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Abstract: In a modern operating system (OS), device drivers can make up over 70% of the source code.
Driver code is also heavily dependent on the rest of the OS, for functions and data structure defined in the
kernel and driver support libraries. These two properties together pose a significant problem for OS evolution,
as any changes in the interfaces exported by the kernel and driver support libraries can trigger a large number of
adjustments in dependent drivers. These adjustments, which we refer to as collateral evolutions, may be complex,
entailing substantial code reorganizations. Collateral evolution of device drivers is thus time consuming and
error prone.

In this paper, we present a qualitative and quantitative assessment of the collateral evolution problem in Linux
device driver code. We provide a taxonomy of evolutions and collateral evolutions, and show that from one
version of Linux to the next, collateral evolutions can account for up to 35% of the lines modified in such code.
We then identify some of the challenges that must be met in the future to automate the collateral evolution
process.

Key-words: operating system, device driver, program transformation, software reengineering, software main-
tenance.
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Comprendre les Evolutions Collatérales dans les Pilotes de
Périphériques sous Linux

Résumé : Dans un systéme d’exploitation moderne (OS), les pilotes de périphériques peuvent constituer
jusqu’a 70% du code source. De plus, le code des pilotes de périphériques est hautement dépendant du reste de
I’OS, pour des fonctions et structures de données définies dans le noyau et dans des bibliothéques de support
aux pilotes. Ces deux propriétés ensemble posent un probléme significatif pour I’évolution des OS. En effet,
le moindre changement dans l'interface exportée par le noyau ou les bibliothéques de support peut déclencher
un grand nombre d’ajustements dans le code des pilotes dépendants de ces interfaces. Ces ajustements, que
I’on nomme des évolutions collatérales, peuvent étre complexes, entrainant des réorganisations substantielles du
code. Ainsi, les évolutions collatérales des pilotes de périphériques prennent & la fois beaucoup de temps et sont
soumises & de nombreuses erreurs.

Dans ce papier, nous présentons une étude qualitative et quantitative du probléme des évolutions dans les
pilotes de périphériques sous Linux. Nous fournissons une taxinomie des évolutions et des évolutions collatérales,
et nous montrons que d’une version & ’autre de Linux, les évolutions collatérales peuvent représenter jusqu’a 35%
des lignes modifiées. Nous identifions ensuite quelques un des défis & résoudre dans le futur pour automatiser
le processus d’évolution collatérale.

Mots-clés : systéme d’exploitation, pilote de périphérique, transformation de programme, génie logiciel,
maintenance de programme.
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“Greg Kroah-Hartman has gotten [Linuz] 2.6.13
off to a good start with a massive set of driver
core patches. There are a fair number of
API changes that come with this patch set,
so the whole thing s worth a look. In-tree
code has been fized to use the new API, but,
as always, maintainers of external code are on
their own.” http://lwn.net/Articles/140002/,
June 23, 2005.

1 Introduction

One of the biggest problems in operating system (OS)
development today is keeping device drivers up to date
with evolutions in the rest of the OS. Device driver code
can make up over 70% of a modern OS [4] and is heav-
ily dependent on the rest of the OS for functions and
data structures defined in the kernel and driver support
libraries. Accordingly, any changes in the interfaces of
the kernel or driver support libraries are likely to affect
driver code, and restoring their correct behavior often
entails modifications at many code sites. These modifi-
cations, which we refer to as collateral evolutions, may
involve substantial code reorganizations. In practice,
evolution may be hindered because the required collat-
eral evolution of device drivers is both time-consuming
and error-prone.

We examine the issues raised by collateral evolution
in the context of Linux. Linux is currently undergo-
ing rapid evolution, with even the so-called stable ver-
sion 2.6 introducing more and more interface changes
[18]. Furthermore, the size of the Linux driver code
has more than doubled in the last five years. These
factors suggest that collateral evolutions are increas-
ingly becoming necessary in Linux. Indeed, a single
collateral evolution may affect hundreds of code sites
spread across many different files.

The problem of collateral evolution in Linux is fur-
ther complicated by the difficulty of communicating
precise information about the required modifications
to driver maintainers. As Linux is an open source OS,
many kinds of programmers contribute to its develop-
ment. Indeed, driver maintainers are often not kernel
experts, but instead experts in a given device or even
ordinary users who find that their hardware is not ade-
quately supported. Because the developers who update
the kernel and driver support libraries often do not
share a common language and expertise with device
maintainers, documentation about complex collateral
evolutions, if any, is often incomplete. As a result, we
have observed that an evolution and dependent collat-
eral evolutions may take several years to complete and
may introduce bugs into previously mature code.

This paper

While substantial attention has been paid to how to
design an OS, there has been little consideration of its
subsequent evolution. In the case of device driver col-
lateral evolution, the magnitude and complexity of the
problem call for automated assistance. Accordingly, we
plan to develop a tool, Coccinelleﬂ that provides a for-
mal notation for describing collateral evolutions and a
transformation engine to assist developers in applying
them.

General-purpose transformation systems have, how-
ever, often been found to be too high-level or too low-
level for convenient use in practice. To produce a tool
that is practical for use by OS developers and main-
tainers, the abstractions and transformations provided
by Coccinelle should thus be targeted to the specific
requirements of collateral evolution. In this paper, we
analyze the range and scope of the collateral evolution
problem to identify these requirements. Overall, we
make the following contributions:

e We clarify the structure of Linux as it relates to
collateral evolution, focusing attention on the in-
terfaces of the kernel and driver support libraries,
and provide a taxonomy of the main evolutions
that occur in these interfaces.

o We identify a variety of collateral evolutions that
evolutions in this taxonomy can entail, and present
three examples out of the 45 that we have studied
in detail. These examples illustrate both the com-
plexity of performing collateral evolution and the
bugs that can be introduced in mature code.

e Based on the identification of interface elements
as potential triggers of collateral evolutions, we
show that the likelihood of collateral evolutions is
increasing, as not only the driver code size but also
the complexity of the driver interfaces has doubled
in the last five years.

e We have designed a tool that analyzes patch files
to identify evolutions and collateral evolutions in
Linux device-specific code. This tool gives a more
accurate picture than the study of header files,
as header files only indicate type changes and do
not clearly distinguish what is to be used by the
device-specific code from facilities that are shared
by the kernel or driver support library implemen-
tation.

e Using our tool, we measure the number of evo-
lutions affecting driver code in versions of Linux
from 2.2 to 2.6, including both type changes and

LA coccinelle is a ladybug, which is an insect that eats smaller
bugs.
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changes involving argument values and usage pro-
tocols. We find that the number of these evolu-
tions has been steadily increasing, with the so-
called stable Linux 2.6 showing almost as many
evolutions as its unstable predecessor, Linux 2.5.

e We then give an estimate of the work required for
collateral evolution, based on the amount of mod-
ification required in driver files. Using our tool,
we find that a significant portion (up to 35%) of
lines modified in Linux device-specific code from
one version to the next are due to collateral evo-
lutions. This result is particularly noteworthy be-
cause collateral evolutions serve only to maintain
the current behavior, rather than improve it.

e Based on this study of collateral evolution in
Linux, we identify some of the challenges that Coc-
cinelle must meet.

