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LT/GEeoL 1.0: Un ensemble de fonctions en MAPLE pour la
représentation de contraintes géométriques dans le plan complexe

LT/GeoL 1.0: A MAPLE package for constrained
planar Euclidean geometric structures

November 18, 1988

Lars Warren Ericson !

INRIA
B.P. 105-78153
Le Chesnay CEDEX, France

Abstract

This paper describes a package in MAPLE for representing geometric structures
such as points, lines and circles in the complex plane, with geometric constraints
between structure components involving measures such as angle and distance. This
package is a component of the LINETooL planar geometric editor proposed by
Ericson and Yap (1988), but is sufficiently general to be used in other symbolic
geometry applications.

Resumé

Cet article décrit un ensemble de fonctions en MAPLE pour la représentation de
structures géométriques comme des points, des lignes, et des cercles dans le plan
complexe, avec des contraintes géométriques entre les composants de la structure,
incluant des mesures comme l’angle et la longueur. Cet ensemble de fonctions est
une partie du systéme LINETooL de calcul formel géométrique planaire proposé
par Ericson et Yap (1988), mais il est suffisamment géneral pour &tre utilisé dans
d’autres applications du calcul formel géométrique.

'This work was done using the facilities of Projects FORMEL (Gérard Huet) and
ALGO (Philippe Flajolet) at INRIA. I am supported by a Bourse Chateaubriand from
the Ministry of Foreign Affairs of the French Government, for the period 15 January 1988
to 15 February 1989, hosted by the Ecole Nationale Supérieure des Télécommunications
in Paris.
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| Structure types |

[Constructions and transformations | Assignment

'

Structure set ~l Evaluation under assignment]
| Constraint procedures | FDisplay procedures
Constraint set POSTSCRIPT text

[Polynomialization procedure l‘——Dependency declarations

Partitioned multivariate polynomial equation sets

Figure 1: Geometric structure description package

1 Introduction

This paper describes the MAPLE package LT /GEoOL version 1.0 for defining
planar geometric structures and obtaining their analytic models (£, D) as
sets E of multivariate polynomial equations together with a dependency re-
lation D on real-valued indeterminates which occur in expressions defining
components of geometric structures. The “leaf nodes” of geometric struc-
tures are numbers, which are any computable subfield of the reals completed
under the inclusion of two elements oo and L. Figure 1 shows the major
components of the package.

LT/GEoL is an implementation component of the LINET0OOL geometric
editor proposed by Ericson and Yap (1988) [11, §3-§5], but is sufficiently
general to be used by similar applications. The paper assumes that the
reader is an experienced MAPLE programmer [7,6]. -

1.1 Numbers

The package is parameterized on the existence of a computable subfield of
the real numbers which is completed by infinity oo and undefined 1L elements,
according to the arithmetic rules given by Vuillemin [15, §2.6]. Such a
subfield could be the algebraic numbers, for example via Loos’ algorithms
[12], or via Vuillemin’s effective real numbers.
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Figure 2: Genealogy of geometric structures in LT /GEoOL

1.2 Geometric structures

The package operates on (geometric) structures (see §2) such as real numbers
N, complex numbers C (the representation for points in LT/GEOL), angles
A, lines L, line segments S and circles Circle in the plane, with geometric
constraints between structure components involving measures such as angle
and distance. The hierarchy of definition for these predefined geometric
structure types is shown in Figure 2.

Structures are labelled product types. Intersection structures are la-
belled disjoint union types. The package allows new kinds of structure to be
declared. For each kind of structure, by convention one defines a collection
of constructions and transformations (a kind of construction), constraints,
an evaluation method under an assignment of values to variables, and a
PosTSCRIPT [2] graphical display under an assignment of values to vari-
ables. A graphical display is a text string of valid POSTSCRIPT code. An
assignment is a set of equations of indeterminates to expressions. Struc-
tures may be grouped into figures, which are collections of structures and
constraints. In a language such as CAML, these structures would be defined
as mutually recursive abstract types [10,16].
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1.3 Constructions and constraints

A construction is a procedure which yields an instance of a structure. A
constraint is a procedure which yields a set of general equations involv-
ing components of the structures which are arguments to the constraint.
A general equation is an expression e;¢e; where ey, es are number-valued
multivariate rational functions and ¢ is one of {=,#,<,>,<,>}. A trans-
formation is an action on all objects in a figure in the plane. Thus, one set
of transformations is defined on figures, which is recursively defined in terms
of transformations on all geometric structures which may occur in a figure.

1.4 Intersections

An intersection is a point in the complex plane. In the case where two

objects have no intersection in the complex plane, the components of the

intersection point will have undefined L or infinite co values, depending
on the order of evaluation of the arithmetic expression which defines the
intersection. '

1.5 Solution of constraints

The package is parameterized on the existence of a procedure for solving
systems of multivariate polynomial equations ¥, with the result being a
variety V', which in this paper should be taken to mean a set of assignments
of real numbers to indeterminates such that each assignment in V' when
substituted into 3 will cause all of the polynomials in £ to evaluated to
0. In a special case, this procedure could be Gaussian elimination. More
generally it could be Grobner bases [4).

1.6 Multivariate polynomial set normal form

The package includes facilities for obtaining the multivariate polynomial set
normal form of a set of constraints. The package includes methods of trans-
forming constraint sets, which are in the form of rational function general
equations, entirely into sets of polynomials equated to zero or into sets of
rational function inequalities and polynomials equated to zero. These trans-
lation facilities compute normal forms of constraint sets which are suitable
for various theorem-proving and solution algorithms such as Wu’s method
[8,9] and Grobner bases {4].
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1.7 Hierarchical multidimensional systems

The LT /GEoL package (§11) provides a structure for maintaining an acyclic
directed graph of dependency assertions relating subsets of the set V' of N-
valued indeterminates occurring in a set & of polynomials implicitly equated
to zero. This structure also computes a corresponding function on ¥ which,
for a given node V' of the graph, gives the subset of ¥ which involves only
indeterminates in V and indeterminates which elements of V depend on.
This structure was proposed for use in geometric editing by Ericson and
Yap (1988) [11].

The validity of dependency assertions is not checked by the system: it
is up to the user to know what assertions are intended to be valid in the
geometrically describable (abstracted physical) system that is under con-
struction. Often such assertions are a matter of experimention: make the
assertion, then see if the system is solvable by parts under this assumption.

1.8 Geometric expression evaluation

An evaluation procedure evalG is supplied, which takes MAPLE expressions
which involve applications of overloaded operation names such as + and
PS, and takes an assignment of structure types to indeterminates in the
expression, and applies the correct operation. evalG is described in §12.
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2 Structures

This section gives a facility for representing a labelled product type, here
called a structure (like a C struct), in LT /GEOL.

2.1 Declaring a structure type

A structure type g = (a, b, c) is a labelled product type. It may be declared
in LT/GEoL with the MAPLE procedure call structure(g,[a,b,c]).

In no case should the user’s code at any time directly assign a value to
the MAPLE global names g, ‘g Fields‘, a, b or c after defining a structure
with those names with structure(g,[a,b,c]). But the same field name
(such as b) may be used in more than one structure definition.

Example 1 The definition of the structure of points Point = (z,y) could
be structure(Point, [x,y]).

2.2 Making an instance of a structure type

An instance of structure type g, with actual values a,b,c for the fields a,
b and ¢, is then obtained with the MAPLE procedure call g(a,b,c). This
instance is known to the MAPLE type function as having type g.

2.3 Accessing the fields of a structure type

The field a (respectively b, c) may then be access for an instance 2 of
structure type g with the MAPLE neutral operator expression a &of z. If
2 is a name, then the call is returned unevaluated.
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+ 10 1 oo L}x]0 1 oo 1
00 1 oo L0110 0 L1 1
1 1 2 oo 1 110 1 oo 1
©olow oo L Lijoo|ldl oo oo 1
L L L LpL]jL L 1 41
-0 1 oo L}j+]0 1 oo 1
010 -1 o L}jO0OlL 0 0 4L
1 1 0 oo L1 ]oo 1 0 1
cwiow oo L Lffoojoo oo L L
L2741 L L LpLilr L L 1L

Table 1: The co-L completion of a real subfield

3 Numbers

The number structure type N is intended to represent any computable sub-
field of the reals completed by the adjoinment of infinity (c0) and undefined
(L) elements, according to the operation tables of Table 1 [15, §2.6]. In
this paper, this is called the oo-1 completion of a real subfield. Authors
who have discussed arithmetic for suitable real subfields include Loos (1983;
algebraic numbers [12]), Norman (1983; transcendental numbers [13]) and
Vuillemin (1987; effective real numbers [15]).

3.1 Number structure

A number is a quantity v encased in an N structure, such that v is of a type
which is a co-L completion of a computable subfield of the reals. Table 2
shows the constructions, constraints, graphical display and evaluation oper-
ations provided by the LT /GEoL package for the N structure. The values
Infinity and Bottom are special possibilities for v.

3.2 Number constructions

The basic number constructions are the arithmetic operations +,—,x,+
and exponentiation. In this package the default is MAPLE arithmetic. Other
arithmetics may be installed by simply redefining the N arithmetic operations
defined below.

The following numbers may be constructed from complez numbers z =
z + yi and z; in the complex plane (see §4):
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Structure

(v) | Any subset of the reals

Constructions

+,—,X,+, ", Max, Min |N X N —- N

—, Inverse, Sqrt N—- N

Re &of z, Im &of =z Cc - N

x &of a, y &of «a A —> N

Modulus C - N

Distance, Slope CxC—-N

XDistance, YDistance |C X C — N

Sine, Cosine, Tangent (A — N

Distance CXL—->N

Distance S - N

R &of ¢ Circle — N

’ Constraints

=,#,<,>,<,> [ N x N — General equation set
Evaluation

FValue [N X Assignment — float

Graphical Display

PS | float — string sequence

Table 2: The N structure
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e The z and y components, via the MAPLE expressions Re &of z and
Im &of z.

The modulus |z| = /2% + y=.

The distance between z and 21, that is,

d2,2’1 = |21 - Z|

The z- and y-distance between z and 2y (cf. [8, functions X, Y)).

The slope of the line passing through z and 2;.

Some numbers that may be constructed from angles (see §5) include:
¢ The sine of an angle.

e The cosine of an angle.

e The tangent of an angle.

A number that may be constructed from a line (see §7) is the distance
from a complex number to a line, which is the distance from the complex
number to its projection on the line.

A number that may be constructed from line segments (see §6) is the

length of a segment (cf. [14, §3(d)]).

3.3 Number constraints

The number constraints are equality and the inequalities.

3.4 Number evaluation under an assignment

An N may be evaluated under substitution with procedure FValue to an
N or to a MAPLE expression involving floats and indeterminates. This is
useful when computing graphical displays when one is confident that all
indeterminates in the expression defining a number will be assigned numeric
values.

3.5 Number graphical display

PS gives the POSTSCRIPT string for a number which has been approximated
to a floating point value.
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L]
4 Complex numbers

4.1 Complex number structure

A complex number C' = (Re, Im) consists of a real part Re and an imaginary
part Im. Both Re and Im are N structures (see §3). Table 3 shows the
constructions, constraints, transformations, evaluation and graphical display
operations provided by the LT/GEoL package for the C structure.

4.2 Complex number constructions

The following constructions are defined on complex numbers:

e The arithmetic operations 4+, —, x,+,".
e Scalar x, <.
e The midpoint of two other complex numbers.

A complex number may be constructed from an angle (see §5) by coer-
cion: the argument is the angle, and the modulus is taken to be 1.
Some complex numbers that may be constructed from lines (see §7) are:

¢ Any complex number on the line with representing complex number
pairs (u,w) is of the form un + w [14, §3(p)].

e The intersection complex number of two lines with defining complex
numbers u,w and u;,w;. The Intersect operation may result in a
complex number, a line, or nothing. The intersection on the complex
number representation of lines is defined as follows [14, §3(e)]:

((‘wldl - ﬂ)lnl)u - (wﬁ - ﬂ)u)ul)(uﬂl — ﬂul)—l

o The projection Py of a complex number P onto a line £, which is
the intersection of a perpendicular to the line through the complex
number, and the line itself.

o The reflection R, of a complex number P across a line £, which is equal
to 2P, - P.

e The slope of the line passing through two complex numbers, as a num-
ber (undefined if the two numbers are both purely imaginary).
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Structure
(Re, Im) |N X N
Constructions
—, Inverse, Sqrt, Conjugate | C — C
4+, = X, + cCxCcC—-2C
X NxC—C
- CXN-—-C
C A—-C
MidPoint cCxC-—2C
pl &of s, p2 &of s S —- C
u &of I, w &of [ L > ¢C
Projection, Reflection CxXxL-—>C
On LXN-—>C
Intersection LXL—-C
z &of ¢ Circle — C
Intersection L X Circle - C x C
Intersection Circle X Circle — C X C
On Circle X N —= C
B - Transformations B
Rotate CxXxXA-—-C
Translate cCxXxC—-_C
Scale CXN->C
Constraints
=,#,<,>,<,> [ ¢ x ¢ — General equation set
Evaluation
FValue IC X Assignment — C
Graphical Display
PS ]C X string set — string sequence

Table 3: The C structure
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Example 2 Parallel lines do not intersect. Thus, an attempt at intersecting
two parallel lines will result in a point with co or L components.

