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Abstract: We present in this article a genetic type interacting particle systems algorithm
and a genealogical model for estimating a class of rare events arising in physics and network
analysis. We represent the distribution of a Markov process hitting a rare target in terms
of a Feynman–Kac model in path space. We show how these branching particle models
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delmoral@math.unice.fr
*** IRISA/INRIA, Campus de Beaulieu, 35042 RENNES Cédex, France. legland@irisa.fr
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Modèles Génétiques Généalogiques pour l’Analyse

d’Evénements Rares

Résumé : Nous présentons dans cet article un algorithme de particules en interaction
de type génétique et un modèle généalogique pour estimer une classe d’événements rares
provenant de la physique et de l’analyse des réseaux. Nous exprimons la loi d’un processus
de Markov qui atteint un événement rare comme un modèle de Feynman–Kac dans l’espace
des trajectoires. Nous montrons comment ces modèles de branchement de particules décrits
dans des travaux précédents peuvent être utilisés pour estimer la probabilité d’événements
rares, ainsi que la loi du processus dans ce régime.

Mots clés : systèmes de particules en interaction, événements rares, modèles de Feynman-
Kac, algorithmes génétiques, arbres généalogiques
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1 Introduction

Let X = {Xt , t ≥ 0} be a continuous–time strong Markov process taking values in some
Polish state space S. For a given target Borel set B ⊂ S we define the hitting time

TB = inf{t ≥ 0 : Xt ∈ B} ,

as the first time when the process X hits B. Let us assume that X has almost surely
right continuous, left limited trajectories (RCLL), and that B is closed. Then we have that
XTB ∈ B. In many applications, the set B is the (super) level set of a scalar measurable
function φ defined on S, i.e.

B = {x ∈ S : φ(x) ≥ λB} .

In this case, we will assume that φ is upper semi–continuous, which ensures that B is closed.
For any real interval I we will denote by D(I, S) the set of RCLL trajectories in S indexed
by I. We always take the convention inf ∅ = ∞ so that TB = ∞ if X never succeeds to
reach the desired target B. It may happen that most of the realizations of X never reach
the set B. The corresponding rare event probabilities are extremely difficult to analyze. In
particular one would like to estimate the quantities

P(TB ≤ T ) and Law(Xt , 0 ≤ t ≤ TB | TB ≤ T ) , (1.1)

where T is either

• a deterministic finite time,

• a P–almost surely finite stopping time, for instance the hitting time of a recurrent
Borel set R ⊂ S, i.e. T = TR with

TR = inf{t ≥ 0 : Xt ∈ R} and P(TR < ∞) = 1 .

The second case covers the two “dual” situations.

• Suppose the state space S = A∪R is decomposed into two separate regions A and R.
The process X starts in A and we want to estimate the probability of the entrance time
into a target B ⊂ A before exiting A. In this context the conditional distribution (1.1)
represents the law of the process in this ”ballistic” regime.

• Suppose the state space S = B ∪ C is decomposed into two separate regions B and
C. The process X evolves in the region C which contains a collection of ”hard obsta-
cles” represented by a subset R ⊂ C. The particle is killed as soon as it enters the
”hard obstacle” set R. In this context the two quantities (1.1) represent respective-
ly the probability of exiting the pocket of obstacles C without being killed and the
distribution of the process which succeeds to escape from this region.
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4 Cérou, Del Moral, LeGland, Lezaud

In all the sequel, P(TB ≤ T ) will be of course unknown, but nevertheless assumed to be
strictly positive.

The estimation of these quantites arises in many research areas such as in physics and
engineering problems. In network analysis such as in advanced telecommunication systems
studies X traditionally represents the length of service centers in an open/closed queueing
network processing jobs. In this context these two quantities (1.1) represent repectively the
probability of buffer-overflows and the distribution of the queueing process in this overflow
regime.

Several numerical methods have been proposed in the literature to estimate the entrance
probability into a rare set. We refer the reader to the excellent paper [9] which contains a
precise review on these methods as well as a detailed list of references. For the convenience
of the reader we present hereafter a brief description of the two leading ideas.