The rest of this paper is organized as follows. Section
describes related work. Section Bl provides an assess-
ment of the kinds of changes that occur in interfaces
that affect device drivers and the collateral evolutions
that these changes entail. Section Ml describes some of
these collateral evolutions in detail. Section Bl quan-
tifies various aspects of Linux evolution and collateral
evolution. Section Bl proposes some features that a tool
must provide to assist developers with collateral evolu-
tion. Finally, Section [] presents some conclusions and
ideas for future work.

2 Related Work

The work presented in this paper is directed toward au-
tomating the problem of updating driver code to con-
form to new interfaces. Previous work has suggested
to address this problem using wrapper functions or vir-
tual machines, thus leaving the driver code unchanged.
Using these approaches, however, driver code does not
benefit from improvements in the overall software ar-
chitecture of the OS that could ease its future main-
tenance, e.g. to address new device requirements. The
wrapper approach is furthermore not always sufficient,
as some collateral evolutions such as the updating of
calls to usb_submit_urb described in Section Bl de-
pend on information that is only apparent in the driver
code. In such cases, the chaos of coding styles induced
by the wrapper approach makes the collateral evolu-
tion all the more difficult. Finally, we have observed
the introduction and subsequent removal of wrapper
functions in Linux code, suggesting that the Linux de-
velopment community does not see them as a viable
solution.

Recent years have seen a surge of interest in auto-
matic detection of bugs in large pieces of software, in-
cluding Linux [7, 8, 1], 17] and Windows [3]. These

RR n° 5769

approaches rely on a collection of required kernel API
usage patterns and detect code fragments that are in-
consistent with these patterns. Nevertheless, an in-
correctly done or overlooked collateral evolution may
satisfy expected patterns without actually correctly
restoring the behavior of the device driver. Detection
of the error would require combining information about
the original implementation of the driver with analysis
of the new version.

Some attention has also been paid to OS evolution,
including the evolution of drivers. Hassan has devel-
oped a tool that automatically extracts evolution in-
formation from versioning repositories and has been
applied to OSes such as FreeBSD [13]. This approach,
however, only associates each change to the enclosing
function, and does not infer the kinds of relationships
between changes needed to perform the collateral evo-
lution automatically.

Evolutions and collateral evolutions are related to
refactorings, a collection of fixed general-purpose trans-
formations that reorganize the structure of a program
without changing its semantics [I2]. Refactorings,
however, apply to the whole program, requiring ac-
cesses to all usage sites of affected definitions. In the
case of Linux, however, the entire code base is not avail-
able, as many device drivers are developed outside the
Linux source tree. There is currently no way of ex-
pressing or generating the effect of a refactoring on
such external code.

Finally, if Linux were structured using components,
as done in OSes such as Think [9], OSKIT [10] and
K42 [2], it would be easier to identify its interfaces and
detect their evolution.

3 The Collateral Evolution Prob-
lem

Collateral evolution is required when evolutions in the
kernel and driver support libraries induce changes in
the interface with device-specific code. To characterize
the collateral evolution problem, we first examine the
structure of Linux support for devices and identify the
kinds of changes that can occur in its interfaces. We
then consider the range of collateral evolutions that
these changes can entail.

In the following, we avoid the term “device driver,”
which can be interpreted either as including only the
code that interacts directly with the device or as ad-
ditionally including the relevant support libraries. In-
stead, we refer to the former as device-specific code and
the latter as driver support libraries. Furthermore, we
consider the kernel to be a driver support library ex-
cept where specified otherwise.
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Figure 1: Hierarchical organization of services and as-
sociated dependencies

3.1 Linux support for devices

Linux support for devices is provided by a combination
of generic services that are provided by the kernel, ser-
vices generic to a device family that are provided by
the driver support libraries, and services specific to a
device that are provided by the device-specific code. As
illustrated in Figure[dl these services are organized hi-
erarchically, with all services depending on the kernel,
specialized driver support libraries such as USB-serial
depending on generic ones such as USB, and device-
specific files such as rt18150.c depending on one or
more driver support libraries. Typically, these hierar-
chical relationships are reflected in the Linux directory
structure. Nevertheless, as illustrated in Figure [l by
rt18150.c and others, cross-directory references are
also possible.

The various driver support libraries (including the
kernel) communicate with the device-specific code via
interfaces. As Linux interfaces (i.e., header files) are
insufficiently descriptive, we infer these interfaces from
the external references made by the device-specific
code. The driver support libraries and the device-
specific code mainly interact via function calls, both
generic functions exported by the driver support li-
braries and device-specific callback functions provided
by the device-specific code. A driver support library
furthermore typically uses data structures to maintain
the state of each relevant device. The types of these
structures are defined in the interface and are instan-
tiated by the device-specific code. These structures
are then exchanged between the driver support library
and the device-specific code on the invocation of the
various interface functions. Finally, the interface of a
driver support library includes a protocol for using the
exported functions and data types. This protocol can

specify features such as function-call sequencing and
error-handling requirements.

Figure B shows extracts of the rtl8150 device-specific
code, which has a typical structure. This code depends
on the USB and network device support libraries. The
initialization function, usb_rt18150_init (lines 46-
49), registers the device with the USB support library,
providing it with a structure, rt18150_driver (lines
1-5), that contains a number of callback functions re-
quired by the USB support library. One of these func-
tions is rt18150_probe (lines 31-44), which when in-
voked by the USB library registers the device with the
network device support library in a similar manner.
Figure P also shows the function rt18150_start_xmit
(lines 7-29), which is among the callback functions im-
ported by the network device support library. This
function illustrates the use of a variety of functions
exported by both libraries, the exchange of data struc-
tures, and the instantiation of protocols. The relevant
extracts of the USB and network device interfaces are
shown in Figure Bl

3.2 Taxonomy of interface changes and

collateral evolutions that affect
device-specific code

When an evolution in a driver support library affects
its interface, collateral evolutions must be made in all
dependent device-specific files. For example, when a li-
brary function £ gains a new argument, device-specific
code that uses £ must be modified to construct an ap-
propriate argument value. In this section, we first pro-
vide a taxonomy of changes that are possible in driver
support library interfaces and then consider the range
of collateral evolutions that these changes can entail.