> L1 := evalG(L(C(-1,0), €(1,0)));
’ L1 := L(C(N(-2), N(0)), C(N(1), N(0)))

> L2 := evalG(L(C(-1,1), C(1,1)));
L2 := L(C(N(-2), N(0)), C(N(1), N(1D)))

> evalG(Intersection(Ll, L2));
C(N(Bottom), N(Bottom))

From a line (u,w) and a circle (R, z), two complex numbers A, B may
be constructed which represent the two intersection points [14, §3(n)]. A
and B are the two values of

2+ (28) N ((w — 2)8 - w(T=F) £ (w0 — 2)7 — w(F=F)? + 4R%ua)"?)

From a circle and a circle, two complex numbers A, B may be constructed
which represent the two intersection points. These are the points of inter-
section of the chord of intersection of the circles (see §7), with one of the
circles.

A complez number on a circle (see §8) is of the form [14, §3(q)], for n
any number, Bn + 2.

4.3 Complex number transformations

A complex number may be rotated by an angle, scaled by a number or
translated by another complex number. The rotation of a complex number
7(cos 8 + isinf) by an angle a is the complex number 7(cos(6+ o)+ ¢sin(6 +
a)). The scaling of a complex number z + yi by r is the complex number
zr + yri. The translation of a complex number u by a complex number w
is just v + w.

4.4 Complex number constraints

On complex numbers we have the following constraints:

¢ That two complex numbers are equal or unequal.

e That three complex numbers are colinear line (cf. [8, §2.2, Command
L)).

¢ That four complex numbers are cocircular (cf. [8, §2.2, Command C]).
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4.5 Complex number evaluation under assignment

The floating point value of a complex number under an assignment is the
complex number formed by the value of its real and imaginary number parts
under the assignment.

4.6 Complex number graphical display

The PosTSCRIPT graphical display string for a complex number which has
been evaluated to floating point is obtained with the PS procedure. PS
takes a DisplayStyle parameter and an optional third argument, a label.
DisplayStyle is a set which may be empty or include any consistent com-
bination of the keywords:

AsRectangularPoint AsComplex AsPolarPoint
Label Visible Invisible
Hollow Solid

The effect on the display of complex number z = z + yi = 7(cos @ + isinf
depends on the presence of a given keyword:

e Visible: the point will be displayed.

e Invisible: the dot is not displayed but a label may be.
e Solid: The point will be marked by a solid dot (e).

e Hollow: The point will be marked by a hollow dot (o).

e Label: The label which is the third argument to PS will be printed
next to the dot.

e AsComplex: the legend z + yi will be printed next to the dot, preceded
by an = if there is a label.

e AsPolar: the legend (r,/8) will be printed next to the dot, preceded
by an = if there is a label.

e AsRectangular: the legend (z,y) will be printed, preceded by an = if
there is a label.

e AsPS: The real and imaginary parts are displayed separated by a blank.
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o 50.99019514 at 1.373400766radians Point R

. o S=(270,10)

Figure 3: Some ways of displaying points

Example 3 The following LT /GEoOL code displays points in various ways.?
P is given a hollow dot and polar coordinates. Q is given a solid dot and
is displayed as a complex number. R is invisible but labelled. S is solid
and given a label and rectangular point coordinates. The code for this is as
follows:

read ‘geol.m‘;

F1 := evalG(F({Cc(10, 50) {Hollow, AsPolar},

c(10, 10) = {Solid, AsC},
€(270, 50) = ({Invisible}, ‘Point R ),
€(270, 10) = ({Solid, AsRectangular}, ‘s 9)}));

PSFile(‘excdisp.ps‘, ‘gsave 100 0 tramslate‘, F1, grestore);

done

This creates the graphical display of Figure 3.

2This should be executed in a MAPLE started up with the quiet option (maple -q) to
prevent garbage collection messages from messing up the POSTSCRIPT code.
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Structure
(x,y) IN X N
Constructions
Right, Straight | A
4+, — A X A— A
Argument C — A
Angle CxXxC— A
Angle CXCxC—A
Angle S - A
Angle L - A
DoubleAngle . |L X L — A
Constraints .
= | A X A — General equation set
Graphical display
PS | A — string sequence
Evaluation
FValue ]A X Assignment — A

Table 4: The A structure

5 Angles

5.1 Angle structure

An angle is isomorphic to the equivalence class of all complex numbers, ex-
cluding 0, with the same argument. Only one representative of this equiva-
lence class is necessary to represent the angle. Thus an angle is representable
by a complex number-like structure under (for purposes of equivalence) mod-
ular arithmetic. Table 4 shows the constructions, constraints, and evaluation
operations provided by the LT /GEoL package for the A structure.

5.2 Angle and angle-related constructions

Angles may be constructed from the following angle constants and construc-

tions:
o The constant right angle (cf. [14, §3(k)]).
o The constant straight angle (cf. [14, §3(1)]).
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o The sum of two angles, obtained as the complex product (cf. [14,

§3(8)))-

» The difference of two angles, obtained as the complex quotient (cf. [14,
§3(h)]).

An angle that may be obtained from a nonzero compler numberz = z+yi
is it’s argument argz = 6 that is, the # such that for some number r,
z +yi = r(cosf + isin ). ’

Angles may be constructed from complex numbers as follows:

o The angle between two complex numbers A, B and the origin, ZB0A,
which is the counterclockwise motion from 04 to 0B.

e The angle between three complex numbers A, B,C, LCBA, which is
the counterclockwise motion from AB to BC. ’

Let s be a line segment whose endpoints are p; = =1+ y1¢ and p; = 2, +
y21. Define the angle of s with respect to the origin as follows. Assume that
z1 < z2 (otherwise, switch the endpoints). If yo > y; then let po = 22 + 114,
and then the angle is Zpgp;p2. Otherwise let po = 1 + y2¢, and then the
angle is ™ — Zpopap1->

An angle of a line segment with respect to the origin, is the angle Lpop1p2,
where pp = max(z1,22) + min(y1,y2). The angle of a line with defining
complex numbers (u,w) is the angle of the line segment with endpoints
U+ w,w.

One may also construct the double angle (twice the value of the angle)
between two lines (cf. [14, §3(f)]). Lines are discussed in §7.

5.3 Angle constraints

Equality is defined on angles.

Two angles are equal if the arguments of their complex number represen-
tations are equal. This is so if, when scaled down to the unit circle, they are
equal complex numbers, i.e., if  and v are complex numbers representing
angles o and S, then a = § when

v

U
Vuu /oo
3To be usable in a constraint computation, the above construction has to be reduced

to a single expression which reduces to rational function expressions without embedded
conditional operations.
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that is, when

u? 2

ui  vd
which is when

uv = v

5.4 Angle evaluation under assignment

An angle may be converted to a POSTSCRIPT angle floating point approxi-
mation with procedure FValue under an assignment.

5.5 Angle graphical display

PS gives the graphical display string sequence for an angle which has been
previously evaluated to a floating point approximation. It takes a parameter
DisplayStyle, one of:

e Radians: The radian value is displayed followed by the word radians.
o Degrees: The degree value is displayed followed by the word degrees.
o AsPS: The radian value alone is displayed.

Example 4 Here are the degree values of some important angles:

> [[1,0]’ [111]9 [03111 [-1:1]) [-130]1 [-11_1:11 [01_1]’ [1)—1]];
[[1» o]: [1| 1]) [o, 1]) [-1’ 1]» [-1. o]s [_1) -1]y [0’ -1]’ [1) —1]]

> map(proc(x) evalG(Argument(C(op(x)))) end, ");

1 1
[A(N(1), N(O)), A(N( ), N( D), A(NCO), N(1)),
1/2 1/2
2 2
1 1 . 1 1
AN(- —————- ), N(———--- )), AWNC-1), N(0)), A(N(- ------ ), N(~ ==-m—- ),
1/2 1/2 1/2 1/2
2 2 2 2
1 1
A(NCO), N(-1)), A(N( ), N(- NI
1/2 1/2
2 2

> map(proc(a) ‘PS A‘(a, Degrees) end, ");
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[0 degrees, 45.00000002 degrees, 90.00000000 degrees, 135.0000000 degrees,
180.0000000 degrees, 225.0000000 degrees, 270.0000000 degrees,

314.9999999 degrees]
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Structure
(p1,p2) [cxc
Constructions
S [CxC—5
Transformations
Rotate S XA —S
Translate SXC—S
Scale S XN-—=S
Constraints
=,#,Parallel |[S X S — General equation set
Perpendicular | S X S — General equation set

Evaluation
FValue | S X Assignment — S
Graphical Display
PS | S — string sequence

Table 5: The S structure

6 Segments

6.1 Segment structure

A line segment consists of a pair of endpoint complex numbers p1 and p2.
Table 5 shows the constructions, constraints, transformations, evaluation
and graphical display operations provided by the LT /GEoL package for the
S structure.

6.2 Segment transformations

A segment may be rotated by an angle, translated by a complez number
and scaled by a real number. A segment £ is rotated (respectively, trans-
lated, scaled) by forming the segment £ with endpoints being the rotation
(respectively translation, scaling) of the two endpoints of £.

6.3 Segment constraints

Two segments may be constrained to be parallel or pependicular. This is
obtained by extended the segments to lines (see §7) and obtaining the cor-
responding relations.
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Of-memeemcamcnanaal

» angle(GFD) = 42.02 degrees

Oq

Figure 4: A triangle and its altitude

6.4 Segment evaluation under assignment

A segment’s components may be approximated to floating point values with
the procedure FValue under an assignment.

6.5 Segment graphical display

A POSTSCRIPT graphical display string is obtained for a line segment which
has been evaluated to floating point with the PS procedure, which takes as
parameters:

e DisplayStyle: One of the strings:
dashdot shortdash longdash solid dotted

e Label: If non-null, a label to be displayed next to the segment.

Example 5 Figure 4 displays a triangle ADFG in solid lines with an
altitude OG in a shortdash pattern. The angle o = /DFG = LOFG is
also displayed. This display was produced with the following LT /GEeoL
code:

read ‘geol.m‘:

G := C(100, 100): FF := C(200, 10):
D := C(10, 10): 0 := C(100, 10):
alpha := evalG(Angle(G, FF, D)):

Digits := 4:

F1 :=
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evalG
(F({S(FF,G) = solid, S(D,G) = solid, S(D,FF) = solid, S(0,G) = shortdash,

G = ({Visible, Label}, ‘¢ ¢),
FF = ({Visible, Label},

cat(‘ angle(GFD) = ¢, ‘Ps A‘(alpha, Degrees))),
{Visible}, D - C€(5,10) ({Invisible, Labell}, ‘D ¢),

D
{Visible}, 0 - C(5,10) ({Invisible, Label}, ‘0 <)})):

0

‘PS File‘{(‘segtest.ps‘, ‘¢, F1, <“):

done
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Structure
{u,w) [c x¢C
Constructions
LThrough CXC—1
LThrough S —-1L
Parallel, Perpendicular {L X C — L
EquidistantFrom CxC—-1
Chord Circle x Circle — L
TangentTo Circle X C — L
Transformations
Rotate LXA—-1L
Translate LxC—1L
Scale LXN-—-=1L
Constraints
On . C X L — General equation set
Parallel, Perpendicular | L X L — General equation set
Evaluation
| FValue | L x Assignment — L
B Graphical Display
PS L X string X string X
C X C — string sequence

Table 6: The L structure

7 Lines

7.1 Line structure

Following Schwartz [14, §3], a line is isomorphic to a pair of complex numbers
(u,w) such that there exist complex numbers p;, p; which lie on the line and

(w,w) = (p—p2,p2)
u # 0
Table 6 shows the constructions, constraints, transformations, evaluation

and graphical display operations provided by the LT /GEOL package for the
L structure.



