!
��"� � � 
 � � � respectively, which will correct �#� � � � so that
the perturbed pair of matrices ���;�$� � � � �2�

satisfy the (nonlinear) equation :

� �����%� � � �#���$� � �&� � �6� , (8)

This equation involves 
 � equations and 
 �8�'
 � unknowns. In order to close the system, 
 �
equations must be added. We consider the additional constraint :

� * � � � , (9)

The above constraint may seem arbitrary but it can interpreted as follows. It can be viewed as a means
of restricting the information that is being added to the current system ( � ) to being non redundant.
Another condition we could have imposed is that the new system � �(� should be orthonormal.
This would have 
 � constraints as desired, but these constraints are nonlinear. However, up to
second order approximation these constraints will imply the requirement (9). Indeed,

�#�3�%� � * ���;�%� � � 
 ) � * � �$� * �;�$� * � �$� ,

Neglecting second order terms from the system of equations (8) and (9), yields the equations:* �+� �,�-� ��� � � � �
� * � �$� , (10)

RR n˚5748



6 Philippe & Saad

By multiplying the first equation on the left side by � * , and using relation (7) we obtain the follow-
ing expression for

�
,

� � � * �+�@, (11)

Therefore, system (10) is equivalent to solving

� 
 ��� � * � �+� ���-� � � �
(12)

and then computing
� � � * ��� . It can be easily shown that the obtained solution � satisfies� * � ��� as required.

2.2 Non orthonormal systems and the projection viewpoint

We now adapt what was developed above to the correction of a non orthonormal basis
� � 
 �"� �

of an approximation of an invariant subspace. Along with
�

is a certain representation of � in the
subspace in the form of a matrix � � 
 � � � such that � � � � and � satisfy the relation

� � � � � � � �
where

�
is a certain residual matrix. The only requirement on

�
, � , and

�
is that

� * � � � . This
implies in particular that � � � � * � ��� � � � * � � � .

We seek � � � �6� ��
���� � 4 
 � � � such that
� * � � � and

� � � �%� � � � � �$� � �&� � �2� , (13)

When the above equations are satisfied, then � � �'� �
spans and invariant subspace of � and the

eigenvalues of �&� � �2�
are eigenvalues of � . By neglecting the second order terms, the equation

becomes :

��� ���-� � � � � � � �
(14)

which implies that
� � � � * � ��� � � � * �+� �

. Let 7 � � � � * � ��� � � * be the orthogonal projec-
tion onto

�
. The final equation which generalizes equation (12) is :

� 
 �@7 � �+� ���-� � � �
(15)

with � 
 � 7 � � � � .
It is clear that if

�
and an orthonormal system � span the same subspace, then we the resulting

subspace obtained by the above process should be identical with the one resulting from the treatment
of Section 2.1. In other words the matrices � � �� obtained in both cases are related by a nonsingular� 4 � transformation � , i.e., � � ���� .

INRIA



Domain decomposition and invariant subspaces 7

2.3 Nonlinear correction

Clearly the original correction equation is nonlinear and its exact solution will yield an exactly
invariant subspace. It is possible to sove the onlinear equations iteratively and this section explores
this possibility. In this section we go back to the case when � is orthonormal. Equation (8) is
expanded as

�+� ���-� � � � �	� � �$� �
(16)

We still need to impose 
 � constraints in the form of (9). Multiplying both sides of (16) by � *
yields the same expression for

�
, i.e.,

�
is again given by (11). This means that we have again

removed the unknown
�

from the system (8) and we can write:

��� ���-� � � � �$�#�;�$� � � * ��� (17)

Grouping like terms leads to the nonlinear system,

� 
 ��� � * � �+� ��� �&� �	� * ��� � � � ��� , (18)

This system can be solved with some form of iteration and then
�

can be obtained from
� �

� * �+� . The solution � obtained also satisfies � * � �$� as required.
It is interesting to examine a Newton approach for solving (18). Newton’s method is equivalent

to starting from a certain � > (for example � > � � ) and then iterating as ����� � � ��� � � � where� � � � � is made to satisfy (18) for up to first order terms in
� � , This yields after a little calculation,

� 
 � ���8� � � � � * � � � � � � � �&�=� � * �+� � � � � � � � 
 � � � * � �+� � � � � � �=� � * �+� � � (19)

The above system is a Sylvester equation in
� � and with the notation ��� � � � ��� � ��� � � � � � � �

and � � � � �	� * �+� � it becomes

� 
 ��� � � * � � � � � � � � � � � � � (20)

where
� � is the right-hand side seen above
A few observations will provide some insight. The matrix � � � � �'� * �+� � is the right-

corrected projection matrix since � � � � �(� * �+� � � � * � ��� �(� � � . There is some loss of
symmetry in this process. In the end the Newton scheme would be as follows:

0. Select � > (e.g., � > ��� )
1. For � ��� ������� � until convergence Do:
2. Set � � � � �	� * ��� � ;

� � � � 
 ��� � * � �+� � �,� � � � � �
3. Solve (for

� � ): � 
 �����;�$� � � � * � � � � � � � � � � � � �
4. Set ����� � � ��� � � �
5. EndDo

Observe that when � > � � , then the first step corresponds simply to the previous linearized
scheme and this is expected. If we define �	� � �	� ��� , �
� � � � � * �+��� � � * ����� the

RR n˚5748



8 Philippe & Saad

iteration can be rewritten in terms of � � . Note first that the expression for
� � can be simplified :� � � � 
 ����� * � �����9�,��� �
� � �

� � 
 ����� * � � ��� � ��� � �3�#� � ��� � � � � �
� � 
 ����� * � ��� � �;� 
 ��� � * � ��� ��� � � � �	��� � � �
� ��� � ���6�#� * ��� � � � � ��� � � � �	��� � � �
� ��� � ����� � ��� � � � �%��� �� ��� � ��� � � �

This gives the following alternative expression of the previous algorithm

ALGORITHM 2.1 Newton-Sylvester iteration

0. Select � > s.t. � *> � � 
 (e.g., � > � � )
1. For � ��� ������� � until convergence Do:
2. Compute � � � � * ��� � , and

� � � ��� � ��� � � �
3. Solve (for

� � ): � 
 �$��� � * � � � � � � � �
� � � � �
4. Set ��� � � � ��� � � �
5. EndDo

An important note here concerns the solution of the Sylvester equation in Line 3. Since we would
like to solve the correction equation with the constraint that � *

� � � , we would like the relation� *
� � � � should be satisfied in general. The relation it is trivially satisfied for � �$� a consequence

of the choice made in Line 0. For a general � , the relation
� *
� � � � is equivalent to � *� � � 


.
We can use a little induction argument. Assume that the relation is satisfied for � . Then multiplying
the equation by � * yields � * � � � � � � . This will imply that � * � � � � when � � is nonsingular,
which may be true under certain assumptions. However, in order to avoid difficulties, we will always
assume that the system (20) is solved for a

�
that is orthogonal to � . When � � is nonsingular, then

as was seen, � * � � �B� is automatically satisfied. When � � is singular, we can for example shift
both � and �
� by the same shift � so that � � � �



is nonsingular. Then we solve, instead of (20),

its shifted variant:
� 
 ����� � * � �-��� �


&� � � � � � �&�
��� �

&� � � � � (21)

Now since � � � �



is nonsingular,
� *
� � � � and this

� � is also solution of (20). In practice this
issue does not arise.

When convergence takes place it is quadratic at the limit, a characteristic of Newton’s method.
A relation which will establish this fact independently can also be proved.

Lemma 2.1 At each step of the Newton-Sylvester iteration the following relations hold:

� *� � � 

(22)� � � � 
 ��� � � * � ��� � (23)

� * � � � � (24)� ��� �0� � � � � * � � � (25)

INRIA



Domain decomposition and invariant subspaces 9

Proof. The first relation was discussed in detail above. It comes from the fact that at each step� * � � � � . The second relation follows immediately from the definition of � � and the 3rd is
obtained by multiplying the second by � * to the left and making use of (22). For the 4th relation
we write, � ��� � � � ��� � � � � � �3�#� � � � � � � � � �	� * � � � �� ��� � �1� � � ��� � � � � � � � � ��� � � * � � � � � � � * � � � �� � � �$� 
 ����� � *A� � � ��� � � � �
�� ��� �� > � � � � * � � � � � � � � � * � � �

Equations (22) and (23) show that the method is equivalent to finding a block ��� such that � 
 ������ * � ���	� � � subject to the condition that the system �
� � � be bi-orthogonal. Note that from
(23), we can easily infer that � � � � ��� �!� ��� �%��� � � where �	� is the limit. Indeed, using the fact
� 
 ��� � � * � ��� � �$�� � � � 
 ����� � * � ����� �;� 
 ���	��� * � ������ � 
 ����� � * � ����� �;� 
 ����� � * � ���	� �$� 
 ����� � * � ����� �;� 
 ������� * � ���	�� � 
 ��� � � * � � ��� � ��� � � �;��� � ��� � � � * ��� �

The following relationship will confirm this and provide some additional insight:� ��� � � � � � � * � � �
In the case when 
 � � we get the following iteration for � � � � � ��������� starting with � > ��� :
��� ��� � � � � * � � �� � � � � ��� � � � �

� 
 � � � � * � �  � � � �  � � � � �� ��� � � � � �  �
Note that the scalar

� � is an approximate eigenvalue. Indeed, � * � � � � � ��� � � * �$� � * �$� �
and therefore

� � � � � * � � � ��� � � * � � � . When (and if) � � converges to an eigenvector, then
� � will

converge to the corresponding eigenvalue.
The residual system in the 3rd line of the above algorithm can be transformed. The system is

� 
 � � � � * � �  � �  � � � � � � � ) ����� � � 
&�/ � � � � � * �  � � � � �
and it can be solved in block form by setting � � � � � * �  � and putting the unknowns � � � � � in one
vector: � ��� � � 
 � �� * � ��� �  �� � � � � � � �� �
The advantage of writing the system in this form is that we can better exploit any sparsity in � . In
contrast the matrix � 
 � � � � * � � � � � 
 is generally not sparse, though the Shermann-Morrisson
formula can also be invoked with a similar result.

RR n˚5748



10 Philippe & Saad

A more traditional way of invoking the Newton approach is for the case 
 � � , by solving
directly the equation � � � � � � * � � � � � , with the constraint � � ��� � � . Extending this to the 

dimensional case is doable but the constraint that � be unitary yields a more complicated iteration.
The scheme shown above avoids the problem of orthogonalization - but it yields an iteration that is
somewhat nonsymmetric.

So far symmetry has not been exploited. When � is symmetric, the term � * � � � in the above
expression is the transpose of

� *
� ��� � � *� ����� ����� � � � *� � >

so that

� � � * ) � � � � � � � *� � *> � � ,
with

� > � �
. If only one step is performed then

� � � � � � � *> � � . So, if one step is performed,
and the process restarted (i.e., � � is orthogonalized and � is set to � � , etc.) then one should expect
a cubic convergence according to this formula. This is explored next.

2.4 Iterative correction

In this section, we consider the following modification of the Newton-Sylvester scheme discussed
in the previous section.

ALGORITHM 2.2 Iterative correction

0. Select � > (e.g., � > � � )
1. For � ��� ������� � until convergence Do:
2. Compute �
� � � *� ����� , and

� � � ����������� �
�
3. Solve (for ��� ): � 
 ����� � *� � ����� ����� �
� � � � �
4. Orthogonalize :

# ��� � � � � � ( ����� �#��� �$��� � .
5. EndDo

In line 4, Matlab notation is used so that � � � � is the result or orthonormalizing � � �$� � .
Theorem 2.1 When the process converges, it exhibits a cubic convergence at the limit, as expressed
by the following relation :

� � � � � � ��� � � * ��� � � � � � � �!������� � � , (26)

Proof. We first remark that �#� � �%� � � * �#� � �%� � � � � � * � � � 
 �$� � * � � .
Let us denote � � � �#� � �$� � � * � ��� � �%� � � and

� � � � ��� � � � � � �#� � �%� � � �3�#� � �� � � � � � * � � � � � � � .
Therefore, with

� � � � � * ��� � , the correction implies that

� ��� � �	� � � �;��� � �%� � � �&� � � � � � � � � � � � � (27)

and remembering that � � * � � �$� ,
� � �;� 
 �$��� * ��� � �&�
� � � � � � � ��� * ��� � � �

INRIA



Domain decomposition and invariant subspaces 11

which can be rewritten as

� � � �
� � � � �%��� * ��� �
�&, (28)

For the residual, we estimate

� � � � �#��� �%��� � �3�#��� �$��� � � 
 ����� * ��� � � � � � � ����� � � � �� � �#��� �%��� � �3�#��� �$��� � � � �$�#��� �%��� � ��� * ��� � � � � �!������� � � �� � � � � � �;��� � �$� � � � � * � � � � � ��� � �%� � � � � * � � �&� � � � � � � � �!��� � � � � �� � � � � � �;��� � �$� � � � � * � � � � � � �!��� � � � � �� �/� � � ��� � � � * � � � � � � � �!��� � � � � �� �/� � � ��� � � � * � � � � � * ��� � � � �!��� � � � � �� �/� � � ��� � � � * � � � � � � * � � ��� � � � * � � � � � �!��� � � � � �� � � � � � * � � � � �!��� � � � � ,
Since, clearly ����� � ��� � � � �%� � , this ends the proof.