3.2.1 Interface changes

As motivated in Section Bl the interface of a driver
support library includes exported functions, imported
callback functions, data structures, and protocols.
Evolutions in the driver support library can have arbi-
trary effects on one or more of these elements. Figure
A provides a taxonomy of these effects, obtained by
considering systematically the information included in
each case and the changes that can occur in this in-
formation. In a study of Linux 2.5, described below,
we have observed all of these changes in driver support
library interfaces. We thus expect this taxonomy to
apply to other Linux versions as well.

3.2.2 Collateral evolutions

A collateral evolution represents a side effect on the
context in which an interface element is used. While in-
terface elements themselves are intrinsically restricted
and fixed, their usage context consists of arbitrary

INRIA
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static struct usb_driver rtI8150_driver = { 1 USB interface _
. 5 | Exported functions | usb_fill_bulk_urb,
.probe = rtl8150_probe, 3 usb_sndbulkpipe,
... 4 usb_submit_urb,
h 5 interface_to_usbdev
i 6 usb_register, usb_deregister
static int rtl8150_start_xmit(struct sk_buff *skb, (S tod callback
struct net_device *netdev) { g | mported calibac none
rtI8150_t *dev = netdev_priv(netdev); g | functions
int count, res; 10| Data structures rt18150_driver, dev->udev of type
11 struct usb_device
netif_stop_queue(netdev); 12l Protocol usb_fill_bulk_urb if used precedes
count = (skb—>len < 60) ? 60 : skb—>len; 13 usb submit urb
count = (count & 0x3f) ? count : count + 1; 14 = =
dev—>tx_skb = skb; 15 C—
usb_fill_bulk_urb(dev—>tx_urb, dev—>udev, 16 g}ectwotrkdd:m:. interface -
usb_sndbulkpipe(dev—>udev, 2), 17| fxported functions | netif_stop_queue,
skb—>data, count, write_bulk_callback, dev); 18 netif_start_queue, alloc_etherdev
if ((res = usb_submit_urb(dev—>tx_urb, GFP_ATOMIC))) { 19 register_netdev
warn("failed tx_urb %d\n", res); 20| Imported callback rt18150_start_xmit
dev—>stats.tx_errors++; 21| functions
n?t'f‘Start‘queue(netdev); zi Data structures netdev of type struct net_device
} jeie—istats.tx_packets—i——q—; 94| Protocol netif_start_queue follows
dev—>stats.tx_bytes += skb—>len; 25 netif_stop_queue on error.
netdev—>trans_start = jiffies; 26
} 27Figure 3: Extracts of the USB and network device in-
return 0; 28tarfaces
} 29
. 30
static int rtl8150_probe(struct usb_interface *intf, 31
const struct usb_device_id *id) { 32
struct usb_device *udev = interface_to_usbdev(intf); 33
rtI8150_t *dev; 34
struct net_device *netdev; 35
36
netdev = alloc_etherdev(sizeof (rt18150_t)); 37
if (netdev) { ... } 38
ce 39
netdev—>hard_start_xmit = rtl8150_start_xmit; 40
. 41
if (register_netdev(netdev) !'= 0) { ... } 42| Exported functions | — add/drop arguments
. 43 — change function name
} :; — change return type
static int __init usb_rtl8150_init(void) { 46 impo.rted callback agd/drop regmred parameters
info(DRIVER_DESC " " DRIVER_VERSION); 47| _tunctions — change required return type
return usb_register(&rt|8150_driver); 48| Data structures — split or merge structures
} 49 — introduce layers of indirection
50 — convert a structure field reference
static void .__exit usb_rt|815.0_exit(vo1'd) { 51 to a getter/setter function call
usb_deregister (&rtI8150_driver); g; Protocols — add or drop required calls
54 — change sequencing
module_init(usb_rtI8150_init); 55 — change locking requirements
module_exit(usb_rtI8150_exit); 56 — add required error checking

Figure 4: Changes that can occur in a driver support
Figure 2: Extracts of the rt18150.c in Linux 2.6.13 library interface
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code, and can vary widely from one device-specific file
to another. It is thus not possible to develop an ex-
haustive taxonomy of all possible collateral evolutions.
Instead, we have made a careful study of 45 collat-
eral evolutions in the various subversions of Linux 2.5,
based on several hundred potential collateral evolutions
that we have identified. The studied collateral evolu-
tions affect over one thousand files. We furthermore
believe that these examples are representitive of the
range and scope of collateral evolution in Linux be-
cause Linux 2.5 is an unstable version, in which many
evolutions and collateral evolutions occur, and because
they cover all of the identified interface changes.

In the rest of this section, we provide an overview of
the kinds of collateral evolutions that we have identified
in our study. Representitive examples among the 45
collateral evolutions that we have studied are shown in
Figure B The line numbers in the text below refer to
the lines in this figure.

Library functions We first consider the collateral
evolutions required in response to changes in the sig-
nature of a library function, including its arguments,
name, and return type.

Adding an argument to a library function or chang-
ing the type of an existing argument requires construct-
ing a new value. In simple cases, the new value is a
constant (line 1), a variable already bound in the cur-
rent function (line 3), or a fixed transformation of the
current argument, such as adding a structure field ref-
erence (line 4). In many cases, however, the addition of
a new argument or change in an argument type requires
substantial code rewriting, possibly depending on con-
trol and data flow information or external knowledge.
For example, when the type of the argument changes
to a new structure type it is necessary to create and
initialize a new structure value as well as modifying the
function call (line 6).

Dropping an argument is generally straightforward,
since the argument has no impact on the context (line
8). It may, however, be desirable to remove any code
involved in computing the argument value.

Changing the name of a library function is straight-
forward if the change is performed uniformly. It is more
difficult, however, if the choice of the new function de-
pends on the context. This is best illustrated by the
case of bus_to_virt and related functions (line 14). In
Linux 2.5.4, these functions were replaced by a func-
tions having names beginning with “isa_,” apparently
to force programmers to consider whether the function-
ality of bus_to_virt was appropriate for the given con-
text [19]. The renaming of the function was, however,
not performed uniformly across the driver source code,
leading to a flood of complaints in the Linux mailing
lists |15, 25, 26]. As a result, in Linux 2.5.8, wrapper
functions were introduced defining bus_to_virt etc. to

their “isa_” counterparts, thus nullifying the benefit of
the evolution.

Function names also change when a collection of
functions defined by the device-specific code are unified
into a single library function (line 15). The collateral
evolution requires both recognizing and eliminating the
device-specific definitions, which may exhibit inessen-
tial syntactic variations, as well as updating the call
sites.