The first one is based on changing the reference probability so that rare sets becomes less
rare. This probabilistic approach often requires the finding of the right change of measure.
This step is usually done using large deviations techniques. Another more physical approach
consists in splitting the state space into a sequence of sub-levels the particle needs to pass
before it reaches the rare target. This splitting stage is based on a precise physical description
of the evolution of the process between each level leading to the rare set. The next step is
to introduce a system of particles evolving in this level decomposition of the state, in which
each particle branches as soon as it enters into a higher level.

The purpose of the present article is to connect the multilevel splitting techniques with
the branching and interacting particle systems approximations of Feynman–Kac distribu-
tions studied in previous articles. This work has been influenced by the three referenced
papers [7, 8] and [9].

Our objective is twofold. First we propose a Feynman–Kac representation of the quanti-
ties (1.1). The general idea behind our construction is to consider the level crossing Markov
chain in path space and associated with the splitting of the state space. The concatenation
of the corresponding states will contain all information on the way the process passes each
level before entering into the final and target rare set. Based on this modeling we introduce a
natural mean field type genetic particle approximation of the desired quantities (1.1). More
interestingly we also show how the genealogical structure of the particle at each level can be
used to find the distribution of the process during its excursions to the rare target.

When the state space is splitted into m levels the particle model evolve into m steps.
At time n = 0 the start with N independent copies of the process X . The particles which
enter the recurrent set R are killed and instantly a particle having reached the first level
produces an offspring. If the whole system is killed the algorithm is stopped. Otherwise by
construction of the birth and death rule we obtain N particles at the first level. At time
n = 1 the N particles in the first level evolve according to the same rule as the process
X . Here again particles which enter the recurrent set R are killed and instantly a particle
having reached the second level produces an offspring and so on.

From this brief description we see that the former particle scheme follows the same
splitting strategies as the one discussed in [9]. The new mathematical models presented

Irisa



Genetic Genealogical Models in Rare Event Analysis 5

here allows to calibrate with precision the asymptotic behavior of this particle techniques as
the size of the systems tends to infinity. In addition and in contrast to previous articles on
the subject the Feynman–Kac analysis in path space presented hereafter allows to study the
genealogical structure of these splitting particle models. We will show that the empirical
measures associated with the corresponding historical processes converge as N → ∞ to the
distribution of the whole path process between each levels.

An empirical method called restart [14, 13] can also be used to compute rare transient
events and the probability of rare events in steady state, not only the probability to reach
the target before coming back to a recurrent set. It was developped to compute the rate
of lost packets through a network in a steady–state regime. From a mathematical point of
view, this is equivalent to the fraction of time that the trajectory spends in a particular
set B, asymptotically as t → +∞, provided we assume that the system is ergodic. In
order to be able to both simulate the system on the long time and see frequent visits to
the rare event, the algorithm splits the trajectories crossing the levels ”upwards” (getting
closer to the rare event), and cancel those crossing ”downwards”, except one of them called
the master trajectory. So the main purpose of this algorithm is quite different from the
one of restart. It used by practitionners, but this method requires some mathematical
approximations which are not yet well understood. Moreover this method is not taken into
account by the previous formalism. So, a further work could be an extension of the former
particle scheme for covering restart.

A short description of the paper is as follows. Section 2 of this paper sets out the
Feynman–Kac representation of the quantities (1.1). Section 3 provides the description of
the corresponding genetic-type interacting particle system approximating model. Section 4
introduces a path-valued interacting particle systems model for the historical process associ-
ated with the previous genetic algorithm. Finally, Section 5 deals with a numerical example,
based on the Ornstein-Uhlenbeck process. Estimation of exit time for diffusions controlled
by potentials are suggested also, since the lack of exact calculations, even if some heuristics
may be applied.

2 Multi-level Feynman–Kac formulae

In practice the process X , before visiting R or entering into the desired set B, passes through
a decreasing sequence of closed sets

B = Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 ⊂ B0 .

The parameter m and the sequence of level sets depend on the problem at hand. We choose
the level sets to be nested to ensure that the process X cannot enter Bn before visiting Bn−1.
The choice of the recurrent set R depends on the nature of the underlying process X . To
visualize these level sets we propose hereafter the two ”dual” constructions corresponding
to the two ”dual” interpretations presented in the introduction.

• In the ballistic regime the decreasing sequence B = Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 ⊂ B0

represents the physical levels the process X needs to pass before it reaches B.