2.5 Inverse iteration and RQI

The above developments lead to Olsen’s scheme and the Jacobi-Davidson approach, see, e.g., [17].
A simpler scheme is often used in practice which consists of ignoring the projection step. In the
situation of a single vector iteration, this scheme is simply the inverse iteration algorithm, which
computes a new direction by solving

�-����� 
&� � ����� ��� (29)

in which � is typically a fixed shift close to an eigenvalue. Note that the right-hand side is an
approximate eigenvector instead of a residual. A block generalization can be written from the scheme
(12) by using a different right-hand side, namely, we solve

��� ����� ��� ����� � � � ,
If

��� ��� � ��� , and � ����� � � � � then the above condition, can be rewritten as �+� � �-� �
�B� �

. Note that now � is no longer defined as � � � * ��� but can be a diagonal matrix of
shifts. Also a normalization must be added to the basic step mentioned above, in the form of a QR
factorization of � ����� .

In Rayleigh quotient iteration, the shift � in (29) is changed to the Rayleigh quotient at each
step. This, however is not practical as it requires an expensive re-factorization of the matrix at each
step. Of course the same is true of Algorithm 2.1, where a change in the matrix � � would require
expensive refactoring in the method used to solve the Sylvester equation.
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�

�
1

�
2

Figure 1: The simple case of two subdomains � � , � � and an interface � .

3 Domain decomposition: CMS and AMLS

Let ��� 
 ����� be a symmetric real matrix, partitioned as

� �
��� �
� * � � � (30)

where
� �(
	� � ��

� ��� � ��

� , � �(
 
 � 
 and

� �(
	� � ��
�� � 
 . Assume that the above matrix arises
from the discretization of a certain self-adjoint operator (e.g., a Laplacean) on a domain � which is
then partitioned into several subdomains separated by an interface � , see Figure 1 for the simplest
case of two subdomains. The subdomains, which may overlap, are separated by an interface � . The
unknowns in the interior of each subdomain ��� are completely decoupled from the unknowns of all
other subdomains. Coupling among subdomains is through the unknowns of the interface � and the
unknowns in each � � that are adjacent to � . With the situation just described, the matrix

�
is block

diagonal, consisting of two diagonal blocks corresponding to the unknowns that are interior to each
subdomains. The

�
block corresponds to the variables on the interface.

The eigenvalue problem � � � � � , can be written as,� � �
� * � � � � � � � � � � � � � (31)
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where � ��� � ��
 and � ��� 
 . A method for computing eigenvalues of matrices partitioned in this
manner was introduced in structural dynamics by [6, 7]. Referred to as the method of Component
Mode Synthesis (CMS), this method begins by solving the problem

��� � �
�

. This amounts to
solving each of the decoupled smaller eigenvalue problems corresponding to each subdomain � �
separately. The method then injects additional vectors to account for the coupling among subdo-
mains. This is done by invoking a carefully selected operator for the interface nodes. AMLS is a
multilevel approach which exploits recursivity by continuing this approach into lower levels recur-
sively, see e.g., [2, 1] for details.

In the following, the main steps of CMS - i.e., one level of AMLS, will be reviewed. Consider
the matrix

� � � 
 � � � � �� 
 � , (32)

This is a block Gaussian eliminator for matrix (30), which is selected so that

� * ��� � � � �
� � � �

where � is the Schur complement

� � � � � * � � � � , (33)

The original problem (31) is equivalent to the generalized eigenvalue problem � * ��� � � � � * � � ,
which becomes � � �

� � � � � � � � � � 
 � � � � �
� � * � � � ��� � � � � � � (34)

where � � � 
 � � * � � � � . The next step of CMS is to neglect the coupling matrices (blocks in
positions (1,2) and (2,1)) in the right-hand side matrix of (34). This yields the uncoupled problem

��� � �
�

(35)

��� � 	 � � � , (36)

Once the desirable eigenpairs have been obtained from (35–36), they are utilized in a projection
method (Rayleigh-Ritz) applied to the original problem (34). The basis used for this projection is of
the form *�
�

� �
� � ���� � � � � ,�, , � 
���� 
��� � � �� � � � � � � , ,�, � 
 ��� � (37)

where 
 ��� �-� � � � and 
�� � � .
It is important to note that the projection is applied to (34) rather than to the original problem

(31). There is an inherent change of basis between the two and, for reasons that will become clear
shortly, the basis � 
� ��� � � � 
� � � � , is well suited for the transformed problem rather than the original
one. In fact let us consider this point in detail. We could also think of using the transformed basis*�
�

� � � � �� � � � � � , ,�, � 
 � � 
� � � � � � � ��� � ���� � � � � � ,�, , � 
�� � � (38)
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for solving the original problem (31). instead of basis (37). As can be easily seen, these two options
are mathematically equivalent.

Lemma 3.1 The Rayleigh-Ritz process using the basis (37) for problem (34) is mathematically e-
quivalent to the Rayleigh-Ritz process using the basis (38) for problem (31).