7 LINES 28

7.2 Line constructions
A line may be constructed from complez numbers (see §4):

¢ From a pair of complex numbers p, ¢ through which it passes, in which
case the defining complex numbers are p — ¢, ¢ (cf. [14, §3(i)]). The
constructor is LThrough.

¢ Equidistant to two complex numbers z; and z; (cf. [14, §3(r)]), in
which case the defining complex numbers are i(22 — 21), (21 + 22)-

A line may be constructed from a line segment (see §6), by forming the
line through the segment’s defining complex numbers.
A line may be constructed from other lines as follows:

e Parallel to another line with defining complex numbers u,w, passing
through a complex number z, in which case the defining complex num-
bers are u, z (cf. [14, §3(i)]).

e Perpendicular to a line with defining complex numbers (u, w), passing
through a complex number 2 (cf. [14, §3(j)]), in which case the defining
complex numbers are (iu, z).

There are several lines which may be constructed from circles (see §8):

o The line tangent to a circle (R, z) (see 8) at a given complex number
w. The defining complex numbers for this line are i(z — w), w (cf. [14,

§3(m)]).

o The line which is the chord of intersection of two circles (Ry,21) and
(Rz, z;) is the line with the pair of representing complex numbers [14,

§3(0)):
u = ’i(22—21)

= 2+(2E-2)) N R - R} + (22 — 21)(32 — 21))

Example 6 The following LT/GEOL code constructs a line L1 which is
tangent to a circle P1 with radius 50 and center (100, 0), through the point

(150, 0).
read ‘geol.m‘:

C1 := Circle(50, €(100, 0)):
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A PR . " L1

Figure 5: A line tangent to a circle

L1 := TangentTo(C1, C(150,0)):
TL := evalG(C(0,50)):

BR := evalG(C(300,-50)):
Digits := 4:

PSFile(‘lineltest.ps®, ‘gsave 51 60 translate‘,

F({C1 = (‘c1 ¢, shortdash), L1 = (‘L1 ¢, solid, TL, BR)}), grestore):

done

This results in the following PosTScrIPT display of Figure 5.

7.3 Line transformations

A line may be rotated by an angle, translated by a complez number and
scaled by a real number. Scaling is a “no-op” which is present for uniformity
in the design of the system.

A line £ is rotated by forming the line £’ passing through the rotation of

two points through £.
A line £ is translated by forming the line ¢’ passing through the transla-

tion of two points through £.

7.4 Line constraints

The complex number 2 lies on the line with representing complex number
pairs (u,w) if u(z — w) = &z — w).
Two lines with representing complex number pairs (v, w) and (u’,w’) are

o Parallel if uu’ = u'a (cf. [14, §3(a)]).



7 LINES 30

o Perpendicular if uu’ = —u'za (cf. [14, §3(b))).

7.5 Line evaluation under assignment

A line is evaluated to a floating point approximation by evaluating its defin-
ing complex numbers.

7.6 Line graphical display

A PosTSCRIPT graphical display string is obtained for a line which has been
evaluated to floating point with the PS procedure, which takes as parameters:

e Label: I non-null, a label to be displayed next to the line.

e DisplayStyle: One of the strings:
dashdot shortdash longdash solid dotted

e TL, BR: Lines are infinitely long, but are displayed finitely as a line
segment with arrows at either end. Parameters TL (“top left’) and BR
(“bottom right”) define a “window” on the plane to which the line will
be clipped for display purposes. If the line is outside of this window,
the null display string will be returned.

Example 7 The following LT /GEOL code defines two intersecting lines, L1
and L2, and their point of intersection P.

read ‘geol.m‘;

L1 := evalG(LThrough(C(-10,100), €(50,0)));
L2 := evalG(LThrough(C(0,20), €(200,200)));
P := evalG(Intersection(Ll, L2));

TL := evalG(C(-50,70));

BR := evalG(C(80,-50));
Digits := 3:

Fi := evalG(F({L1 = (‘L1 ¢, solid, TL, BR), L2 = (‘L2 ¢, solid, TL, BR),

P = ({Label, AsRectangular}, ‘P )}));
PSFile(‘linetest.ps‘, ‘gsave 150 50 tramslate‘, F1, grestore) ;

done

This results in the following PosTScRIPT display of Figure 6.
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P =(24.7,42.2)

Figure 6: Two lines that intersect

Structure
(R, 2) [N x Circle
Transformations
Rotate Circle X A — Circle
Translate | Circle X C — Circle
Scale Circle X N — Circle
Constraints
On | C X Circle — General equation set
Evaluation
FValue 'Circle X Assignment — Circle
Graphical Display
PS !Circle X string X string — string sequence
Table 7: The Circle structure
8 Circles

8.1 Circle structure

31

A circle is defined by a radius number R and a center point z. Table 7 shows
the transformations, constraints, evaluation and graphical display operations
provided by the LT /GEoL package for the Circle structure.

8.2 Circle transformations

A circle may be rotated, translated and scaled. A circle is translated (ro-
tated) by translating (rotating) its center point. A circle is scaled by scaling
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its radius.

8.3 Circle constraints

A point v lies on a circle (R, 2) if [v - z| = R.

Example 8 The following LT /GEOL code starts with three points F,G,0
at (—50, 50), (50,50) and (0,0). The circle with radius = and center y + 2z¢
passing through these points is computed by solving for the union ¥ of the
constraints that each of F, G, O lies on it. For the solution procedure we call
on MAPLE’s built-in solve routine. This yields two solutions, one assigning
a negative radius value to z. The solution with a positive assignment to z
is chosen. The circle is displayed in a dotted pattern. The code for this is:

read ‘geol.m‘;

FF := C(-50,50);

G := C(50,50);

0 := C(0,0);

C1 := Circle(x, C(y,z));

Digits := 4;

Sigma := evalG(On(FF, C1) union On(G, C1) union On(0, C1));

sigma := [solve(Sigma, {x,y,2})];

sigma := op(1, map(proc(s) if subs(s,x) > O then s fi end, sigma));
cl := subs(sigma, C1);

F1 := evalG(F({FF = ({Visible, Labell}, ‘F ),

G = ({Visible, Labell}, < ),
0 = {Visiblel},
0 + ¢(-1,8) = ({Invisible, Label}, ‘0 ),
cl = (f¢1 ¢, solid)}));
PSFile(‘circtest3.ps‘, ‘gsave 150 O translate‘, F1, grestore) ;

done

The trace of this procedure yields:

F := C(N(-50), N(50))

G := C(N(50), N(50))
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C1 G

Figure 7: A circle through three points

0 := C(N(0), N(0))
C1 := Circle(N(x), C(N(y), N(z)))
Sigma :=

2 2 1/2
{(5000 + 100 y +y - 100 z + z )

x,

2 2 1/2 2 2 1/2
(5000 - 100 y+y - 100 z + z ) =x, (y +2) = x}

sigma := [{z = 50, y = 0, x = 50}, {z =50, y = 0, x = -50}]
sigma := {z = 50, y =0, x = 50}

cl := Circle(N(50), C(N(0), N(50)))

The procedure results in the POSTSCRIPT display of Figure 7.

8.4 Circle evaluation under assignment

A circle is evaluated to floating point under an assignment by the proce-
dure FValue by evaluating its radius and center to floating point under the
assignment.



8 CIRCLES 34

8.5 Circle graphical display

A graphical display POSTSCRIPT string is produced for a circle which has
been evaluated to floating point with the PS procedure, which takes the
following parameters:

e Label: If non-null, place the given label next to the circle.

e DisplayStyle: One of the strings:
dashdot shortdash longdash solid dotted

Example 9 The following LT/GEOL code draws a circle with center at
(100,100) and radius 85. It draws a line through this circle which passes
through the points (0,10) and (100,50). The two intersection points are
computed, and are displayed with complex number labels. The circle is
displayed in a dashdot pattern:

read ‘geol.m‘;

C1 := Circle(85, C(100,100)):
L1 := evalG(LThrough(C(0,10), €(100,50))):
P := evalG(Intersection(L1i, C1)):
TL := evalG(C(0,110)):
BR := evalG(C(200,0)):
Digits := 4:
F1 := F({L1 = (‘L1 ¢, solid, TL, BR),
P[1] = {Visible, AsComplex},
P[2] = {Visible, AsComplex},
€1 = (‘ct ¢, dashdot)}):

PSFile(‘circtestl.ps‘, ‘gsave 100 0 translate‘, F1, grestore);

done
This results in the PosTScrIPT display of Figure 8.

Example 10 The following LT /GEoL code draws a circle with center at
(50,0) and radius 50, and a circle with center at (100, —10) and radius 60.
It computes the chord of intersection, and from-that the two intersection
points. The chord and the intersection points are drawn. The circles are
displayed in a solid pattern, with the chord in a dashdot pattern.
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Figure 8: A circle and a line that intersects it

read ‘geol.m‘;

Cl1 := Circle(50, C(50,0)):

C2 := Circle(60, C(100,-10)):

L1 := Chord(C1i, C2):

P := evalG(Intersection(Li, C1)):
TL := evalG(C(0,90)):

BR := evalG(C(300,-70)):

Digits := 4:

F1 := evalG(F({P[1] = {Visible}, P[2] = {Visible},
ci1 (fc1 ¢, solid), C2 (‘c2 ¢, solid),
L1 (‘L1 ¢, dashdot, TL, BR)})):

PSFile( ‘circtest2.ps‘, ‘gsave 100 70 translate‘, F1, grestore) :

done

This results in the PosTScrIPT display of Figure 9.
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Ct

L1
Figure 9: Two circles and their chord of intersection

9 Figures

9.1 Figure structure

A figure is a set of geometric structures. Figures are a way of organizing ge-
ometric constructions and also a way of simplifying access to the underlying
code for various types of geometric structure. Table 8 shows the transforma-
tions, evaluation and graphical display operations provided by the LT /GEoL
package for the F structure.

9.2 Figure transformations

A figure may be transformed by rotatation, translation and scaling. This is
accomplished by carrying out the transformation on each of the structures

in the structure set.

Example 11 A triaLngle like that if Figure 4 is constructed, with a circle
below it. These are rotated 7 radians. The result is shown in Figure 10.
The LT /GEOL code for this is:

read ‘geol.m‘;

D := ¢(0, 0): 0 := C(100, 0): FF := C(200, 0): G := C(100, 100):
C1 := Circle(50, C(100, -50)):

alpha := Angle(G, FF, D):

d := S(FF,G): £ := S(D,G): g := S(D,FF): o := S(0,G):
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Structure
(cénstructions) I Structure set
Transformations
Rotate FXA—>TF
Translate FXC—F
Scale FXN-—>TF
Evaluation
FValue | F X Assignment — F
Graphical Display
PS F — string sequence
PSFile string X string X F X string — ()
PSOpenFile string — ()
PSWrite (string + F)* > ()
PSCloseFile 0O -0

F1 := evalG(F({D =
°=
FF

{
s

Table 8: The F structure

Visible}, O
hortdash, G

{Visible}, d = solid, f

= {Visible}})):

PSOpenFile(‘figtest.ps‘) : :
PSWrite(‘gsave 200 100 translate 0.8 0.8 scale‘, F1,
evalG(Rotate(F1, Straight)), grestore):

PSCloseFile():

done

9.3 Figure evaluation under assignment

37

solid, g = solid,

{Visible}, Ct = (¢¢, longdash),

A the components of a figure may be evaluated to a floating point approxi-
mation. This is accomplished by carrying out the evaluation on each of the
structures in the structure set.

9.4 Figure graphical display

A figure which has been evaluated to floating point is displayed by displaying
each of the components in the display set, together with their arguments,



9 FIGURES,,—"‘*\

Qecenncannnnancanena

Cecmmenecmcnccacaung

Figure 10: A triangle and a circle, rotated

with PS.

The procedure PSFile(filename, PSpre, fig, PSpost) will output a
figure fig in POSTSCRIPT format to a file with name filename, prepending
PosTSCRIPT code PSPre and appending POSTSCRIPT code PSPost.

The procedure PSOpenFile(filename) opens output to filename and
selects a Helvetica font.

The procedure PSWrite with an arbitrary number of arguments writes
the argument to the open file. If the argument is a string, it is written. If
it is a figure, the POSTSCRIPT form is computed and then written.