Changes in function return types typically derive
from changes in error handling. When the return type
of a library function changes from void to a type such
as int that indicates an error condition, device-specific
code has to be modified to introduce appropriate error
handling. Often the device-specific code responds to
the error by itself returning prematurely with an error
code. In this case, the collateral evolution must take
care to release any locally allocated resources. In other
cases, it is the semantics, not the type of the return
value that changes. In early versions of Linux, 0 was of-
ten used to indicate an error and 1 to indicate success.
Gradually, there has been a shift to the use of more
informative error codes, such as -EI0 and -ENODEV.
When a library function adopts the more informative
error reporting strategy, collateral evolution is required
at the call sites to invert the sense of 0 and possibly
to introduce specialized error handling depending on
the kind of error that is indicated by the return value.
Similar issues occur when a library-specific return type
is introduced.

Device-specific callback functions We next con-
sider the collateral evolutions required when the in-
terface exported by a driver support library specifies
changes in the signature of an imported device-specific
callback function.

In some cases, a parameter is added to a device-
specific callback function to harmonize the interface
with an instance of the function that needs the addi-
tional information (line 17). In such cases, no further
collateral evolution is required. On the other hand, a
new parameter may supersede information previously
computed by the function (line 18). In that case, care-
ful slicing is required to eliminate the computation of
this value, while leaving the other computations on
which the function definition still depends. Finally, a
new parameter can be added because the function will
directly or indirectly call a library function that needs
this information as a new argument (line 19). In this
case, the new parameter has to be transmitted to all
intervening function calls.

Dropping a parameter or changing its type means
that the original value must be reconstructed if it is
needed by the function (line 20). This can require per-
vasive changes in the function definition.

INRIA
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Library function definitions

Add argument/change argument type

Version Function New value
1 2.5.53 pnp_activate_dev NULL
2 2.5.22 end_request CURRENT
3 2.5.67 LOCK_TEST_WITH_RETURN parameter of the enclosing function
4 2.5.16 usb_stor_clear_halt field of existing argument
5 2.5.54 dev_get (set) _drvdata subexpression of existing argument
6 2.5.59 agp_(un)register_driver newly created and initialized global structure
7 2.5.4 usb_submit_urb context-dependent constant

Drop argument

Version Function Context effect
8 2.5.63 pnp_activate_dev none
9 2.5.70 acpi_hw_low_level_read(write) | none

Change function name

Version Renamed function Function selection strategy
10 | 2.5.69 mem_map_(un) reserve uniform
11 | 2.5.69 cs4x_mem_map_(un)reserve uniform
12 | 2.5.33,45 | FILL_CONTROL_URB, etc. uniform
13 | 2.5.16 usb_clear_halt uniform within a given directory
14 | 2.54 bus_to_virt, virt_to_bus, context-dependent, does not follow directory structure

and page_to_bus
15 | 2.5.50 sched_event function moved from device-specific code to driver support library
Change return type

Version Function Effect

16 | 2.5.20 acpi_hw_register_read, etc. add/adjust error checking using the acpi_status type

Driver function definitions

Add parameter

Version Function Impact
17 | 2.5.51 USB callback functions none
18 | 2.5.71 SCSI proc_info functions existing computation of the same value deleted, can involve loop slicing
19 | 2.5.3 Video device mmap function new parameter passed to library function remap_page_range

Drop parameter/change parameter type

Version Function Effect
20 | 2.5.71 SCSI proc_info functions reconstruct value from new argument (see above)
21 | 2.5.8 Video driver ioctl functions references to a structure pointer type become references

to a local structure

Data structures

Version Structure type Evolution
22 | 2.5.45 IsdnCardState, BCState change field name
23 | 2.5.27 mddev_t inline substructure
24 | 2.5.67 i2¢_client substructure introduced, getter/setter functions introduced
Protocols
25 | 2.5.52 acpi_device_dir insert assignment after call to remove_proc_entry in some contexts
26 | 2.5.50 irq_func callback function drop parameter test, insert locking around function body
27 | 2.5.36 usb_stor_clear_halt introduce error checking
28 | 2.5.4 network ioctl functions new ethtool cases, depending on whether the code defines
a debug variable
29 | 2.5.45 USB callback functions interrupt urbs must now be explicitly resubmitted
30 | 2.5.33 conversion from i2c-old to i2¢ many changes, including new functions to define,

new structures to define and initialize, and new library functions to use

RR n° 5769
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Collateral evolutions related to function return types
again typically concern error return values. When a
device-specific callback function that returns 0 or 1 is
required to use more informative values, the collateral
evolution entails identifying the existing values that in-
dicate error or success, and choosing an appropriate
value in each error case.

Data structures Evolutions in data structures typ-
ically involve adding, removing, or reorganizing fields,
which trigger collateral evolutions similar to the
changes in arguments and parameters described above.
The collateral evolution may, however, be complicated
by the use of local variables to name substructures,
requiring a careful dataflow analysis to identify the af-
fected code (line 23). In some cases, the reorganiza-
tion of a structure is accompanied by the introduction
of getter and setter functions, abstracting over the new
access path (line 24). In the case of read accesses to the
affected field, the collateral evolution may introduce a
local variable to store the result of calling the getter
function, rather than replacing every read access by a
function call.

Protocols A driver support library protocol speci-
fies the order in which various operations related to
the functions and data structures exported by the li-
brary should be carried out. Such a protocol may for
example specify a required sequence of function calls
or a context in which error checking is needed. The
instantiation of a protocol in device-specific code is of-
ten determined by the device-specific code structure.
For example, when a protocol requires error checking,
the actual code used to clean up in the case of an error
may depend on the set of resources allocated by the
device-specific code.

Protocol changes involve removing the instantiation
of the old protocol from the device-specific code and
inserting the appropriate instantiation of the new one.
In some cases, the code to add or remove is fixed, and
appears in a fixed context (line 25). In other cases, the
instantiation of a protocol is context sensitive. For ex-
ample, when locking is added, it must often be placed
at every function return point; the positioning of func-
tion returns varies from function to function (line 26).
When error checking is added, it may only be needed
in code that does not already lead to an error return
value (line 27). The set of new cases to be handled
by an ioctl function may depend on the other features
provided by the device-specific code (line 28). Finally,
major reorganisations in an interface often involve a
combination of these collateral evolutions (line 30).

3.2.3 Assessment

In some cases, the C compiler can help with collateral
evolution, for example by detecting when a function is

passed the wrong number of arguments. Nevertheless,
the compiler only helps in cases where the need for
the collateral evolution manifests itself as a type error;
when 0/1 return values are converted to error codes
or the required sequencing of a set of function calls
changes, the compiler provides no assistance.