Proof. For a given matrix � , and a given basis (not necessarily orthogonal) consisting of the columns
of a certain matrix

�
, the Rayleigh Ritz process can be written as

� * � � � � � � * � �
If
�

is the basis (37) then the basis (38) is nothing but � � . Comparing the two projection processes
gives the result.
In the rest of the paper we will use the basis (38) on the original problem (31) for describing the
CMS projection.

3.1 Links with the correction equation

One of the purposes of this paper is to present CMS/AMLS from the angle of the correction equation.
Notice at first that CMS does implement a correction: it corrects the eigenvectors of

�
to try to

obtain better approximations to the eigenvectors of the whole matrix � . This is done by using the
Schur complement matrix and constructing a good (improved) basis to perform the Rayleigh Ritz
projection. This viewpoint (correction) is important because there are many variants for correcting
eigenvectors and some are better than others.

Consider eigenvectors of
�

associated with smallest eigenvalues.
� �
� � � � � � ,

One can consider the vectors 
�
� � � � �� �

as approximate eigenvectors of � . The eigenvectors obtained in this manner amount to neglecting
all the couplings and are likely to yield very crude approximations. We can now think of correcting
these eigenvectors via a correction equation as is usually done in the previous sections.

An interesting observation is that the residuals � � � �-� � � 

�

�
� have components only on the

interface variables, i.e., they have the shape:

� � �
� � � � (39)

where the partitioning corresponds to the one above and where
 � � � * � � .

Consider a single vector inverse iteration correction. In this case, for each approximate
eigenvector

�
� we would seek a new approximation � � by solving an equation of the type (29),

���$� � 
&� � � � � � , where � is a certain shift. In a typical inverse iteration correction, � is constant
to reduce cost of factorization.
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The matrix �;��� 
 can be factored as

�-�$� � 
&� �
� 
 �� * � � � � 
&��� � 
 � � � ��� 
 �

� � � � � � (40)

where � � � � is the Schur complement

� � � � � � � � 
 � � * � � � � 
&� � � �
Taking the particular structure of

�
� into account we find that

� � � �-�$� � 
&� � �
� �
�� � � � # 
 �$� � � � 
&��� � � � � � ��� ��� * ( � � ��� 

� � � � �

� � � � ��� � � * � � ��� 
&��� ��� � �
In other words,

� � �
�  � � � � � � 
&��� � � � �� � � with

 � � � � ��� 

� � � � � and � � � � � � � � �  �
There is a strong similarity between the result of this correction and that obtained from CMS.

This can be seen from the nature of the basis (38) which consists of the vectors� �
�� � � � � � � � � �� � � (41)

where the � � ’s are eigenvectors of a Schur complement, and the
�
� ’s are eigenvectors of the

�
block.

3.2 Correction equations and Domain Decomposition

Consider now the application of the correction equation (12) to the Domain Decomposition frame-
work discussed above. Specifically, we consider the Newton approach discussed in Section 2.3 and
we will apply one step of the Newton-Sylvester algorithm, i.e., Algorithm (2.1). Note that since
we are only considering one step of the process, there is no difference between this algorithm and
Algorithm 2.2. The index � is removed for simplicity and � ��� � in Line 4 is denoted by � ����� . We
denote by

� � �!
 
 � � ( ��� 
�� � � � ) an orthogonal basis of an invariant subspace of
�

, so that� � � � � � � , where � � � ����� � � � ������� � � � � and we let � � � � �
� � � 
���� � . To simplify notation

we will denote by 7 � the orthogonal projector 7 � � 
 � � � � *� , so that


 ��� � * �
� 
 � � � � *� �

� 
 � �
� 7 � �
� 
 � (42)

In addition, the matrix � � in Line 2 of Algorithm 2.1 is simply the diagonal matrix � :

� * ��� � # � *� � ( �
� � �
� � � � *� � � � � � ,
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Similarly, the residual matrix
� � has a simple structure due to (39):

� � ��� ��� � � � �� * � � �
Now the Sylvester system in Line 3 of Algorithm 2.1 can be written � 
 � � � * � � � � � � �

� �
. Since � is diagonal this system decouples into the � distinct linear systems,

� 
 ����� * � �  � ��� �  � � � � � � �
� �� * � � � , (43)

Writing
 � �
������ � � the system (43) translates to:

7 � � � � �=7 � � � � ��� � � � � �
� * � � � � � � � 
&� � � � � � * � �

Note that the first equation is equivalent to 7 � � � ��� � 
&� � �.�17 � � � � � � the solution of which is

� � � � # 7 � � � � � � 

� (�� 7 � � � � ,
Substituting this solution in the second equation results in:

� � * 7 � � � � � � 

� � 7 � � � ��� � � ��� � 
&� � � � � � * � �
which gives the following equation to solve for � � :

# � � � � 
 � � * 7 � � � ��� � 
&� � 7 � � ( � � � � � * � � (44)

This leads to a natural definition of a projected Schur complement,

� � � � � � � � � � � 
 � � * 7 � � � ��� � 
&� � 7 � �
from which the solution is readily expressible. In what follows it is assumed that � � � � � � is not
singular (A less restrictive assumption is that � � � � � � is not singular in the range of

� *
.)