PI n˚1797



6 Cérou, Del Moral, LeGland, Lezaud

• In the case of a particle X evolving in a pocket C of the state space S containing ”hard
obstacles” the sequence B = Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 ⊂ B0 represents the exit level
sets the process needs to reach to get out of C before beeing killed by an obstacle.

To capture the behavior of X between the different levels B = Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 ⊂ B0

we introduce the discrete event–driven stochastic sequence

Xn = (Xt , Tn−1 ∧ T ≤ t ≤ Tn ∧ T ) ∈ E with E =
⋃

t′≤t′′
D([t′, t′′], S)

for any 1 ≤ n ≤ m + 1, where Tn represents the first time X reaches Bn, that is

Tn = inf{t ≥ 0 : Xt ∈ Bn}
with the convention inf ∅ = ∞. At this point we need to endow E with a σ-algebra. First
we extend all the trajectories X by 0 such that they are defined on the whole real line. We
denote by X̃ the corresponding extended trajectory. They are then element of D(R, S), on
which we consider the σ-algebra generated by the Skorohod metric. Then we consider the
product space Ẽ = D(R, S) × R̄+ × R̄+ endowed with the product σ-algebra. Finally to
any element X ∈ E, defined on an interval [s, t], we associate (X̃, s, t) ∈ Ẽ. So we have
imbedded E in Ẽ in such a way that all the standard functionals (sup, inf, . . . ) have good
measurability properties. We denote by Bb(E) the measurable bounded functions from E
(or equivalently its image in Ẽ) into R.

Notice that

• if T < Tn−1, then Xn = {XT } and XTn∧T = XT 6∈ Bn,

• if Tn−1 ≤ T < Tn, then Xn = (Xt , Tn−1 ≤ t ≤ T ) and XTn∧T = XT 6∈ Bn,

• finally, if Tn ≤ T , then Xn = (Xt , Tn−1 ≤ t ≤ Tn) represents the path of X between
the successive levels Bn−1 and Bn, and XTn∧T = XTn ∈ Bn.

Consequently, XTn∧T ∈ Bn if and only if Tn ≤ T . By construction we also notice that

T0 = 0 ≤ T1 ≤ · · · ≤ Tm ≤ Tm+1 = TB

and for each n

(Tn−1 > T ) ⇒ (Tp > T and Xp = {XT } 6⊂ Bp, for all p ≥ n) .

From these observation we can alternatively define the times Tn by the inductive formula

Tn = inf{t ≥ Tn−1 : Xt ∈ Bn}
with the convention inf ∅ = ∞ so that Tn > T if either Tn−1 > T or if starting in Bn−1 at
time Tn−1 the process never reaches Bn before time T . We also observe that

(TB ≤ T ) ⇔ (Tm+1 ≤ T ) ⇔ (T1 ≤ T, · · · , Tm+1 ≤ T )

Irisa



Genetic Genealogical Models in Rare Event Analysis 7

By the strong Markov property we check that the stochastic sequence (X0 , · · · , Xm+1)
forms an E-valued Markov chain. One way to check whether the path has succeeded to
reach the desired n-th level is to consider the potential functions gn on E defined for each
x = (xt , t′ ≤ t ≤ t′′) ∈ D([t′, t′′], S) with t′ ≤ t′′ by

gn(x) = 1(xt′′ ∈ Bn)

In this notation, we have for each n

(Tn ≤ T ) ⇔ (T1 ≤ T, · · · , Tn ≤ T ) ⇔ (g1(X1) = 1, · · · , gn(Xn) = 1) ,

i.e.

1(Tn ≤ T ) =
n∏

k=0

gk(Xk) ,

and

f(Xn) 1(Tn ≤ T ) = f(Xt , Tn−1 ≤ t ≤ Tn) 1(Tn ≤ T ) .

For later purpose, we introduce the following notation

(X0, · · · , Xn) = (X0, (Xt , 0 ≤ t ≤ T1 ∧ T ), · · · , (Xt , Tn−1 ∧ T ≤ t ≤ Tn ∧ T ))

= [Xt , 0 ≤ t ≤ Tn ∧ T ] .

Introducing the Feynman–Kac distribution ηn defined by

ηn(f) =
γn(f)
γn(1)

with γn(f) = E(f(Xn)
n∏

k=0

gk(Xk)) ,

for any bounded measurable function f defined on E, we are now able to state the following
Feynman–Kac representation of the quantities (1.1).