The procedure PSCloseFile() closes the output file and opens the ter-
minal.
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10 Multivariate polynomial set normal form

Common applications, such as the computation of Grobner bases [4] or Wu'’s
geometric theorem proving method [8], assume as input a set of polynomials
implicitly equated to zero, where the polynomials are in the ring Q(@)[z],
where % are universal indeterminates, that is, parameters or free or indepen-
dent variables, and the Z are existential indeterminates, that is, dependent or
bound variables. Call this the multivariate polynomial equation set normal
form. .
But the constraint sets resulting from the constraint and construction
procedures defined in prior sections are sets of general equations (see §1.3)
on rational functions, that is, expressions built up from polynomials and the
division operation.

One can imagine two strategies for solving a system of polynomial equa-
tions:

e Translate all: Translate the non-equations into equations, translate all
the equations polynomials implicitly equated to zero, then solve them.

o Translate equalities: Separate out the non-equations, translate the
equations into polynomials implicitly equated to zero, solve for the
equations, and then discard solutions which do not satisfy the non-
equations.

Hence LT /GEoL includes the following procedures:

) TranslateAll(constmints), which returns a table with the following
fields:
o Polynomials, a set of polynomials implicitly equated to zero.
o Vars, a set of the indeterminates originally in the constraints set.

o NewVars, a set of new indeterminates introduced in translating
non-equations into equalities. (The method of translation is dis-
cussed in §A.9.2.) .

o TranslateEqns(constraints), which returns a table with the following
fields:
o Nonequations, a list of the non-equations in constraints.

o Polynomials, a list of the polynomials implicitly equated to zero
which are the translation of the equations in constraints.
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o Vars, a set of the indeterminates in the equations prior to trans-
lation to Polynomials.

o NewVars, a set of the indeterminates added to the equations in
the process of creating the Polynomials.

o NVars, a set of the indeterminates in Nonequations.

e Filter(Z,]), where o is a set of assignments and I is a general equa-
tion set, returns the set of those assignments in ¥ which satisfy I.
“Satisfy” here means that the general equation set under substitution
reduces to the set containing the single element 0.
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11 Hierarchical multidimensional systems

11.1 Dependency assertions and hierarchical systems

Let ¥ be a set of polynomials and V the set of names of real-valued inde-
terminates occurring in X. Let U and W be disjoint sequences of elements
of V. U depends on W iff there exists a function f such that, for any as-
signment of real values to elements of W, under the assignment U = f(W),
¥ is solvable. Under these conditions, W is independent with respect to U.
If U depends on no other set in V, then the elements of U are mutually
dependent, and the set U is independent.

Let GG be a directed acyclic graph in which:

e The nodes N; are pairs (U;, E;) such that U; CV and E; C L.
o If N;,N,,i # j are nodes of G, then U;NU; =0 and E; N E; = 0.
e V=UU; and £ = UE;. .

Such a graph may be used to represent a sequence of dependency asser-
tions of three types:

o Initialize: ¥ is a system of equations with mutually independent inde-
terminates V. )

e Independent: U C V is independent in X.
o Depends on: U depends on W in &, where UNW =0 and U, W C V.

In such a dependency graph G, if N = (U, E) is a node, then the indeter-
minates in F are included in the union of U and the indeterminates of nodes
which are reachable from N, and each f € E has at least one indetermi-
nate in U. Other appropriate terms for G are hierarchical multidimensional
system or simply hierarchical system.

11.2 The HMS structure for manipulating dependencies

The LT /GEeoL package provides the HMS structure for maintaining depen-
dency graphs formed initially from polynomial sets & and subsequently from
dependency assertions on dependency graphs. The assertions operate on
structures or structure sets; the indeterminates involved are computed from
the structures or structure sets via the Indets operation. Table 9 displays
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Structure
(graph): name set — name set set X polynomial set

Constructions
Initialize polynomial set — HMS
IndependentWith | structure set X HMS — HMS
IndependentSep | structure set X HMS — HMS
Dependent structure set X structure set X HMS — HMS
Solution
Trim HMS — HMS-like structure
Leaves HMS — (name set X polynomial set) set
Substitute assignment X HMS — HMS
Solve HMS — assignment sequence

Table 9: The HMS structure

the HMS structure. The operations in the HMS structure are described in the
following paragraphs.

Initialize(X) assumes that all the variables in ¥ are all mutually de-
pendent. It computes the set of real-valued indeterminates V of ¥, and
returns the HMS with the single leaf node (V, I).

IndependentWith(V, H), where H is an HMS and V is a set of names
occurring in equations in H, declares those names to be mutually dependent
indeterminates which are not dependent on any other indeterminates. A new
HMS is constructed from H and V as follows:

1. The elements of V are deleted from the keys of the nodes N of H in
which they occur.

2. A new leaf node N’ = (V, E) is adjoined, where E are those equations
occurring in N which contain only elements of V. The elements of E
are deleted from the equation sets of N.

3. An arc is adjoined from each node of N to N'.

IndependentSep(V, H), where H is an HMS and V is a set of names
occurring in equations in H, declares each name to be independent of all
other indeterminates. It simply calls IndependentWith iteratively for each
element of V.

Dependent(U, W, H), where U, W are disjoint subsets of the indetermi-
nates of the HMS H, declares U depends on W in the equations of H. A new
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HMS is constructed from H and U,W as follows:
1. G is set to a copy of H, and let Ny and Nw be empty sets of nodes.
2. For each g = (V,, E,) € G,

(a) If U intersects V,, then
i. Let G be G\ {4}
ii. If W intersects V;, then
A. Split g into two nodes

gu = (VQ\W’E ,U)
gw = (W, E;w)

where the E,w are those equations in E whose inde-
terminates are contained in W, and the E,y are the
remaining equations in F.

B. Let gw have all the arcs of g, and let there be a single
arc from gy to gw.

C. Put gy in Ny and gw in Ny.
iii. Otherwise, put g in Ny.
(b) Otherwise, if W intersects V, then put g in Nw and let G be
G\ {9}

3. The following two nodes are formed:

Ny = (UV!VU,HUENU,.‘)
Nw = (UVNW,."UENW,.‘>

4. If UV, ; does not intersect UV, ;, then:

(a) The two nodes Ny, Nw are added to G.

(b) All arcs from nodes remaining in G to nodes. Ny are redirected
to Ny.

(c) Ny has an arc to Ny and arcs to every node remaining in G
which some node of Ny has an arc to.

(d) All arcs from nodes remaining in G to nodes Ny are redirected
to Nw.
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(e) Nw has an arc to every node which some node of N has an arc
to.

Otherwise:

(a) The node Nyw = (Vn, U VN, Eny U Eny,) is added to G.

(b) All arcs from nodes remaining in G to nodes Ny are redirected
to Nyw.

(¢) Nyw has an arc to every node remaining in G which some node
of Ny has an arc to.

(d) All arcs from nodes remaining in G to nodes in Ny are redirected
to Nyw .

(e) Nyw has an arc to every node remaining in G to which a node
of Nw has an arc.

5. G is returned.

Trim(H) returns a version H’ of H in which all of the leaves of H, and
arcs leading to those leaves, have been deleted. If H consists solely of leaves,
then it returns NULL. The indeterminates of the deleted leaves are not added
to the indeterminate sets of the leaves of H’, so the result has the structure
but not all the properties of an HMS. That is, Trim is intended for computing
with an HMS to which no further dependency assertions will be applied.

Leaves(H) returns a set of lists [Key, Eqns] where Key is a name set (the
node label) and Eqns is a polynomial set. This set comprises the leaf nodes
of H, that is, those nodes with no outgoing arcs.

Substitute(o, H) returns the HMS in which every equation set E in a
node is replaced by subst(s, E).

11.3 The hierarchical system solution algorithm

If the dependency assertions of H are valid, then ¥ may be solved, where
the solution is a function of the indeterminates of the leaf nodes of H which
gives an assignment to the remaining indeterminates in the system, by the
following algorithm Solve(H,p), where:

e H is an HMS.

e p(E,V) is a procedure which takes a set of polynomials E and a set
of names V and returns a sequence of assignments, that is, a MAPLE
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sequence of sets of equations of names to real-valued expressions. (An
example of such a procedure is the MAPLE solve procedure.)

Solve(H,p) works as follows:

1.
2.
3.

8.

Let N = Leaves(H) = Ny, Na,... N;.
For each N; = (V;, E;) let 7; = p(E;, V,-j be a sequence of assignments.
Let

® = {01, 002,5,0 - 00k, }

be the set of the compositions of the set of all possible combinations
of solutions of the N. Note that since the V; are disjoint, composition
of assignments is associative, hence the compositions of all permuta-
tions of such a combination of assignments are identical. Under these
conditions, in MAPLE, composition of assignments is just set union.

Let H = Trim(H).
If H is NULL, then return ®.
Consider R = (Hy,¢1),(H2,¢2),...(Hk,¢r) where H; is the HMS re-

sulting from substituting a composite leaf solution ¢; from & into H
and recursively solving,.

Form the sequence H : ; which is the union of ¢; with each solution j
of H;.

Return the set of the H| ; for all 4, j.

11.4 An example of solving a hierarchical system

The

problem is construct a widget which consists of a lever and a flexible

triangular structure. The lever consists of a line segment through points
P,0,Q, such that O is fixed, and P and @ are equidistant from O. R and
S are two fixed points. R is the midpoint of the line segment TU, Q is the
midpoint of the line segment TV, and § is the midpoint of the line segment

Uv.

The points and line segments involved are constructed as follows:

# Define the points

0 := ¢(0,0): P := C(a,b): Q := C(c,d):
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P «
Figure 11: A particular solution for a widget

Cle,f): SS := C(g,h): T := C(i,j):
Cc(k,1): V := C(m,n):

e
I.I .I;

Then their constraints are declared and translated into a set of polyno-
mials, separating out for the moment the inequality constraints:

# Define the constraints

G := evalG((Q = 2%0 - P) union (R = MidPoint(T,U)) wunion
(SS = MidPoint(U,V)) umnion (@ = MidPoint(T,V))):

Widget := TranslateEqns(G):

A hierarchical system is created with the polynomials obtained from the
constraints. R,S,T,U,V are declared dependent on O, P,Q. @Q is declared
dependent on O,P. R and § are declared independent. The resulting hi-
erarchical system is depicted in Figure 12). The LT/GEoL dependency
declarations are as follows:

# Create the hierarchical system

Gt := Initialize (Widget[Polynomials]):

G2 := Dependent ({R,Ss,T,U,V}, {0,P,Q}, G1):
G3 := Dependent (qQ, {0, P}, G2):

G4 := IndependentSep ({R, SS}, G3):
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T,UV: T+U=3RU+V=35T

/\

Q: Q=20-P|

II
o=
|

0 P

Figure 12: A dependency graph for a widget

To solve the system for P, we must first supply some constant values for
R and S. Then we solve for Z in terms of P. Then we solve for T,U,V.
Using Solve, which calls MAPLE solve and then deletes equations of the
form z = z from the resulting assignment, G4 is solved for the indeterminates
in its leaves with the command:

# Solve the hierarchical system

Sigma := ‘Solve HMS‘(G4, Solve):

This results in a single solution:

[{c =-a, d=-b, m=-1/4e +1/4g-1/4a, 1 =1/4b+ 1/4h + 1/4 §,
k=1/4e+1/4g+1/4a,n=—1/4b+1/4h-1/4f,
3 —1/4b"1/4h+1/4f,i=1/4e-1/4g-1/4a}]

Supplying some values for the independent variables, the following code
computes the display of Figure 11:

# Create a figure from the solved system and display a particular solution

= F({sS(P, Q) = solid, S(T, V) = solid,
S(v, U) = solid, S(T, U) solid,
S(R,Q) = shortdash, S(Q,SS) = shortdash,
S(R,SS) = shortdash,

({Visible}, ‘0 ),

({Visible}, ‘P 9),

({Visible}, ‘q ©),

({Visible}, ‘R ),

S = ({Visible}, ‘s ¢),

= ({Visible}, ‘T ),

s Nwoywo
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({Visible}, ‘v ),
({visible}, ‘v )}):

U
\s

C(-50,-50)) union
€(100,100)) wunion
€(100,0))):

sigmaIndeps := evalG((P
(R
(ss

sigma := subs(sigmaIndeps, Sigma[1]):
F2 := subs(sigma union sigmalndeps, F1):

PSFile(‘deptest.ps‘, ‘gsave 100 50 translate‘, F2, grestore):

48
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12 Geometric expression evaluation

This section describe evalG(e,o), which evaluates expression e under an as-
signment of structure types to indeterminates o. e is any MAPLE expression,
which is interpreted as follows:

¢ A numeric constant k£ becomes N(k).

o If v = N is in set o, then occurrences of indeterminate v in e become
N(v).