In the end the column-vectors of the new matrix ������� are given by

� ��� �� ��� � �  � �
� �
� �@7 � � � � � � 

� � 7 � � � �� � � with � � � � � � � � � � � � � * � � (45)

An interesting property which can be shown is that

�-����� � 
&� � ������ � � � � � � *� � � �� � ,
It is, of course possible to apply additional steps of this correction process. However, these additional
steps will require expensive Sylvester-like equations to be solved at each step with different shifts.
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Instead of considering these we can instead gain insight from the AMLS procedure and try to define
good subspaces for a projection process. Specifically, the question is: which subspace should be
added to � � � � � � if the goal is to obtain a good approximation to the original eigenspace?

A comparison between (45) and the basis (41) used by CMS suggests that we replace � � by
zero in (45) and that we enrich the basis

� � by the vectors� � 7 � � � � 7 � � � �� � � with � � � � � � � � � � � � * � ��,
Note that 7 � � � � 7 �9� 7 � � � � � � � � 7 � . In other words we can consider performing a Rayleigh-
Ritz process on the original problem (31) with the basis*�
�

� � � � �� � � 
� � � � � 7 � � � � � � �� � � � � � � ,�, , � 
 � � with � � � � � �C� � � � � � * � ��, (46)

The differences with the basis used by CMS are (1) the way in which the � � ’s are defined and
(2) the presence of the projector 7 � in the definition of


� � . We can also define a simplified basis,
which we will refer to as the Newton-CMS basis, in which the projectors are removed:*�
�

� � � � �� � � 
� � � � � � � � � � �� � � � � � � ,�,�, � 
 � � with � � � � � � � � * � ��, (47)

Note that � � � � � has been replaced by the standard Schur complement � � � � � * � � ��� . Experi-
ments indicated that at least for a one level AMLS (i.e., for a CMS algorithm), there is no difference
between the two bases (46) and (47). The following will provide a partial explanation for this ques-
tion which is still being investigated.

Assume for a moment that the vector � � s are the same in both (46) and (47). Then the two
bases would be the same. Indeed, the added vectors


� � in (47) can be written
� � � � � � � � � � �� � � � � � 7 � � � � � � �� � � � � ��� 
 �@7 � � � � ��� � �� �
However, the second component in the decomposition is a subset of the span of � 
� � � , i.e., the first
part of (46). So in this situation the two bases would actually generate the sames space. Though
the � � in both bases (46) and (47) are not the same, what is observed experimentally for the two
domain case, is that they span the space. In other words, the subspaces spanned by � �

� � * � � and
� � � � ��� � � * � � are the same. If this is the case then it is easy to see that the two methods will give
the subspaces overall and therefore the same approximations.

One of the main weaknesses of AMLS is that it is a one-shot algorithm, in the sense that it
just provides one set of approximations that cannot (at least with the classical algorithm definition)
be improved. Because of the close relationship between the AMLS algorithm and the correction
equation, we can think of using more steps of the correction algorithms described earlier to fill the
gap. The biggest appeal of AMLS is that it is essentially a method which performs one factorization
(direct) only to extract a large number of eigenvectors. In the numerical experiments we will test the
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following adaptation of Algorithm 2.2 in which � > corresponds to the initial set of CMS which is the
first part of the basis (38). For this reason it is important to set � � to zero throughout. In addition,
following the spirit of CMS, the correction in Line 4 of Algorithm 2.2 is replaced by a projection
step using the sets given by ��� and

� � . This gives following iterative, or corrected, variant of CMS.

ALGORITHM 3.1 Iterative CMS

0. Select � > s.t. � *> � > � 
 from eigenvectors in each subdomain.
1. For � ��� ������� � until convergence Do:
2. Compute

� � � ����������� �#� *� ����� �
3. Solve (for

� � ): � 
 �$��� � *� � � � � � � � �
4. Set

� � # ��� � � � (
5. Compute ����� � from a Rayleigh-Ritz projection on � using the basis

�
.

6. EndDo

This algorithm will be tested for a 2-domain case in the next section.
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4 Numerical Examples

All the tests are run in the MATLAB environment.