Theorem 1 (Multilevel Feynman–Kac formula) For any n and for any f ∈ Bb(E) we
have

E(f(Xt , Tn−1 ≤ t ≤ Tn) | Tn ≤ T ) =

E(f(Xn)
n∏

p=0

gp(Xp))

E(
n∏

p=0

gp(Xp))

=
γn(f)
γn(1)

= ηn(f) ,

and

P(Tn ≤ T ) = E(
n∏

k=0

gk(Xk)) = γn(1) .

PI n˚1797



8 Cérou, Del Moral, LeGland, Lezaud

In addition for any f ∈ Bb(En+1) we have that

E(f([Xt , 0 ≤ t ≤ Tn]) | Tn ≤ T ) =

E(f(X0, · · · , Xn)
n∏

p=0

gp(Xp))

E(
n∏

p=0

gp(Xp))

The straightforward formula

P[Tn ≤ T ] =
n∏

k=0

P[Tk ≤ T | Tk−1 ≤ T ] ,

which shows how the very small probability of a rare event can be decomposed into the
product of reasonably small but not too small conditional probabilities, each of which cor-
responding to the transition between two events, can be recoverd from the the well–known
identity

γn(1) =
n∏

k=0

ηk−1(gk) ,

and will provide the basis for the efficient numerical approximation in terms of an interacting
particle system. These conditional probabilities are not known in advance, and are learned
by the algorithm as well.

3 Genetic approximating models

In previous studies [7, 8] we design a collection of branching and interacting particle systems
approximating models for solving a general class of Feynman–Kac models. These particle
techniques can be used to solve the formulae presented in Theorem 1.1. We first focus on a
simple mutation/selection genetic algorithm.

3.1 Classical scheme

To describe this particle approximating model we first recall that the Feynman–Kac distri-
bution flow ηn ∈ P(E) defined by

ηn(f) =
γn(f)
γn(1)

with γn(f) = E(f(Xn)
n−1∏
p=0

gp(Xp))

is solution of the following measure valued dynamical system

ηn+1 = Φn+1(ηn) (3.1)

Irisa



Genetic Genealogical Models in Rare Event Analysis 9

The mappings Φn+1 from the set of measures

Pn(E) = {η ∈ P(E) , η(gn) > 0}

into P(E) are defined by

Φn+1(η)(dx′) = (Ψn(η)Kn+1)(dx′) =
∫

E

Ψn(η)(dx)Kn+1(x, dx′)

The Markov kernels Kn(x, dx′) represent the Markov transitions of the chain Xn. The
updating mappings Ψn are defined from Pn(E) into Pn(E) and for any η ∈ Pn(E) and
f ∈ Bb(E) by the formula

Ψn(η)(f) = η(f gn)/η(gn)

Thus we see that the recursion (3.1) involves two separate selection / mutation transitions

ηn ∈ P(E) selection−−−−−−→ η̂n = Ψn(ηn) ∈ P(E) mutation−−−−−−→ ηn+1 = η̂n Kn+1 ∈ P(E) (3.2)

It is also conventient to recall that the finite and positive measures γn on E can be expressed
in terms of the flow {η0, · · · , ηn}, using the easily checked formula

γn(f) = ηn(f)
n−1∏
p=0

ηp(gp)

In these notations we readily observe that

γn(gn) = P(Tn ≤ T )

and

η̂n(f) = Ψn(ηn)(f) = E(f(Xt , Tn−1 ≤ t ≤ Tn) | Tn ≤ T )

The genetic type N–particle system associated with an abstract measure valued process
of the form (3.1) is the Markov chain ξn = (ξ1

n, · · · , ξN
n ) taking values at each time n in

the product state spaces EN ∪ {∆} where ∆ stands for a cemetery or coffin point. Its
transitions are defined as follows. For any configuration x = (x1, · · · , xN ) ∈ EN such that
1
N

N∑
i=1

δxi ∈ Pn(E) we set

P(ξn+1 ∈ dy | ξn = x) =
N∏

p=1

Φn+1(
1
N

N∑
i=1

δxi)(dyp) (3.3)

PI n˚1797



10 Cérou, Del Moral, LeGland, Lezaud

where dy = dy1 × · · · × dyN is an infinitesimal neighborhood of y = (y1, · · · , yN ) ∈ EN .
When the system arrives in some configuration ξn = x such that

1
N

N∑
i=1

δxi 6∈ Pn(E)

the particle algorithm is stopped and we set ξn+1 = ∆. The initial system of particles
ξ0 = (ξ1

0 , · · · , ξN
0 ) consists in N independent random variables with common law η0 =

Law(X0) = Law(X0). The superscript i = 1, · · · , N represents the label of the particle and
the parameter N is the size of the systems and the precision of the algorithm.