The simplest collateral evolutions, such as renaming
a function or adding a constant first argument, can be
easily implemented using editor macros or shell scripts.
There is indeed evidence that collateral evolution is
done this way, as sometimes comments that coinci-
dentally contain the name of an affected function are
changed as well. Nevertheless, even in simple cases this
approach is highly error prone, as it may modify code
fragments that are unrelated to the collateral evolution,
such as a function call where the name coincidentally
contains the same text. More complex collateral evo-
lutions require parsing complex expressions, analyzing
the context, transforming multiple lines of code, and
translating variable names and code patterns to those
used in the affected file. The minor variations, omis-
sions, and errors that we have observed in this process
suggest that collateral evolution is often done by hand,
which is time-consuming and error-prone.

4 Case Studies

In this section, we consider three collateral evolutions
in detail. We have chosen these examples because they
illustrate some of the more complex cases in three com-
mon categories: an argument added to a library func-
tion, a change in the required parameter type of a call-
back function, and a change in a protocol. We con-
sider not only the modifications that the maintainer of
device-specific code must make for each collateral evo-
lution, but also the history of the collateral evolution,
including a study of the bugs that were introduced.

4.1 Addition of an argument

The USB library function usb_submit_urb implements
the passing of a message, implemented as USB Request
Block (urb). This function uses the kernel memory-
allocation function, kmalloc, which must be passed a
flag indicating the circumstances in which blocking is
allowed. Up through Linux 2.5.3, the flag was chosen
in the implementation of usb_submit_urb as follows:

in_interrupt () ? GFP_ATOMIC : GFP_KERNEL

Comments in the file usb/hcd.c, however, indicate
that this solution is unsatisfactory:

// FIXME paging/swapping requests over USB should not
// use GFP_KERNEL and might even need to use GFP_NOIO ...
// that flag actually needs to be passed from the higher level.

Starting in Linux 2.5.4, usb_submit_urb takes one of
the following as an extra argument: GFP_KERNEL (no
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Figure 6: Linux 2.5 versions in which GFP_KERNEL is
corrected to GFP_ATOMIC in a call to usb_submit_urb

constraints), GFP_ATOMIC (blocking not allowed), or
GFP_NOIO (blocking allowed but not I/O). The pro-
grammer of device-specific code selects one of these
constants according to the context of the call to usb_-
submit_urb.

Choosing the extra argument of usb_submit_urb re-
quires a careful analysis of the surrounding code as well
as an understanding of how this code is used by driver
support libraries. Comments describing the relevant
conditions are provided with the definition of usb_-
submit_urb starting in Linux 2.5.4. These comments
state that GFP_ATOMIC is required in a completion han-
dler, in code related to handling an interrupt, when
a lock is held (including the lock taken when turn-
ing off interrupts), when the state of the running pro-
cess indicates that the process may block, in certain
kinds of network driver functions, and in SCSI driver
queuecommand functions. Many of these situations,
however, are not explicitly indicated by the code sur-
rounding the call to usb_submit_urb. Instead, they
require an understanding of the contexts in which the
function containing the call to usb_submit_urb may
be applied. In practice, this function can be passed to
a driver support library via a data structure or func-
tion call and used in arbitrary ways, or can be invoked
directly or indirectly by a local function that has one
of the above properties.

The difficulty in understanding the conditions in
which GFP_ATOMIC is required and identifying these
conditions in driver code is illustrated by the many calls
to usb_submit_urb that were initially transformed in-
correctly. Figure [l lists the versions in Linux 2.5 in
which corrections in the use of usb_submit_urb occur
and the reason for each correction. In each case, the
error was introduced in Linux 2.5.4 or when the driver
entered the kernel source tree, whichever came later.
A major source of errors is the case where the function
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containing the call to usb_submit_urb is stored in a
structure or passed to a function, as these cases require
extra knowledge about how the structure is used or how
the function uses its arguments. Indeed, in the serial
subdirectory, all of the calls requiring GFP_ATOMIC fit
this pattern and all were initially modified incorrectly
(and corrected in Linux 2.5.7). Surprisingly, in 17 out
of the 71 errors, the reason for using GFP_ATOMIC is
locally apparent, reflecting either carelessness or insuf-
ficient understanding of the conditions in which GFP_-
ATOMIC is required. Indeed, in Linux 2.6.13, in the file
usb/class/audio.c, GFP_KERNEL is still used in one
function where interrupts are turned off.

The difficulty of choosing the value of the extra ar-
gument for usb_submit_urb is illustrated by the case
of the function rt18150_start_xmit shown in Figure
The rtl8150 driver was introduced into the Linux
source tree in Linux 2.5.8, at which point the call to
usb_submit_urb in this function was given the argu-
ment GFP_KERNEL. This choice of argument is, however,
incorrect, as rt18150_start_xmit is one of the kinds
of network functions that requires GFP_ATOMIC. The
code was corrected in Linux 2.5.9.

4.2 Change in the type of a parameter

A Linux ioctl function allows user-level interaction with
a device driver. Copying arguments to and from user
space is a tedious but essential part of the implemen-
tation of such a function. In Linux 2.5.7, the media
support library introduced a wrapper function to en-
capsulate this argument copying. This function was
refined in Linux 2.5.8 and named video_usercopy. As
of Linux 2.6.13, video_usercopy was used in 31 media
files and 6 usb files.

Introducing the use of video_usercopy affects the
type of one of the parameters of the ioctl code. In
the original version, this parameter is a pointer to user
space, and each ioctl command must use the functions
copy_from_user and copy_to_user to access or up-
date its value. In these cases, the data is typically
copied once, and otherwise accessed via a local data
structure whose type is specific to the ioctl command.
After the introduction of video_usercopy, the param-
eter of the ioctl function becomes a generic pointer to
kernel space, which the ioctl code can read from or
write to directly. The collateral evolution thus entails
modifying the treatment of each ioctl command to re-
move the copy functions, casting the generic pointer
parameter to a pointer of the structure type used by
the command, and replacing the references to the local
structure by pointer dereferences. The latter trans-
formation can be quite invasive. For example, in the
ioctl function of media/radio/radio-typhoon.c, 61%
of the lines of code changes between Linux 2.5.6 and
2.5.8.
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Figure 7: check_region elimination in Linux 2.4 to
Linux 2.6

The behavior of video_usercopy is not specific to
media drivers, and thus there has been interest in mak-
ing the function more generally available [14]. Some ev-
idence of the difficulties this may cause are provided by
the case of i2c/other/tea575x-tuner.cin which vi-
deo_usercopy was introduced in Linux 2.6.3. In this
file, the calls to copy_from_user and copy_to_user
were not removed. The bug was never fixed. Instead,
the use of video_usercopy was removed from this file
in Linux 2.6.8.