e Any indeterminate which does not have a structure type assignment
in o is assumed to be an N. '

o evalG({si,S2,...8k},0) is {evalG(s1,0),...evalG(sk,0)}.
e ovalG of the expression N(s) returns N(s).

e evalG of the expression F(s) where s is a set with elements of the
form a = b, returns F(s') where the elements of s’ are of the form
evalG(a,o) = b.

e evalG(f(s),o), where f is a structure type name other than F or N,
results in f(op(map(evalg,s,o))).

o If a procedure name in a procedure call is bound to a procedure, it is
called on the recursively evaluated arguments. Otherwise, interpreta-
tions of function names and infix operators depend on the type of the
recursively evaluated arguments. Thus, if in a*b, a is an N and b is a
C, then the result from evalG will be the evaluation of ‘* N C‘(a,b).

o is optional and may be ommitted. If it is, then every indeterminate in
an non-function position is assumed to be an N structure. ’

Example 12 Here are some geometric expression evaluations illustrating
the rules discussed above:

> evalG(1);

N(1)
> evalG(a);

N(a)
> evalG(1/a);
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N(1/a)
> evalG(C(1,0));
c(N(1), N(0))
> evalG(C(a,1));
c(N(a), N(1))
> evalG(L(a,b), {a =C, b =C});

L{C(N((v &of (Re &of a)) - (v &of (Re &of b))),
N((v &f (Im &of a)) - (v &of (Im &of b)))),
b)

> evalG(a*C(0,1) + C(1,0)/b);
c(N(1/V), N(a))
> evalG(C(a,b) = C(d,e));
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A TImplementation

A.1 Structures

A structure g = (a,b, c) is represented by the following convention:

o All software which uses structures of type g is presumed to “know”
that g has components a, b and c.

e No user software which uses the LT/GEoL package will bind a value
to the global names g, a, b or c or ‘g Fields*

o The global name ‘g Fields‘ is assigned to the table with field-value
pa"irs {(a’ 1)’ (b7 2)7 (C’ 3)}'

o The structure-accessing operation &of is defined as follows:

‘gof¢ :=
proc (field, x)
local structtype, structfields, fieldid;
option remember;
if not type(x,function)
then *field &of x’
else structtype := op(0,x);
structfields := ‘‘.structtype.‘ Fields‘;
if not type(structfields, table)
then 'field &of x’
else fieldid := structfields[field]; -
if type(fieldid, function) '
then ERROR(‘‘.field.‘ is not a field of ‘.structtype)
else op(fieldid, x) :
Vi
fi
i

end:

e An instance of type g with values a,b, ¢ for structure components a, b
and ¢ will be represented as the MAPLE procedure call g(a,b,c).

o g is defined as a type to MAPLE by the global name binding:

‘type/g‘ := proc (x) op(0,x) = g end;
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The above declarations are performed by the structure procedure, de-
fined as follows:

structure :=

proc (name, fields)
local i;

““.‘type/‘.name := subs(N = name, op(TypeCheck));

‘“.name.‘ Fields‘ := table({(’fields[i]’ = i) $§ i = 1..nops(fields)})
end;

TypeCheck :=
proc (x) if type(x, function) then evalb(op(0,x) = N) else false fi end;
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A.2 Numbers

A.2.1 Number structure

structure(N, [v]);

A.2.2 Number constructions

‘4 N N¢ =
proc(a, b)
if v &of a = Infinity
then if (v &of b) &in {Infinity, Bottom} then N(Bottom)
else N(Infinity) fi
elif v &of a = Bottom then N(Bottom)

elif v &of b = Infinity then N(Infinity)
elif v &of b = Bottom then N(Bottom)
else N(v &of a + v &of b) f1i
end:
‘- N¢ o=
proc(a)

if (v &of a) &in {Infinity, Bottom} then a else N(- v &of a) fi
end:

‘~ N N¢ := proc(a, b) ‘+ N N‘(a, ‘- N(b)) end:
““ NN :=
proc (a, b)

if v &of b = -1 then ‘Inverse N‘(a)
else N((v &of a)~(v &of b)) fi # Not complete
end:

‘* N N =
proc(a, b)
if v &of a = 0
then if (v &of b) &in {Infinity, Bottom}
then N(Bottom) else N(0) fi
elif v &of a = Infinity
then if v &of b = 0 or v &of b = Bottom then N(Bottom)
else N(Infinity) fi
elif v &of a = Bottom then a
elif v &of b = Infinity then b
elif v &of b = Bottom then b
else N(v &of a * v &of b) fi
end:
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‘Inverse N :=
proc (a)
if v &of a = Infinity then N(O)
elif v &of a = Bottom then a
elif v &of a = 0 then N(Infinity)
else N(1/v &of a) fi
end:

‘/ N N := proc(a, b) ‘x N N‘(a, ‘Inverse N‘(b)) end:

‘Modulus C*¢ :=
proc (c)
local re, im;
re := Re &of c; im := Im &of c;
‘Sqrt N (‘+ N N‘(‘« N N‘(re, re), ‘x N N‘(im, im)))
end: ‘

‘Sqrt N¢ :=
proc (n)
v &of n;
if " &in {Infinity, Bottom} then n else N(sqrt(")) fi
end:

proc (pl, p2) ‘Modulus ¢‘(‘- ¢ c‘(pl, p2)) end:
proc (pl, p2) ‘- N N‘(Re &of p2, Re &of pl) end:
proc (pl, p2) ‘- N N‘(Im &of p2, Im &of pl) end:

‘Distance C C°¢
‘XDistance C Cf
‘YDistance C Cf

W

‘Slope C C* :=
proc (p1l, p2)
‘/ N N‘(‘YDistance C ¢‘(pl, p2), ‘Xbistance C C‘(pl, p2));
end:

‘Sine A‘ = proc (A) C(op(A)); ¢/ N N°(Im &of ", ‘Modulus C‘(")) end:
‘Cosine A* := proc (A) C(op(A)); ¢/ N N‘(Re &of ", ‘Modulus C‘(")) end:
‘Tangent A¢ := proc (A) ¢/ N N(y &of A, x &of A) end:

‘Distance C L :=
proc (p, line) ‘Distance C C‘(p, ‘Projection € L‘(p, line)) end:

‘Distance 8¢ := proc (s) ‘Distance ¢ C‘(pl &of s, p2 &of s) end:

A.2.3 Number constraints

‘= N N¢ := proc(a, b) {v &of a = v &of b} end;
‘< N N¢ := proc(a, b) {v &of a < v &of b} end;
‘> N N¢ := proc(a, b) {v &of a > v &of b} end;
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‘<> N N := proc(a, b) {v &of a <> v &of b} end;
‘<= N N° := proc(a, b) {v &of a <= v &of b} end;
‘>= N N := proc(a, b) {v &of a >= v &of b} end;

A.2.4 Number evaluation

‘FValue N‘ := proc (n, sigma) evalf(simplify(subs(sigma, v &of n))) end;

A.2.5 Number graphical display

‘PS N¢ :=
proc (n)
locel mant, exp, s, f;
f := n;
if type(f,integer) then RETURN(convert(f, name))
elif type(f,N) then RETURN(‘ps N‘(op(£f)))
elif not type(f, float) then f := convert(f, float) fi;

mant := convert(op(l,f), name); exp := -op(2,f);

s := length(mant);

if s = exp then ‘.‘.mant

else cat(substring(mant, 1..(s-exp)),‘.,substring(mant,s-exp+1..s)) fi

end;
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A.3 Complex numbers

A.3.1 Complex number structure

structure(C, [Re,Im]);

A.3.2 Complex number constructions

‘C NN := C;

‘- ¢¢ := proc (p) C(‘- N‘(Re &of p), ‘- N‘(Im &of p)) end:
‘Conjugate ¢¢ := proc (p) C(Re &of p, ‘- N‘(Im &of p)) end:

‘4 CC =
proc (pl, p2)
C(+ N N‘(Re &of pl, Re &of p2), ‘+ N N‘(Im &of pi, Im &of p2))
end:

‘- ¢ .C‘ =
proc (pi, p2) 3
C(‘- N n“(Re &of pl, Re &of p2), ‘- N N‘(Im &of pl, Im &of p2))
end: :

‘* N ¢¢ := proc (n, p) C(‘x N N(n, Re &of p), ‘* N N‘(n, Im &of p)) end:
‘* ¢ N := proc (p, n) C(‘x N N‘(n, Re &of p), ‘* N N(n, Im &of p)) end:
‘/ C N :=

proc (p, n) C(/ N N‘(Re &of p,n), ‘/ N N‘(Im &of p,n)) end:

l* C cl =
proc (pi p2)
local a, b, c, d;
a := Re &of p1; b := Im &of pi;
:= Re &of p2; d := Im &of p2;

C(‘— N N‘(* N N Ca,c), ‘* N N(b,d)),
‘+ N N(« N N‘(a,d), ‘* N N°(b,c)))
end:

‘Sqrt C¢ :=
proc (c)
evalc(sqrt(v &of (Re &of c) + (v &of (Im &of c))*I1));
C(N(evalc(Re("))), N(evalc(Im("))))
end:
‘Inverse C¢ :=

proc (c)
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local a, b, r;

a := Re &of c; := Im &of c;

r := ‘+ N N(‘= n N‘(a,a), ‘* N N°(b,b));
c(/ v x(a, ), 7/ N N(*- N(b), 1))

end:

‘/ ¢ ¢t := proc (p1, p2) evalG(pi * Inverse(p2)) end:
‘MidPoint C C‘ := proc(pl, p2) evalG((1/2)*(p1 + p2)) end:

‘c A° := proc (a) C(op(a)) end:
‘Intersection L Lf :=
proc (11, 12)
local U, W, Ui, W1, cUl,cW1, cU, cW;
U :=u&of1ll; W :=w &of 11;
Ul := u &of 12; W1 := w &of 12;
= ‘Conjugate C¢‘(U); cW := ‘Conjugate C‘(W);
cUl := ‘Conjugate C‘(U1); cW1 := ‘Conjugate C‘(W1);
‘Inverse C‘(‘- ¢ ¢“(‘x ¢ ¢‘(U, cU1), “« ¢ c‘(cU, U1)));

‘x« ¢ C(-cc (s cc(-cc(*cc(Wl, cU1), ‘* ¢ c:(cWi, UL)), ),
‘« ¢ c'(-cc(xcc(W, cU), « ¢c ¢c‘(cW, 1)),

end:
‘Intersection L Circle‘ :=
proc (1, cc) .
local U, W, r, Z, ‘w - z¢, cWZ, cU, pm, inner;
U:=u&ofl; W:=w&fl;
r := R &of cc; Z := z &of cc;
‘@ ~ z¢ 1= ‘= ¢ c(W, Z2);
¢WZ := ‘Conjugate C‘(‘w - z);
U i= ‘Con_]ugate ¢ (U);
c(‘w - 2¢, cl);
¢ (U, cWZ)
r := ‘- ¢ C¢ (uu u);
c*
[
[ohd

(¢
(
(" ")
(¢
(

"0

v N NCQNCR), N N<(r, T)), ‘x G c*(U, cU);
", n)

pm 1= ‘Sqrt c* (")1

‘« N C¢ (N(Z), CU);

‘Inverse C¢(");

< ¢ ¢‘(", ‘+ ¢ ¢c‘(inner, pm));

‘x C C‘("", ‘e ¢ c‘(inner, pm));

[+ ¢ c(z, ™, “+c¢c(z, "]
end:

~
¥
QZQGQO

‘Intersection Circle Circle‘ :=

U1)),

n)
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proc (c1, c2) : 4
‘Intersection L Circle‘{‘Chord Circle Circle‘(cl, c2), c1)
end: ’

‘On L N¢ := proc(l, n) ‘+ ¢ ¢c(‘* N c‘(n, u &of 1), w &of 1) end:
‘Projection C L¢ :=
proc(p, 1) ‘Intersection L L° (LPerpendicularTo(l, p), 1) end:

‘Reflectjon C L¢ :=
proc(p, 1) ‘- ¢ c‘(‘« N c*(N(2), ‘Projection C L‘(p,l)). p) end:

‘On Circle N¢ := proec (c, n) ‘+ ¢ ¢c‘(‘= N ¢‘(n, R &of c), 2z &of c) end:

A.3.3 Complex number transformations

‘Rotate C¢ :=
proc (c, a)
local r, theta, phi;
T := ‘Modulus c‘(c);
if v &of r = 0 then ¢
else theta := ‘Argument C‘(c);
phi := ‘+ A a‘(a, theta);
‘« N ¢‘(r, C(op(phi))) fi
end;