4.1 Quadratic and Cubic convergence

The first test considers a matrix of small order ( � ������� ). This matrix is the classical matrix
obtained by the discretization of the 2D Laplacean by finite differences on a ��� 4 �	� rectangular
mesh. The twenty smallest eigenvalues are sought. The two principal diagonal blocks of order � � � ,
the leading one and the tailing one, are separated by a block of dimension ��� . When adequately
permuted, the matrix profile is shown in Figure 2 (a). The evolution of the residual norms are
displayed in Figure 2 (b) for the Newton-Sylvester iteration, and in Figure 2(c) for the Iterative
Correction. The quadratic and cubic convergences are well illustrated by the curves. During the first
iterations, the two methods stagnate as long as they have not yet determined a good approximation
of an invariant subspace. The computed eigenvalues are not the 20 smallest ones : there are some
missing eigenvalues. For Algorithm 2.1, the 12 smallest eigenvalues are computed and the last 8
computed eigenvalues correspond to eigenvalues ranking between the 14th and the 25th eigenvalue
of the matrix. For Algorithm 2.2, the result is almost equivalent although a bit worse: the first 10
eigenvalues are computed and the last 10 computed eigenvalues range between the 12th and the 26th
eigenvalue.

4.2 Computing inner eigenvalues

In this section, we consider as test matrix � � , the matrix PLAT1919 from the test suite Matrix Market
[3]. The matrix is of order 1919 and its sparsity pattern is shown in Figure 3 (a). By applying a
symmetric reordering 7 obtained from the Symmetric Reverse Cuthill-McKee algorithm, the matrix
��
 � 7 * � 7 has a smaller bandwidth. Considering the permuted matrix ��
 , two diagonal blocks
are defined by the intervals of indices


 � � # ��
9� � � � ( and

 � � # � ��� ��
9���%��� ( . The interval� � # � � ����
 � ��� � ( is the separator. By renumbering symmetrically rows and columns of ��
 , with

the numbering defined by � � # 
 � � 
 � � � ( , one gets the test matrix � whose is displayed in Figure
3 (b).

The full spectrum of PLAT1919, computed by the QR method, is displayed in Figure 4. The
goal of the tests is to analyze the behavior of the two algorithms 2.1 and 2.2 for computing a basis
of an invariant subspace corresponding to six eigenvalues in a neighborhood of � � � , ����� .

The same initial guess � > ��
 ��� ��� ��� of a basis of the sought invariant subspace is considered
for the two methods. It is built, consistently with Section 3.2, by the following : for each of the
two blocks, the three eigenvectors corresponding to the eigenvalues which are the closest to � are
computed ; in that way, two orthonormal blocks � � � � ��
 � > � > ��� and � � � � ��
�� � � ��� are obtained
and � > is then defined by

� > �
�� � � � � �

� � � � �� �
 !
, (48)
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(a) Pattern of the matrix
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(c) Convergence with Algorithm 2.2
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Figure 2: Test with the Laplacean
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Figure 3: Sparsity patterns of PLAT1919
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Table 1 shows, for each of the two methods, the computed eigenvalues, corresponding to the invariant
subspace defined by the last computed basis � � . In each case, the eigenvalues of � � are given, along
with their respective index in the spectrum of the matrix, and their absolute error. The eigenvalues
are labeled in ascending order. In Figure 5, the computed eigenvalues are located in the whole

Algorithm 2.1 Algorithm 2.2
After � � � � iterations After � ��� iterations

Residual : � 4 � � � � Residual : � 4 � � � � �
eigenvalue index error eigenvalue index error

0.91576 1771 � 4 � � � � 0.96497 1782 � 4 � � � ���
0.97367 1785 � 4 � � � � 0.99000 1786 � 4 � � � ���
0.98842 1786 � 4 � � � � 0.99359 1788 � 4 � � � ���
0.99213 1788 � 4 � � � � 0.99515 1791 � 4 � � � ���
0.99964 1791 � 4 � � � � 1.0053 1793 � 4 � � � ���
1.0866 1812 � 4 � � � � 1.0113 1794 � 4 � � � ���
Table 1: Computed eigenvalues of PLAT1919 near � ��� , �����

spectrum of matrix PLAT1919. On this example, the superiority of Algorithm 2.2 over Algorithm
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Figure 5: Location of the computed eigenvalues in the spectrum

2.1 is clear : the eigenvalues computed by the former are closer to the reference number � and they
are much more precise. Actually, the run of Algorithm 2.1 showed a lack of convergence. We rerun
Algorithm 2.1 with � equal to the Q-factor in the QR factorization of the last estimate � � of the
first run. After 10 additional iterations, the residual reached � � � � and the computed eigenvalues
were corresponding to eigenvalues of PLAT1919 with indices from 1771 to 1815, with a precision
higher than � � � � � . It appears that, this algorithm needs a better initial estimate than its counterpart.
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A drawback of Algorithm 2.1 lies in its Step 3 which corresponds to a non symmetric Sylvester
equation. However, complex computation can be avoided since it can be proved that, although non
symmetric, Matrix � � is similar to a symmetric matrix.