4.3 Change in a function protocol

The function check_region is used in the initializa-
tion of device drivers, in determining whether a given
device is installed. In early versions of Linux, the ker-
nel initializes device drivers sequentially [22]. In this
case, a driver determines whether its device is attached
to a given port using the following protocol: (i) call
check_region to find out whether the memory region
associated with the port is already allocated to another
driver, (ii) if not, then perform some driver-specific
tests to identify the device attached to the port, and
(iii) if the desired device is found, then call request_-
region to reserve the memory region for the current
driver. In more recent versions of Linux, the kernel
initializes device drivers concurrently [6]. In this case,
between the call to check_region and the call to re-
quest_region some other driver may claim the same
memory region and initialize the device. To solve this
problem, starting with Linux 2.4.2, device-specific code
began to be rewritten to replace the call to check_-
region in step (i) with a call to request_region, to
actually reserve the memory region. Given this change,
if in step (ii) the expected device is not found, then
release_region must be used to release the memory
region.

Eliminating a call to check_region requires replac-
ing it by the associated call to request_region and

inserting calls to release_region along error paths.
In the first step, it is necessary to find the call to re-
quest_region that is associated with the given call
to check_region. In practice, these are often not in
the same function, requiring an interprocedural analy-
sis. In the second step, it is necessary to identify code
points at which it is known that the expected device has
not been found and thus release_region is required.
This condition is often indicated by the returning of an
error value, but may also be indicated by going around
a loop that checks successive ports until finding one
with the desired device. At such code points, it may
be the case that only a subset of the incoming paths
contain a call to check_region. In these cases, the
call to release_region must be placed under a condi-
tional.

The elimination of check_region has been a recur-
ring topic in Linux mailing lists, including the following
exchange:

Subject: Re: Linux-2.6.13 :  check region is deprecated
Newsgroups: gmane.linux.kernel
Date: 2005-08-29 23:21:30 GMT

On Tue, 30 Aug 2005, S.W. wrote:

> Hi,

>

> By compiling my kernel, I can see that the

> check region function (in kernel/resource.c)
> is deprecated.

>

> Is there a function to replace this deprecated

> function ?

Just restructure the code to use request _region().

The response in this case does not convey any of
the complexity of the collateral evolution process, and
highlights the need for a formal language for specifying
collateral evolutions. Indeed, both steps in eliminating
check_region are difficult and time-consuming. This
difficulty has lead to the slow pace of the evolution,
as shown in Figure [ Although beginning in Linux
2.4.2, released in February 2001, the evolution is still
not complete as of Linux 2.6.13.3, released in October
2005.

5 Quantitative Assessment

In this section, we present a quantitative assessment
of factors related to collateral evolution in Linux. We
begin by assessing the complexity of the interdependen-
cies of driver code based on the relationship between
interfaces and device-specific files. We then consider
the effect of evolution in the kernel and driver sup-
port libraries on interfaces. Finally, we quantify the
required collateral evolutions.
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5.1 Code base

Our assessment is based on Linux code from version
2.2.0, released in January 1999, to version 2.6.13, re-
leased in August 2005. This sample contains both sta-
ble versions (2.2, 2.4, and 2.6) and unstable ones (2.3
and 2.5). All files were obtained from http://www.-
kernel.org. Since 2.6.11, Linux been released in a
series of subminor versions (2.6.11.1, 2.6.11.2, etc.),
which we do not consider separately. We focus on the
drivers and sound directories. The sound directory is
included because it was part of the drivers directory
until Linux 2.5.5.

Our study distinguishes between driver support li-
braries and device-specific code. As there is no conven-
tion in Linux for identifying driver support libraries, we
use the following heuristic. We consider that there is
at most one driver support library per directory. A file
is in the driver support library if it exports functions
to multiple files or if it exports functions to another
file in the driver support library. Other files are con-
sidered to be device-specific. We ignore both libraries
that only export functions to other libraries and files
that do not import any library functions, as these are
not affected by the interface between driver support
libraries and device-specific code that is the source of
collateral evolution. We apply this algorithm to the
files in the drivers, sound, and net directories. The
net directory in included as a source of driver sup-
port libraries because network device drivers typically
use its code. The kernel is considered to be another
driver support library, defining all of the functions for
which definitions are not found in the drivers, sound,
or net code. In Linux 2.4.0 there are 66 driver sup-
port libraries and 874 device-specific files, while in the
most recent version of Linux, 2.6.13, these numbers
have more than doubled to 164 and 1926, respectively.

5.2 Methodology

A key point in our quantitative study is to understand
the changes in device-specific code from one version of
Linux to the next. For this purpose, we have devel-
oped a tool that detects commonalities and differences
in two versions of C code. The tool starts from a patch
file, in which it analyzes each of the identified differ-
ence regions. We illustrate the analysis using the dif-
ference region shown in Figure B that is derived from
a patch file comparing the definition of the function
rt18160_start_xmit when it was introduced in Linux
2.5.8 to the most recent version in Linux 2.6.13. The
complete Linux 2.6.13 definition of rt18160_start_-
xmit was previously shown in Figure

The first step in the analysis is to align the common
parts of the two fragments and to identify the maxi-
mally different regions. In our example, the maximally
different regions are as follows:
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count = (skb—>len < 60) ? 60 : skb—>len;
count = (count & 0x3f) ? count : count + 1;
— memcpy(dev—>tx_buff, skb—>data, skb—>len);
— FILL_.BULK_URB(dev—>tx_urb, dev—>udev,
- usb_sndbulkpipe(dev—>udev,2),
- dev—>tx_buff, RTL8150_MAX_MTU,
— write_bulk_callback, dev);
— dev—>tx_urb—>transfer_buffer_length = count;
— if ((res = usb_submit_urb(dev—>tx_urb, GFP_KERNEL))) {
+ dev—>tx_skb = skb;
+ usb_fill_bulk_urb(dev—>tx_urb, dev—>udev,
+ usb_sndbulkpipe(dev—>udev, 2),
+ skb—>data, count, write_bulk_callback, dev);
+ if ((res = usb_submit_urb(dev—>tx_urb, GFP_ATOMIC))) {
warn("failed tx_urb %d\n", res);
dev—>stats.tx_errors+-+;
netif_start_queue(netdev);

Figure 8: Extracts of a patch derived from the rtl8150
driver

memcpy (dev->tx_buff, skb->data, skb->len)
replaced by
dev->tx_skb = skb

FILL_BULK_URB(ARGO,ARG2,ARG4,dev->tx_buff,
RTL8150_MAX_MTU, ARG8,ARG10)

replaced by

usb_fill_bulk_urb (ARGO,ARG2,ARG4,skb->data,
count ,ARG8,ARG10)

dev->tx_urb->transfer_buffer_length = count
dropped

if ((res = usb_submit_urb(ARGO, GFP_KERNEL)))
replaced by
if ((res = usb_submit_urb(ARGO, GFP_ATOMIC)))

In this result, the various statements of the dropped
and added regions are matched up line by line except
for the second assignment. This assignment is consid-
ered by itself because the next element in both frag-
ments is a conditional test, and these are aligned in-
stead. We next observe that when a function call is
matched with another function call, the common ar-
guments are replaced by a term ARGn, where n is de-
termined by the argument position. As the common
arguments are not possible evolutions, we perform this
normalization to improve the chance that this pair of
calls will match with other calls to the same functions.
Finally, we observe that the calls to usb_submit_urb
have a non-trivial common context, including an as-
signment and a conditional test. This occurs because
conditionals, assignments and function calls that have
a top-level difference among their subterms are consid-
ered to be different as well.