‘Scale ¢¢ := proc (c, n) ‘« N ¢‘ (n, c) end;

‘Translate C¢ := ‘4 C C¢;

A.3.4 Complex number constraints

‘= C ¢ :=
proc(pa, pb)
‘= N N‘(Re &of pa, Re Zof pb) union ‘= N N‘(Im &of pa, Im &of pb)
end:

‘<> ¢ C¢ :=
proc(pa, pb)
‘<> N N‘(Re &of pa, Re &of pb) union ‘<> N N‘(Im &of pa, Im &of pb)
end:

‘CoCircular C C C C¢ :=

proc(pl, p2, p3, p4)
‘= N N(‘Tangent A‘(‘a ¢ ¢ ¢c‘(pi, p2, p3)),
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‘Tangent A‘(‘A ¢ ¢ ¢‘(pl, p4, p3)))
end:

‘CoLinear C C C¢ :=
proc(pl, p2, p3)
‘= N N‘(‘Slope ¢ c‘(pl, p2), ‘Slope C c‘(p2, p3))
end:

A.3.5 Complex number evaluation

‘FValue C*¢ :=
proc (c, sigma)
C(‘Fvalue N‘(Re &of c, sigma), ‘Fvalue N‘(Im &of c, sigma))
end;

A.3.6 Complex graphical display

‘PS C¢ :=
proc (c, DisplayStyle)
local label, Label, dot;
if nargs = 3 then Label := args[3] else Label := NULL fi;
2f AsComplex &in DisplayStyle
then label := ‘As Complex‘(c)
elif AsRectangular &in DisplayStyle

then label := ‘As Rectangular‘(c)
elif AsPolar &in DisplayStyle
then label := ‘As Polar‘(c)

elif AsPS &in DisplayStyle

then RETURN(‘as Ps‘(c))

else label := NULL fi;

dot := Dot (2, c, DisplayStyle);
if Label <> NULL

then if label <> NULL then label := cat(Label, ‘= ¢, label)
else label := Label f1i
elif label = NULL then label := ¢¢ fi;

2f Invisible &in DisplayStyle
then gsave, ‘PS String‘(label, c), grestore
else gsave, dot, ‘PS String‘(label, ‘+ ¢ c¢‘(c, C(N(7), N(-2)))),
grestore f1i
end;

‘es Complex‘ :=
proc (c)
if Im &of ¢

= hen ‘Ps N‘(Re &of c)
elif Re &of c
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then ‘Ps N‘(Im &of c), ‘sI¢
else ‘Ps N‘(Re &of c), “+¢, ‘Ps N‘(Im &of c), ‘*I‘ fi;
cat(‘(‘, n, l)r)

end;

‘As Rectangular‘ :=
proc (c) cat(‘(‘,‘ps N‘(Re &of c),*,*,‘Ps N‘(Im &of c),*)‘) end;

‘As Polar® :=
proc (c)
local x, y, r, theta;

cat(‘PS N‘(‘Modulus ¢‘(c)), ° at ¢, ‘PS A‘(‘Argument C¢‘(c), Radians))
end;

‘4s PS := proc (c) cat(‘ps N‘(Re &of c),* “,*Ps N‘(Im &of c)) end;

‘PS String‘ :=

proc(text, P)

local start;
start := cat(‘newpath ‘, ‘PS N‘(Re &of P), ¢ °,

‘Ps N‘(Im &of P), ¢ moveto‘,‘ ¢);

if type(text, indexed)
then start, cat(‘(‘,op(0,text), ‘[‘, op(1l,text), ‘1)), show
else start, cat(‘(‘.text.*)‘), show fi

end;

Dot :=
proc(radius, P, DisplayStyle)
local px, py;
px := ‘Ps N‘(Re &of P);
Py := ‘Ps N‘(Im &of P);
1f Invisible &in DisplayStyle then “¢
elif Hollow &in DisplayStyle
then ‘gsave newpath‘, pX, py, ‘translate 0 0‘, radius,
‘0 360 arc stroke grestore®
else ‘gsave newpath‘, px, py, ‘translate 0 0°,
radius, ‘0 360 arc fill grestore‘ f%
end; '

‘gin‘ := member;
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A.4 Angles
A.4.1 Angle structure

structure(A, [x,y1);

A.4.2 Angle constructions

Right := evalG(A(0,1)):
Straight := evalG(A(-1,0)):

‘4 A A° := proc (al, a2) A(op(‘+ ¢ c‘(C(op(al)),C(op(a2))))) end:
‘- A A* := proc (a1, a2) A(op(‘/ ¢ c(C(op(al)),C(op(a2))))) end:
‘Argument C¢ :=

proc (c)

‘Modulus C¢(c);
AC/ N n(Re &of c, "), ‘/ N N (Im &of c, "))
end:

# Angle from pl rotating counterclockwise to p2

‘Angle C C* :=
proc (p1l, p2) ‘- A A‘(‘Argument C‘(p2), ‘Argument C‘(p1)) end:

# Angle from pl rotating counterclockwise to p3 with p2 as center

‘Angle C C C¢ :=
proc (pi, p2, p3)
‘- & A“(‘Argument ¢*(‘- ¢ c‘(p3, p2)), ‘Argument ¢‘(‘- ¢ c‘(pl, p2)))
end:

‘DoubleAngle L L¢ :=
proc (11, 12)
evalG(Argument ((u &of 11 * Conjugate(u &of 12))/
(Conjugate(u &of 11) * u &of 12)))
end:

‘Angle S¢ :=
proc (seg)
local PO, P1, P2, x1, y1, x2, y2;

P1 := p1 &of seg; P2 := p2 &of seg;
x1 := Re &of P1; x2 := Re &of P2;
yi := Im &of P1; y2 := Im &of P2;

if v &of x1 > v &of x2 then RETURN(‘angle s‘(S(P2, P1)))
elif v &of y1 >= v &of y2
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then ‘Angle ¢ ¢ c‘(C(x2,y1), P1, P2)
else ‘Angle C ¢ ¢¢(C(x2,y1), P1i, P2) fi
end:

‘Angle L¢ :=
proc (1)
u &of 1;
if v &of (Re &of ") = O then Right
elif v Zof (Im &of ") = O then A(N(1), N(0))
else evalG(Angle(S(u &of 1 + w &of 1, w &of 1))) fi
end:

A.4.3 Angle constraints

= A A¢ =
proc (a1, a2)
local A, B;
A := C(op(al));
B := C(op(a2));
‘= ¢ ¢ (‘« ¢ c*(A, ‘Conjugate c‘(B)), ‘* ¢ c‘(B, ‘Conjugate C‘(A)))
end;

A.4.4 Angle evaluation

‘FValue A‘ :=
proc (a, s) A(‘Fvalue N‘(x &of a, s), ‘FValue N‘(y &of a, s)) end;

A.4.5 Angle graphical display

fPS A¢ =
proc (a, DisplayStyle)
local r, t;

T := ‘Modulus ¢‘(C(op(a)));

v &of (x &of a); evalf(");

if evalf(v &of (x &of a)) >= 0 #z>=0

then t := evalf(arcsin(v &of ‘/ N N‘(y &of a, 1)))

elif evalf(v &of (y &of a)) < 0 #r<0y<0

then t := evalf(arctan(v &of ¢/ N N‘(y &of a, x &of a)) + Pi)
else t := evalf(arccos(v &of ‘/ N N‘(x &of a, T))) fi;

if t < 0 then t := evalf(t + 24Pi) fi;

i1f DisplayStyle = Radians

then ‘pPS N°(t), radians

elif DisplayStyle = AsPS

then ‘Ps N¢(evalf(t*360/(2%Pi))) o
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A.5 Segments

A.5.1 Segment structure

structure(S, [p1, p21);

A.5.2 Segment transformations

‘Rotate S§¢ :=
proc (s, a) S(‘Rotate c‘(pl &of s, a), ‘Rotate C‘(p2 &of s, a)) end;

‘Translate §¢ :=
proc (s, c) S(‘Translate C‘(pl &of s, c),‘Translate C‘(p2 &of s,c)) end;

‘Scale S¢ :=

proc (s, n) S(‘scale ¢c‘(pl &of s, n), ‘Scale c‘(p2 &of s,n)) end;

A.5.3 Segment constraints

‘= 8§ 8¢ :=
proc(pa, pb) :
‘= ¢ ¢‘(‘p1 s‘(pa), ‘pt s‘(pb)) union
‘= ¢ ¢c‘(‘p2 s‘(pa), ‘p2 s‘(pb))
end;

‘<> § 8¢ =
proc(pa, pb) _
‘<> ¢ ¢‘(‘p1 s(pa), ‘pt s‘(pb)) union
‘<> ¢ ¢ (‘p2 s‘(pa), ‘p2 s‘(pb))
end;

‘Parallel § S¢ :=
proc (s1l, s2) ‘Parallel L L‘(‘L s‘(s1), ‘L s8‘(s2)) end;

‘Perpendicular § S¢ :=
proc (s1, s2) ‘Perpendicular L L‘(‘L 8°(s1), ‘L 5¢(s2)) end;

A.5.4 Segment evaluation

‘FValue S¢ :=
proc (seg, s)
S(‘Fvalue c‘(pl &of seg, s), ‘FValue C‘(p2 &of seg, s))
end;
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A.5.5 Segment graphical display

‘PS S¢ :=
proc(s, DisplayStyle)
local Label;
if nargs = 3 then Label := args[3] else Label := ‘¢ fi;
gsave, ‘PS LineStyle‘(DisplayStyle), newpath, ‘MoveTo ¢‘(pl &of s),
‘LineTo C‘(p2 &of s), ‘stroke grestore‘
end;

‘PS LineStyle‘ :=
proc(ls)
if 1s = solid then ‘[1 0 1 0] 0 setdash’

elif 1s = dotted then ‘(8 8 8 8] 0 setdash’

elif 1s = dashdot then ‘[1 2 3 2] 0 setdash’

elif 1s = shortdash then ‘[2 3 2 3] 0 setdash’

elif 1s = longdash then ‘[5 4 5 4] 0 setdash’

else ERROR(‘Unimplemented line style ‘.1s); fi;
end;
‘LineTo ¢ := proc (A) ‘Ps N‘(Re &of A), ‘PsS N‘(Im &of A), lineto end;
‘MoveTo C* := proc (A) ‘Ps N‘(Re &of A), ‘Ps N‘(Im &of A), moveto end;
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A.6 Lines

' A.6.1 Line structure

_structure(L, [u, w]);

A.6.2 Line constructions

‘LThrough € ¢¢ := proc (p1l, p2) L(evalG(pl - p2), p2) end:

‘LThrough S*¢ :=
proc (s)
local pi1, p2;
pl := pl &of s;
p2 := p2 &of s;
evalG(LThrough(pl, p2))
end:

‘Parallel L ¢‘ := proc(l, p) evalG(LThrough(u &of 1, p)); end:

‘Perpendicular L C¢ :=
proc(l, p) evalG(LThrough(C(0,1) * u &of 1, p)) end:

‘EquidistantFrom ¢ C¢ :=
.proc (A, B) evalG(LThrough(C(0,1) * (B - A), 1/2 * (A + B))) end:

‘TangentTo Circle € := proc (c, w) evalG(L(C(0,1)*(z &of c - w), w)) end:

‘Chord Circle Circle® :=

proc (ci, c2)

local R1, zi, R2, z2, ‘z2-z1‘, ‘Ccz2-z1‘, U, W;
Rl := R &of c1; 21 := z &of cl1;
R2 := R &of c2; 22 := z &of ¢2;
‘z2-z1¢ := evalG(z2 - z1);
‘Cz2-z1° := evalG(Conjugate(‘z2-z1‘));
U := evalG(C(0,1) * ¢z2-z1¢);
W := evalG(zil+Inverse(2*¢Cz2-21¢)*(C(R1"2-R272, 0)+¢z2-21‘%‘Cz2-2z1°));
L(U, W)

end:

A.6.3 Line transformations

‘Rotate L :=
proc (1, a)
evalG(LThrough(Rotate(u &of 1 + w &of 1, a), Rotate(w &of 1, a)))
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end;

‘Translate L¢ :=

proc (1, c)
evalG(LThrough(Translate(u &of 1 + w &of 1, c), Translate(w &of 1, c)))

end;

‘Scale L := proc (1, number) 1 end;

A.6.4 Line constraints

‘On C L¢ :=
proc (z, 1)
‘= ¢ c‘(‘¢ ¢ ¢c‘(u &of 1, ‘Conjugate ¢‘(‘- ¢ ¢‘(z,w &of 1))),
‘« ¢ ¢‘(‘Conjugate C‘(u &of 1), ‘- ¢ c‘(z,w &of 1)))
end;

‘Parallel L L¢ :=
proc (11, 12)
‘= ¢ ¢‘(‘* ¢ ¢‘(u &of 11, ‘Conjugate c‘(u &of 12)),
‘« ¢ c‘(w &of 11, ‘Conjugate C‘(w &of 12)))
end;

‘Perpendicular L L¢ :=
proc (11, 11)
‘= ¢ ¢‘(‘*¢ ¢ ¢c‘(u &of 11, ‘Conjugate c‘(u &of 12)),
“« ¢ (- ¢c‘(w &of 11), ‘Conjugate ¢‘(w &of 12)))
end;

A.6.5 Line evaluation

‘FValue L¢ :=
proc (1, s) L(‘Fvalue C‘(u &of 1, s), ‘Fvalue C‘(w &of 1, s)) end;

A.6.6 Line graphical display

Line graphical display for a line L is computed as follows:

1. Corners BL (“bottom left”) and TR (“top right”) are formed from TL
and BR.

2. Lines BLBR, TLBL, TLTR and TRBR are formed to define the window.

3. The four intersections I1, I2, I3, I4 of these lines with L are formed.
If an intersection point has co or L components, or is outside of the
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box formed by TL and BR, then these are discarded. The remaining
two intersection points will be the endpoints. of the line segment seg,
which is then displayed. '

4. The angle of seg is computed, and arrows, one at that angle and one
at the negative of the angle, are displayed, one at either end of seg.