4.3 Tests with domain decomposition

We consider a Schrödinger operator (a Hamiltonian) of the form

� � � � � �
on a rectangular domain in 2 dimensions. Here the potential

�
is the Gaussian

� ��� � � � � ����� � ��� � �
	 ��� � � � � � 	 ���

in which ����
 � � 
 � is the center of the domain. We selected � � � � � , and discretized the domain
uniformly using centered finite differences and applied Dirichlet boundary conditions. The domain
is a rectangle of dimension �-� � �	�

��4�� � � and � � � �	� � 4��
, where � �

� � � are the number of
discrete points on the � and � directions, respectively, excluding boundary points. The domain is
then split in two horizontally, in the middle of the domain. The matrix is reordered by putting the
interface variables at the end as is usually done to illustrate DD orderings. The resulting matrix is
shown on the left side of Figure 6.

The first experiments is only for demonstrating the power of the CMS algorithm and its vari-
ants. FForWe found in general very little difference between the different variants of the same idea.
Figure 6 compares the following 4 methods for computing the smallest ��� � eigenvalues. In the test
��� � � � .
No correction This performs a Rayleigh Ritz procedure with eigenvectors from the two domains.

The process takes ��� � eigenvectors from each domain which will form the column vectors
of two matrices � � � � � then gathers them in a basis � � # � � � � � ( and then proceeds to a
Rayleigh Ritz projection on � with the � ��� � vectors in � .

CMS This approach consists of a the CMS projection, which takes the same � from above and
augments it with the set

�
obtained as

� ��� � �������� �
in which � is matrix of eigenvectors of � associated with the smallest ��� � eigenvalues.

Newton-CMS This is similar with the previous method, but the � matrix is replaced by the matrix� * � . Note that this matrix has � ��� � columns instead of ��� � for CMS.

Newton-CMS with projection The only difference between this and the previous process is that
the projector 7 � � 
 �!��� *

is used. The inverse of
�

is replaced by 7 � � � � when defining
� and the

�
matrix above.
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Figure 6 shows an illustration for a case when � � � � � � � � � ��� which yields a matrix of size
� � � � � ��� . As it turns out it is very difficult for this example to find cases where the last 3 methods
yield (significantly) different results. Because � � is relatively small, the subspace spanned by the
matrices � involved above is the same of very close and this leads to the same approximations. In all
cases we tested for this example, Methods 3 and 4 seemed to be exactly identical. This means that
the � matrices generate the same subspace in both cases. What is remarkable is the quality of the
approximation obtained from CMS-type approaches. The accuracy obtained by using eigenvectors
from subdomains alone (no correction) is already quite good, considering the simplicity of this
approach.

In the next test we consider the iterative CMS, Algorithm 3.1, discussed earlier. Only two
correction steps (corresponding to the � loop in the algorithm) are taken. In this test we take � � �� � � � � � � � which leads to a bigger matrix of size � � � � � � � . Figure 7 shows the result of
computing the 20 lowest eigenvalues with the three methods: Newton-CMS, 1st step of Iterative
CMS, and 2nd step of Iterative CMS. The results are much improved, especially for the lowest 10
eigenvalues. Note also, that the biggest improvement is achieved by the first corrective step. What is
important to emphasize here is that the improvements achieved by the two corrections are obtained
without any additional factorizations of the matrix � . The system � 
 �(� � * � � � � � �

can be
solved, for example, by setting � � � * � � and then solving� � �+�� * � � 
 � � �� � � � � �

� � ,
Since � is typically of low rank, the above system can be easily solved with one factorization of � .
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Figure 6: Left: Pattern of the Hamiltonian matrix after reordering. Right: Performance of 4 tech-
niques for computing its 8 smallest eigenvalues
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Figure 7: Performance of Newton-CMS and two the results of two corrective steps of Algorithm 3.1.
The 20 lowest eigenvalues are computed.

5 Summary and Conclusion

We have discussed a few variants of certain algorithms based on the correction equation for solving
eigenvalue problems and we showed how they can be adapted in a domain decomposition frame-
work. In particular, block variants of the correction equation were derived by viewing the eigenvalue
problem as a system of nonlinear equations. The resulting algorithms converge cubically or quadrat-
ically but they require the solution of a different Sylvester equation at each step. In the case of CMS,
experiments show that it is possible to obtain good improvements by versions of these algorithms
which do not require to refactor the matrix at each step.
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