The next step is to distinguish between differences
that are specific to a single device-specific file and dif-
ferences that are recurrent across a Linux version, and
thus represent a collateral evolution. For this, we use
a threshold: a difference is considered to be part of
a collateral evolution if it occurs at least 5 times and
these occurrences are distributed across at least 3 files.
It may, however, be the case that a complete maxi-



14

Padioleau, Lawall €& Muller

mally different region does not occur often enough to
satisfy the threshold, but there is some subterm that
represents the collateral evolution. An example is the
case of the conditional test identified in the case of
rt18160_start_xmit:

if ((res = usb_submit_urb(ARGO, GFP_KERNEL)))
replaced by
if((res = usb_submit_urb(ARGO, GFP_ATOMIC)))

We have previously identified the correction of the
second argument to usb_submit_urb as part of a col-
lateral evolution, but it may not be the case that ev-
ery use of usb_submit_urb occurs nested in the as-
signment and conditional test shown here. For each
maximal difference, the analysis constructs a tree of
the term, its subterms, and abstractions of the sub-
terms, in which e.g. function arguments are replaced
by an arbitrary value CODE. The analysis then works
downwards from the root of the tree to find the maxi-
mal terms that match with enough other differences to
satisfy the threshold. In the version where the correc-
tion to the argument of usb_submit_urb appears, the
matching process reaches the call to usb_submit_urb
itself, because in this version the other updates to calls
to usb_submit_urb occur in varying contexts.

We use this analysis not only to detect collateral
evolution sites, as described in Section 3, but also to
detect evolutions in interfaces themselves, as described
in Section B4l Specifically, a collateral evolution that
directly affects an interface element is also an indicator
of an evolution in the interface. We follow this strategy
for detecting interface changes, rather than e.g., look-
ing for changes in header files, because it can detect
changes related to values and protocols, while header
files only indicate type changes.

5.3 Interfaces

Because collateral evolution is derived from interface
changes, the size and distribution of interfaces is a mea-
sure of the potential difficulty of collateral evolution in
device-specific code. We consider the relationship be-
tween interfaces and device-specific code from the per-
spective of the maintainer of a single device-specific file
and from the perspective of the library developer.

Interface complexity from the perspective of the
maintainer of device-specific code The number
of library functions used by device-specific code is a
measure of its complexity, as the maintainer must un-
derstand each of these functions, including its argu-
ments and associated protocols. Figure @k shows the
number of library functions used by each device-specific
source file. This figure shows clearly that not only has
the size of the driver code doubled in the last five years
since Linux 2.4.0, but also the complexity, with sub-
stantially more device-specific files referring to up to 20
library functions in Linux 2.6.13 than in Linux 2.4.0.

Furthermore, in Linux 2.4.0 the largest number of li-
brary function references per file is 36 while in Linux
2.6.13 this number has jumped to 59.

We may further refine the assessment of the com-
plexity of device-specific code by taking into account
the library structure. Each driver support library rep-
resents a unit of understanding, and thus code that re-
lies on multiple driver support libraries requires more
expertise to maintain than code that relies on only one.
Figure @ also shows the number of libraries on which
each file depends. In Linux 2.4.0 only 169 files rely
on three or more libraries, while in Linux 2.6.13 this
number has increased to 501.
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Figure 9: (a) Library function references and (b) li-
brary references in Linux 2.4.0 and Linux 2.6.13

Interface complexity from the perspective of the
developer of a driver-support library We mea-
sure the complexity of an interface in terms of the num-
ber of functions it exports, as shown in Figure M0h.
While the number of functions exported by the typi-
cal interface is under 20 in both Linux 2.4.0 and Linux
2.6.13, the maximum number of exported functions in-
creases significantly, from around 80 in Linux 2.4.0 to
around 130 in Linux 2.6.13.

When a change occurs in the interface of a driver
support library, collateral evolution is needed in all
dependent device-specific code. The difficulty of per-
forming this collateral evolution depends not only on
the number of files involved, but also on the distribu-
tion of these files across different directories, as files
in other directories may not be known to the library
developer and may exhibit unique code patterns. Fig-
ures [b and [ show the number of device-specific
files depending on each interface and the number of
directories containing at least one device-specific file
with such a dependency. Again, the maximum num-
ber has doubled between Linux 2.4.0 and Linux 2.6.13.
In Linux 2.6.13, the most widely used library is PCI,
which is the basic bus used on PCs. The network de-
vice and ethernet support libraries are the next most
widely used. The USB support library is also among
the most widely used, being used by 131 files.
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Figure 10: (a) Interface size and (b,c) interface usage
in Linux 2.4.0 and Linux 2.6.13

5.4 Quantitative assessment of evolu-
tion

Figure [l shows the number of evolutions that have
occurred in library functions, device-specific callback
functions, data structures, and protocols in the ver-
sions of Linux between 2.2 and 2.6. In the current state
of our tool, protocols are detected only as the addition
or deletion of single function calls. The most signifi-
cant number of evolutions occurs in library functions
and protocols, with an increase across the versions of
Linux that roughly mirrors the increase in code size.

It is interesting to compare the number of evolu-
tions in the unstable versions 2.3 and 2.5 and their
stable derivatives 2.4 and 2.6. The stable Linux 2.4
had slightly more evolutions than the unstable version
2.3, but was the main version of Linux for almost three
years, while Linux 2.3 was only under development for
1 year. In the case of Linux 2.5 and Linux 2.6, the
so-called stable Linux 2.6 has had almost as many evo-
lutions as the unstable Linux 2.5. The current age of
Linux 2.6 is about the same as the time in which Linux
2.5 was under development, but we can expect Linux
2.6 to be the main version for some time longer, and
thus to accumulate even more evolutions.