‘PS L¢ :=
proc (1, Label, DisplayStyle, TL, BR)
local TR, BL, BLBR, TLBL, TLTR, TRBR, I, sl, slop, seg;
option remember; :
TR := C(Re &of BR, Im &of TL);
BL := C(Re &of TL, Im &of BR);
BLBR := evalG(LThrough(BL, BR));
I:=4{};
I := I union {GoodPoint(evalG(Intersection(l, BLBR)), BL, BR, Re)};
TLBL := evalG(LThrough(TL, BL));
I := I union {GoodPoint(evalG(Intersection{(1l, TLBL)), BL, TL, Im)};
do if nops(I) = 2 then break fi;
TLTR := evalG(LThrough(TL, TR));
I := I union {GoodPoint(evalG(Intersection(l, TLTR)), TL, TR, Re)};
if nops(I) = 2 then break fi;
TRBR := evalG(LThrough(TR, BR));
I := I union {GoodPoint(evalG(Intersection(l, TRBR)), BR, TR, Im)};
break;
od;
if nops(I) < 2 then RETURN(NULL) f4;
1f v &of (Re &of I[1]1) <= v &of (Re &of I[2])
then seg := S(I[1], I[2]) else seg := S(I[2], I[1]) fi;
sl := evalG(Angle(1));
slop := evalG(sl + Straight);
‘ps ¢‘(pl &of seg, {Label}, cat(* ¢, Label)),
‘Ps Arrow‘(pl &of seg, slop), ‘Ps s‘(seg, solid),
‘PS Arrow‘(p2 &of seg, sl)

end;
GoodPoint :=
proc (p, low, hi, access)
local x;
x := v &of (access &of p);
if DefinedPoint(p)
then if (v &of (access &of low)) <= x
then if x <= v &of (access &of hi) then p fi fi fi
end;

DefinedPoint :=
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proc (p)
not ((v &of (Re &of p)) &in {Infinity, Bottom} or
(v &of (Im &of p)) &in {Infinity, Bottom})
end;

‘PS Arrow‘ :=
proc(P, A)
local origin, botend, tip, topend;
origin := C(N(0),N(0)});
botend := C(N(-2), N(-2));
topend := C(N(-2), N(2));
tip := C(N(7),N(0));
‘gsave‘, ‘Ps ¢‘(P,{AsPS}), translate,
‘ps A‘(A, AsPS), ‘rotate newpath 1.2 1.2 scale®,
‘MoveTo c‘(origin), ‘LineTo C‘(botend),
‘LineTo C‘(tip), ‘LineTo C‘(topend),
‘LineTo c‘(origin), ‘£ill grestore*
end;

68



A IMPLEMENTATION : 69

A.7 Circles
A.7.1 Circle structure
structure(Circle, [R, 2]):

A.7.2 Circle transformations

‘Rotate Circle‘ :=
proc (c, a) Circle(R &of c, ‘Rotate ¢‘(z &of c, a)) end;

‘Translate Circle‘ :=

proc (c, p) Circle(R &of c, ‘Translate ¢‘(z &of c, p)) end;

‘Scale Circle‘ :=
proc (c, n) Circle(‘s N N‘(n, R &of c), z &of c) end;

A.7.3 Circle constraints

‘On C Circle‘ := proc(p, c¢) ‘= N N‘(‘Distance C C‘(p, z &of c), R &of c) end;

A.7.4 Circle evaluation

‘FValue Circle® :=

proc (c, s)
Circle(‘Fvalue N‘(R &of c, s), ‘FValue ¢‘(s &of c, s))
end,

A.7.5 Circle graphical display

‘PS Circle‘ :=

proc (C, Label, DisplayStyle)
z &of C;
‘gsave newpath‘, ‘PS LineStyle‘(DisplayStyle),
‘ps N‘(Re &of "), ‘Ps N°(Im &of "), ‘translate 0 0°¢,
‘ps N‘(R &of C), ‘0 360 arc stroke®, ‘
‘ps N (R &of C), ‘15 add neg 0 moveto‘, cat(‘(‘, Label, 9°¢),
show, grestore

end:
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A.8 Figures

A.8.1 Figure structure

structure(F, [constructions]);

A.8.2 Generic operations in figures

The package usually does not attempt to give the effect of overloading for
procedures in MAPLE. Thus addition for complex numbers is defined as
the MAPLE procedure ‘+ Complex Complex‘, and the programmer must
choose the appropriate + variant once and for all when writing a procedure.
Overloading is effectively done in one case, in §9, for the transformation,
evaluation (floating point approzimation) and graphical display of a figure. In
these cases, overloading is accomplished dynamically by inspecting the type
of the component of a procedure, then forming the name of the appropriate
transformation or display procedure, then evaluating the name to obtain
and call the procedure. This is relatively slow, and thus is restricted to
absolutely necessary cases such as the one just described. But in all cases
where the type is forced by the context, the full name of the appropriate
variant of the procedure given. Beyond these special “by-hand” cases, the
package does not provide a general overloading facility, because the design
of a complete type system with overloading is greatly beyond the scope and
intent of the package.

# FElements of the structure set are equations of structure to
# display arguments
‘Op Structure-Set‘ :=
proc (Op, structs)
if nargs > 2 then [args[3..nargs]] else NULL fi;
map (‘Op Structure‘, structs, Op, ")
end;
‘Op Structure‘ :=
proc (‘struct = displayargs‘, Op, Xyz)
local struct, stype, Oper;
struct := op(1l, ‘struct = displayargs‘) ;
stype := op(0, struct);
Oper := cat(Op, * ¢, stype);
Oper(struct, op(xyz)) = op(2, ‘struct = displayargs‘)
end;
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‘Op Struct Args‘ :=
proc (Op, struct, args)
local stype, Oper;
stype := op(0, struct);
Oper := cat(Op, * ¢, stype);
Oper(struct, op(args))
end;

A.8.3 Figure transformations

‘Rotate F‘ :=
proc (£, a)
F(‘Op Structure-Set‘(Rotate, constructions &of f, a))
end;
‘Translate F¢ :=
proc (£, c) :
F(‘0p Structure-set‘(Translate, constructions &of f, c))
end;

‘Scale F¢ :=
proc (£, n)
F(‘Op Structure-Set‘(Scale, constructions &of £, n))
end;

A.8.4 Figure evaluation

‘FValue Figure‘ :=
proc (figure, sigma)
Figure(‘op Structure-Set‘(FValue, constructions &of figure, sigma),
constraints &of figure)
end;

A.8.5 Figure graphical display

PSFile :=
proc (fname, PSpre, fig, PSpost)
local i, mot;
PSOpenFile (fname);
PSWrite(PSpre, fig, PSpost);
PSCloseFile();
end;
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PSOpenFile :=
proc (fname)
screenwidth := 900; # The only way to stop MAPLE from inserting \ at EOL
writeto(fname);
writeln(‘gsave /Helvetica findfont 10 scalefont setfont‘);
end;

PSWrite :=
proc ()
local i;
Jor i from 1 to nargs
do if type(args[il, F) then PSWrite(‘ps F‘(evalG(args[il)))
else writeln(args[i]) fi od
end;

PSCloseFile :=
proc O
writeln(‘grestore);
screenwidth := 79;
writeto(terminal);
end;

‘PS F¢ :=
proc (fig)
op(map(‘ps Struct‘, [op(constructions &of fig)l))
end;

‘PS Structf :=
proc (‘struct = dispargs‘)
local struct, dispargs;
struct := op(l, ‘struct = dispargs‘);
dispargs := op(2, ‘struct = dispargs‘);
‘Op Struct Args‘(PS, struct, [dispargs])
end; .
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A.9 Multivariate polynomial set normal form

TranslateAll :=
proc (geqns)
local stepl, step2;
stepl := ‘Noneqns->Eqns‘(geqns);
step2 := ‘RFncs->Polys‘(stepl[RF]);
table([Polynomials = step2[Polys],
Vars = Indets(geqns),
NewVars = stepl[NewVars] union step2[NewVarsl])
end:

TranslateEqns :=
proc (gegns)
local stepl, step2;
stepl := ‘Gegs->Eqs+Noneqs‘(geqns) ;
step2 := ‘RFncs->Polys‘(‘Noneqns->Eqns‘(stepl[Eq]) [RF]);
table([Nonequations = stepi[NonEq],
Polynomials = step2[Polys],
Vars = Indets(stepi[Eql),
NewVars = step2[NewVars],
NVars = Indets(stepi[NonEql)])
end:

A.9.1 The indeterminates in a polynomial expression set

Indets gives the indeterminates in a polynomial expression set.

Indets :=
proc (s)
map(proc (x) if type(x, name) then x else NULL fi end, indets(s))
end;

A.9.2 Translation of general equations into rational functions

Noneqns->Eqns translates a set of general equations G into a set of rational
functions implicitly equated to zero by adding extra indeterminates. It
returns a table with fields RF containing the rational functions an NewVars
containing the added indeterminates. It works by iteratively applying the
procedure Noneqn->Eqn to an initially empty set of new variables and each
element of G. _
Noneqn->Eqn works by the following method. A general equation e is
rewritten to a pair of a rational function r and a set which is either empty
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or contains a variable not free in r (a new variable is easily obtained as a
local variable in the execution context of the procedure):

‘Noneqns->Eqns ‘¢ :=

e1 = ez = (e1 — e2,0)

Similarly, e < 0 if there is a negative distance between e and 0, that
is, if there exists a value for an indeterminate 2, z not free in e, such
that e + 22 = 0. So the rule is

e1 < ey = (e1 — €2+ 2%,{z})

e # 0 if it can be scaled by a constant to 1, that is, if there exists a
value for an indeterminate 2z, z not free in e, such that ez— 1= 0. So
the rule is

€1 75 € = ((81 - eZ)Z - 1,{Z})

e < 0 if it can be scaled by a positive constant to -1, that is, if there
exists a value for an indeterminate z, z not free in e, such that ez +1 =
0. So the rule is

e; < e =>» ((61 - 32)22 + 1,{2})

e > 0 and e > 0 are not considered because these are represented by
MAPLE with < and <.

proc (geqns)
local V, G, geqn;

V= {¥; G :={};
for geqn in geqns
do ‘Noneqn->Eqgn‘¢ (geqn) ;
V := V union "[Vars];
G := G union {"[RF]} od;
table([RF = G, NewVars = V])
end:
‘Noneqn->Eqn‘ :=
proc (geqn)
local Op, g, 2, e, V;
Op := whattype(geqn);
Vo= {};
op(1,geqn) - op(2,geqn);
p= ‘=" theng := e

e

if

ounn
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elif Op = <= then g := e + 2°2; V := {z}
elif Op = ‘<> then g := exz - 1; V := {2}
elif Op = ‘<* then g := e*z"2 + 1; V := {2}

else ERROR(‘Unknown relational operator‘, 0Op, ¢ in¢, geqn) Ii;
table([RF = simplify(g), Vars = V])
end: '

A.9.3 Separating equalities and nonqualities

Geqs->Eqs+Noneqs separates a set of general equations into a table with field
NonEq containing a set of nonequalities and Eq containing a set of equalities.