5.5 Quantitative assessment of collat-
eral evolution

Figure [[2 assesses the number of lines modified due to
collateral evolutions from the first patch file for Linux
2.2 to the patch file for Linux 2.6.13. We observe that
while the number of lines affected by collateral evolu-
tions varies from one version to the next, there is a
general increasing trend, with a significant increase in
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Figure 11: Number of evolutions in interface elements
in Linux 2.2 to Linux 2.6

Linux 2.6. In terms of the percentage of lines modified
due to collateral evolution as compared to the the num-
ber of lines modified overall in device-specific code, we
see that the biggest spikes, of over 35%, occur in the
unstable versions. We conjecture that OS developers
postpone evolutions that may induce many collateral
evolutions until these versions, due to the amount of
work that they entail.
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Figure 12: Patch file lines and percentage of patch file
lines derived from device-specific code and containing
collateral evolutions in Linux 2.2 to Linux 2.6

Figure [[3 measures the magnitude of individual col-
lateral evolutions in terms of the number of sites af-
fected and terms of the number of files affected. On
average, a collateral evolution is required at around 14
sites and in a total of 10 files. Nevertheless, many col-
lateral evolutions are much more pervasive, with one
change in library function affecting around 1000 sites
in Linux 2.6. Overall, collateral evolutions in library
functions and protocols affect both the most sites and
files. Collateral evolutions in library functions vary
from simple textual replacement to cases that involve
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careful analysis of the source code. Protocol changes
that involve adding new functions, on the other hand,
are often difficult, as they require situating new code
within a context whose precise structure can vary.

O Max Linux 2.2

o 1000 o Max Linux 2.3
8 800 @ Max Linux 2.4
s 600 < @ Max Linux 2.5
2 w0 " Vo
8 2004
%) 0]
Library Device-specific  Data structures Protocol
functions functions
ng 400 -
S 300 -
&)
o 200 -
o
= I
= 0- (5] !J D D H
Library Device-specific ~ Data structures Protocol
functions functions

Figure 13: Maximum number of sites and files affected
by a single collateral evolution

6 Requirements for Coccinelle

Ultimately, our goal is to develop the Coccinelle tool
providing automated assistance to ease the collateral
evolution problem. This assistance will comprise a
transformation language for describing collateral evo-
lutions and a transformation engine for applying them
to device-specific code. We envision that Coccinelle
will be used as follows. When a developer modifies
the interface of a driver support library, he also uses
the transformation language to specify the associated
collateral evolution. He then uses the transformation
engine to apply the specified collateral evolution to
device-specific code in the Linux source tree. When
the specification has been validated on the available
sources, the developer makes it publicly available for
use by the maintainers of drivers outside the Linux
source tree.

In this section, we use the results of our analysis of
collateral evolutions in Linux device-specific code to
suggest a number of features that Coccinelle should
provide.

6.1 Support for C code

C code is notoriously difficult to process automatically,
for reasons including the size of the language, the am-

biguity between type names and function names, and
the possibility of arbitrary code reorganizations using
macros. A typical solution is to apply the C prepro-
cessor to the code, and then to rewrite the code into
a simplified intermediate representation [, 21]. The
result is then expressed in this simpler sublanguage.

Simplifying the source code, however, is not appro-
priate for implementing collateral evolution. Collat-
eral evolution is intended to create code that will con-
tinue to evolve and be maintained, and thus the result
must be in the form of the original source code, in-
cluding macro definitions, comments, and whitespace.
Furthermore, collateral evolutions may involve macro
calls (e.g. line 3 in Figure Hl), which thus must be
visible to the transformation engine. More generally,
the transformation rule developer must have confidence
that the rule will apply where he expects and will not
apply where he does not expect, without needing to un-
derstand the simplification process. These issues thus
imply that Coccinelle must provide facilities for pro-
cessing and constructing code following the structure
and conventions of the original source program.

6.2 Mechanisms for specifying code
fragments

To specify transformation rules that are applicable to
multiple device-specific files, it is necessary to iden-
tify relevant code fragments in a generic way. Device-
specific code can be written in many different styles,
using varying naming and coding conventions. A point
in common, however, is that collateral evolutions are
triggered by changes in driver support library inter-
faces and that device-specific code must use these in-
terfaces in a standard way. Thus, the transformation
language should provide abstractions that identify code
in terms of the interface elements identified in Section
Bl calls to library functions, definitions of device-
specific callback functions, accesses to interface data
structures and protocol relationships. These points be-
come anchors from which to reason about code in the
context affected by collateral evolution. For example,
the collateral evolution of usb_submit_urb (Section
ET) requires searching from the call site for the tak-
ing and releasing of locks in the context, while the case
of video_usercopy (Section EE2) requires first identify-
ing the callback function whose prototype has changed
and then reasoning about its local variables.

6.3 Mechanisms for describing rela-
tionships between code fragments

All of the examples described in Section Bl and many of
the examples summarized in Figure Bl depend in some
way on control-flow and data-flow information. For
example, in the case of check_region (Section E3),
control-flow analysis is needed to make the connection
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between the call to check_region and the correspond-
ing call to request_region in the source code, while
in the case of usb_submit_urb (Section BTl data-flow
analysis is needed to trace the use of the function call-
ing usb_submit_urb when this function is stored in a
pointer and invoked via an indirect function call. In
many cases, these analyses must be inter-procedural.

The need for program analyses raises the issue of
who should implement them and how to access their
results. One approach is to allow developers to encode
analyses within the transformation rules [24]. This ap-
proach allows the analyses to be finely tailored to the
needs of the transformation, but can massively com-
plicate the transformation rules. It thus seems nec-
essary to build the analyses into the transformation
engine. Program analyses in their full generality, how-
ever, are very time consuming, and our study shows
that collateral evolutions are sufficiently localized that
complete precise analysis of entire device-specific files
is not needed. Thus, a mechanism is needed to limit
the analyses to the needs of a given transformation
rule. Finally, suitable abstractions must be provided in
the transformation language for accessing the results of
analyses. Lacey et al. have proposed a form of rewrite
rule that specifies the original code, the transformed
code, and a side-condition expressed using temporal
logic that describes relationships between the original
code and its context in a control-flow graph [T6]. We
have used this approach in automating the reengineer-
ing of Linux for use with the scheduling framework
Bossa [}, 20], and expect that, generalized to also al-
low specification of data-flow relationships, it will be
useful in describing collateral evolutions as well.

7 Conclusion

In this paper, we have shown that the evolution of
drivers is a critical issue. Nevertheless, this issue has
received little attention from researchers. Our long
term goal is to design Coccinelle, a tool that provides
a means for expressing knowledge about collateral evo-
lutions and a transformation engine to assist develop-
ers in applying them. As such, the domain analysis
conducted in this work represents a first step towards
making collateral evolution easy and robust, in order to
improve the reliability of device support in operating
systems.

Based on our these results, our next effort will be in
the design of a formal language for expressing collateral
evolution and the associated transformation engine. As
a proof of concept, we plan to return “back to the fu-
ture” of Linux 2.4 and replay the evolution to Linux
2.6.
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