‘Gegs~>Eqs+Noneqs‘® :=
proc (geqns)
local r, eqns, noneqns;

eqns := {}; noneqns := {};

Jor r in geqns

do if type(r, ‘=*) then eqns := {r} union eqns

else noneqns := {r} union noneqns fi od;
table([Eq = eqns, NonEq = noneqns])

end; '

A.9.4 Translating rational functions into polynomials

RFncs->Polys translates a set of rational functions R implicitly equated to
zero into a table containing a set Polys of polynomials implicitly equated
to zero and a set NewVars of new variables that may need to be introduced
in the translation process. It works by iteratively applying the procedure
RFnc->Poly on an initially empty set of new variables and each element of
R. ‘

RFnc->Poly takes a rational function r implicitly equated to zero. It
returns a table of a set of polynomials Polys and a set of new variables
NewVars created in translating = into a set of polynomials. It applies one
of the following rewrite rules after applying MAPLE’s predefined simplify
procedure to r, where the pair construction on the right-hand side of a =
rule denotes the table structure just described, and where the operation UT
applied to two tables with fields Polys and NewVars returns the table with

+ the same fields which is the union of the fields of the given tables.

o a/b=0iff a=0and b #0, so the rule is
a/b = (RFnc->Poly(a,{z}) UT RFnc->Poly(bz — 1, {z})
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e /a=0iff a =0, so the rule is
Va= ({a},0)
e /a—b=0iff a — b =0, so the rules are

V@ — b = RFnc->Poly(a — b%) — b+ 1/a = RFnc->Poly(a — b?)

¢ Otherwise the rule is

(a,V) = ({a},0)

‘RFncs->Polys‘ :=
proc (R)
local V, G, r;
Vi={} G :={};
for r in R
do ‘RFnc->Poly‘ (simplify(r));
V := V union "[NewVars];
G := G union ""[Polys] od;
table([Polys = G, NewVars = V])
end:

‘RFnc->Poly‘ :=

proc (r)
local z, V, ri, r2, G;
if type(r, ‘/°)
then r1 := ‘RFnc->Poly‘(simplify(Dividend(r)));
r2 := ‘RFnc->Poly‘ (simplify(Divisor(r)*z-1));
V := ri[NewVars] union r2{NewVars] union {z};
G := ri[Polys] union r2[Polys];

elif type(r, sqgrt)
then V := {}; G := {op(1, )}
elif type(r, ‘+) and type(op(1,r), sqrt)
then RETURN(‘RFnc->Poly‘(op(1, op(1,1)) - op(2,r)°2))
elif type(r, ‘+) and type(op(2,r), sqrt)
then RETURN(‘RFnc->Poly‘(op(1, op(2,r)) - op(1,1)72))
else V := {}; G := {r} fi;
table([Polys = G, NewVars = V])
end:

‘type//‘ :=
proc (f)

76

type(f, “+*) and type(op(2,f), ~*) and op(2, op(2,£)) <0

end:
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# The following works only for something of type 7/” !

Dividend := proc (f) op(i,f) end:
Divisor := proc (£f) op(1, op(2,f)) end:

A.9.5 Filtering assignments on general equation sets

Filter :=
proc (Sigma, G)
local r, s8;
r = {};
Jor s in Sigma
do i1f map(simplify, subst(s, G)) = {0} then r := r union {s} fi od;
T

end;
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A.10 Dependency declarations and analysis
A.10.1 Structure of an HMS

In an HMS structure, the dependency graph is a table whose entries N =
(k, (K, E)) are:

e A pair of a key k, which is a set of names.
e A set of keys K, which are the descendants of N.

e An equation set E, whose indeterminates lie in ¥ and the union of the
keys of nodes reachable from N.

structure(HMSNode, [Key, Keys, Eqns]):
structure(HMSLabel, [Keys, Eqns]):

‘HMS->Node set’ :=
proc (H)
map (proc (eqn)
HMSNode(op(1,eqn), Keys &of op(2,eqn), Eqns &of op(2,eqn))
end,
convert(H, list, ‘=));
{op(")}

end:

‘Node set->HMS‘ :=
proc (N)
table(map(proc (n) Key &of n = HMSLabel(Keys &of n, Eqns &of n) end,N))
end:
‘Redirect arcs to‘ :=
proc (g, U)
HMSNode(Key &of g,
map(proc (s,U) <if s &intersects U then U else s fi end,
Keys &of g, U),
Eqns &of g)
end:
‘Arcs not inf :=
proc (U, nodes)
‘union‘ (op(map(proc (n, U) map(‘Non-intersecting arc‘, Keys &of n, U) end,
nodes, U)))
end:

‘Non-intersecting arc‘ :=

proc (a, U) if a &intersects U then NULL else a fi end:
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‘gintersects‘ := proc (U, V) nops(U intersect V) > O end:

A.10.2 Constructions on an HMS

Initialize :=
proc (polys) table([Indets(polys) HMSLabel({}, polys)]) end:

IndependentWith :=
proc (VO, H)
local G, N, E, M, V;
vV : Indets(VO)
G := ‘HMS->Node set‘(H):;

N := map(proc (n, V)
if V &intersects (Key &of n) then n else NULL fi
end, G, V);
G := G minus N;
N := map(proc (n, V) .
HMSNode(Key &of n minus V, Keys &of n, Eqns &of n)
end, N, V);
‘Filter out equations involving‘(v, N
N := "[Nodes]; E := " [Eqns];
M := HMSNode(V, {}, E);
N := map(proc(n, V)

HMSNode(Key &of n, Keys &of n union {V}, Eqns &of n)
end, N, V) union G union {M};
‘Node set->HMS(N)
end:
‘Filter out equations involving‘ =
proc (V, N)
loca.l. M, E, n, e, F;

35
E: {;
f'rnlnNdo

= {};
or e in Eqns &of n do if V = Indets(e) then F := F union {e} fi od;
q

-:1

M := M union {HMSNode(Key &of n, Keys &of n, Eqns &of n minus F)};
E := E union F od;
table([Nodes = M, Eqns = EJ])
end
IndependentSep := ’

proc (V0, H)
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local V;

V := Indets(V0);

if V=4{} then H

else IndependentSep(V minus {V(1]}, IndependentWith({V[1l}, H)) fi
end:

Dependent :=
proc (U0, WO, H)
local G, NUi, NWi, NU, NW, NUW, UW, U, W, g, gU, gW, Vg, EgU, EgW, e;
if U0 = {} then RETURN(eval(H)) fi;
U := Indets(U0); W := Indets(W0);

G := ‘HMS->Node set‘(H);
NUi := {}; NWi := {};
Jor g in G

do Vg := Key &of g;
1f U &intersects Vg
then G := G minus {g};
if W &intersects Vg
then EgU := {}; EgW := {};
Jor e in Eqns &of g
do if nops(Indets(e) minus W) = 0
then EgW := EgW union {e}
else EgU := EgU union {e} fi od;
gW := HMSNode(W, Keys &of g, EgW);
gu := HMSNode(Vg minus W, {Key &of gW}, EgU);
NUi := NUi union {gU};
NWi := NWi union {gW};
else NUi := NUi union {g} fi
elif W &intersects (Key &of g)
then G := G minus {g}; NWi := NWi union {g} fi

od;
UW := U union W;
NW := HMSNode(‘union‘(op(map(proc (n) Key &of n end, NWi))),
‘Arcs not in‘(UW, NWi),
‘union‘ (op(map(proc (n) Eqns &of n end, NWi))));
NU := HMSNode(‘union‘(op(map(proc (n) Key &of n end, NUi))),
{Key &of NW} union ‘Arcs not in‘(UW, NUi),
‘union‘ (op(map(proc (n) Eqns &of n end, NUi))));
G := map(‘Redirect arcs to‘, G, Key &of NU);
G := map(‘Redirect arcs to‘, G, Key &of NW);

if not ((Key &of NU) &intersects (Key &of NW))
then G := G union {NU, NW}
else NUW := HMSNode(Key &of NU union Key &of NW,
Keys &of NU union Keys &of NW,
Eqns &of NU union Eqns &of NW);
G := G union {NUW} f1%; ’
‘Node set->HMS‘(G)
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end:

A.10.3 Solution of an HMS

Trim :=
proc (H)
local nodes, lkeys, inside;
nodes := ‘HMS->Node set‘(H);
map(proc(n) if Keys &of n = {} then (Key &of n = NULL) else NULL fi end,
nodes) ;
map(proc(n, badkeys)
if Keys &of n = {} then NULL .
else HMSNode(Key &of n, subs(badkeys, Keys &of n), Eqns &of n) fi
end, nodes, ");
if nops(") > 0 then ‘Node set->HMS‘(") else NULL fi

.end:
Leaves :=
proc (H) ‘

‘HMS->Node set‘(H);
map(proc(n) if Keys &of n = {} then n else NULL fi end, ")
end:

‘Substitute HMS‘ :=
proc (sigma, H)
‘HMS->Node set‘(H);
map(proc (n,sigma)
HMSNode(Key &of n, Keys &of n, subs(s1gma Eqns &of n))
end, ", sigma);
‘Node set->HMS‘(")
end:

Solve :=
proc (e, V)
map(proc (eqn) if op(1,eqn) = op(2,eqn) then NULL else eqn fi end,
solve(e,v))
end:

‘Solve HMS®¢ :=

proc (G, p)
local H, N, Sigma, Phi, HH;
H

1= G;
N := Leaves(H);
Slgma = map(proc (n,p) [p(Eqns &of n, Key &of n)] end, N, p);
Phi := ‘Compositions of solutions‘(Sigma);
2f Phi = NULL then ERROR(‘Hierarchical system is unsolvable) f1;
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H := Trim(H);

if H = NULL then Phi

elif Phi = {} then ‘solve HMs‘(H, p)
else ‘union‘(op(map(proc (subsig, p)
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map(‘union‘, ‘Solve HMS‘(subsig[1],p), subsig[2])

end,
map(proc (phi, H) [‘Substitute HMS‘(phi, H), phil end,
Phi, H),
p)))
Ji
end:

‘Compositions of solutions® :=
proc (‘set of lists of assignments‘)
local first, rest;
if ‘set of lists of assignments‘ = {} then {}
elif nops(‘set of lists of assignments) = 1
then ‘set of lists of assignments‘[1]
else first := ‘set of lists of assignments‘[1];
rest := ‘set of lists of assignments‘ minus {first};
‘Compositions of solutions‘(

map(proc (‘list of assignments A‘, ‘list of assignments B‘)

map (proc (assignment, ‘list of assignments‘)

op(map(‘union®, ‘list of assignments‘, assignment))

end,

‘list of assignments A‘, ‘list of assignments B‘)

end,
rest, first))
Ji;

end:
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A.11 Geometric expression evaluation

evalG :=

proc (e)

local sigma, vs, ve, vn, Op;
if nargs = 2 then sigma := args[2] else sigma := {} fi;
if type(e, F)
then F(map(proc (ea, s) evalG(op(1,ea),s) = op(2,ea) end, op(1,e), sigma))
elif type(e, N) then e
elif type(e, rational) or type(e,float) then N(e)
elif type(e, function)
then 0pCall(op(0,e), map(evalG, [op(e)], sigma), sigma)
elif type(e, set)
then map(evalG, e, sigma)

else vs := Indets(sigma); ve := indets(e);
vn := ve minus vs;
sigma := map(proc(v) v = N end, vn) union sigma;

if type(e, name)
then if subs(sigma, e) = N then N(e) else e fi
else 0pCall(whattype(e), map(evalG, [op(e)], sigma), sigma) fi

b i

end:

OpCall :=
proc (Op, Args, sigma)
if assigned(‘‘.0p.‘ Fields‘)
then Op(op(Args))
else FindOp(Op, Args, sigma); "(op(Args))
Ii

end:

FindOp :=
proc (Op, Args, sigma)
if assigned(Op) then Op
else map(proc (a, sigma) cat(‘ ¢, StructType(sigma, a)) end, Args, sigma);
cat(Op, op(™)) fi
end:

StructType :=
proc (sigma, e)
if type(e, function) then op(0, e)
elif type(e, name) then subs(sigma, e)
else whattype(e) fi
end:
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general equation, 9

general equations, 39

graphical display, 25, 30, 34, 71
graphical display string, 18
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system, 41
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independent, 41
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rational functions, 39
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tangent line, 28
transformation, 71
translation, 17
type, 51

universal indeterminates, 39

87

Imprimé en France
par
I Institut National de Recherche en Informatique et en Automatique