Next we describe in more details the genetic evolution of the path-particles. At the
time n = 0 the initial configuration consists in N independent and identically distributed
S-valued random variables ξi

0 with common law η0. Since we have g0(u) = 1 for η0-almost
every u ∈ S, we may discard the selection at time n = 0 and set ξ̂i

0 = ξi
0 for each 1 ≤ i ≤ N .

If we use the convention T i
−1 = T̂ i

−1 = 0 and if we set T i
0 = T̂ i

0 = 0 we notice that the single
states ξi

0 and ξ̂i
0 can be written in the path-form

ξi
0 = ξi

0(0) = (ξi
0(t) , T i

−1 ≤ t ≤ T i
0) and ξ̂i

0 = ξ̂i
0(0) = (ξ̂i

0(t) , T̂ i
−1 ≤ t ≤ T̂ i

0)

The mutation transition ξ̂n → ξn+1 at time (n + 1) is defined as follows. If ξ̂n = ∆
we set ξn+1 = ∆. Otherwise during mutation, independently of each other, each selected
path-particle

ξ̂i
n = (ξ̂i

n(t) , T̂−,i
n ≤ t ≤ T̂ +,i

n )

evolves randomly according to the Markov transition Kn+1 of the Markov chain Xn+1 at
time (n + 1) so that

ξi
n+1 = (ξi

n+1(t) , T−,i
n+1 ≤ t ≤ T +,i

n+1)

is a random variable with distribution Kn+1(ξ̂i
n, dx′).

In other words, the algorithm goes like this between steps n and n+1. For each particle
i we start a trajectory from ξ̂i

n at time T−,i
n+1 = T̂ +,i

n , and let it evolve randomly as a copy
{ξi

n+1(s) , s ≥ T−,i
n+1} of the process {Xs , s ≥ T−,i

n+1}, until the stopping time T i
+,n+1, which

is either

T +,i
n+1 = inf {t ≥ T−,i

n+1 : ξi
n+1(t) ∈ Bn+1 ∪ R},

in case of a recurrent set to be avoided, or

T +,i
n+1 = T ∧ inf {t ≥ T−,i

n+1 : ξi
n+1(t) ∈ Bn+1},

in case of a deterministic final time, depending on the problem at hand.

Irisa



Genetic Genealogical Models in Rare Event Analysis 11

The selection transition ξn+1 → ξ̂n+1 is defined as follows. From the previous mutation
transition we obtain N path-particle

ξi
n+1 = (ξi

n+1(t) , T−,i
n+1 ≤ t ≤ T +,i

n+1)

Only some of these particle have succeeded to reach to desired set Bn+1 and the other ones
have failed. We denote by IN

n+1 the labels of the particles having succeeded to reach the
(n + 1)-th level

IN
n+1 = {i = 1, · · · , N : ξi

n+1(T
+,i
n+1) ∈ Bn+1}

If IN
n+1 = ∅ then none of the particles have succeeded to reach the desired level. Since

IN
n+1 = ∅ ⇐⇒ 1

N

N∑
i=1

gn+1(ξi
n+1) = 0 ⇐⇒ 1

N

N∑
i=1

δξi
n+1

6∈ Pn+1(E)

we see that in this situation the algorithm is stopped and ξ̂n+1 = ∆. Otherwise the selection
transition of the N -particle models (3.3) and (3.5) are defined as follows. In the first situation
the system ξ̂n+1 = (ξ̂1

n+1, · · · , ξ̂N
n+1) consists in N independent (given the past until the last

mutation) random variables

ξ̂i
n+1 = (ξ̂i

n+1(t) , T̂−,i
n+1 ≤ t ≤ T̂ +,i

n+1)

with common distribution

Ψn+1(
1
N

N∑
i=1

δξi
n+1

) =
N∑

i=1

gn+1(ξi
n+1)

N∑
j=1

gn+1(ξ
j
n+1)

δξi
n+1

=
1

|IN
n+1|

∑
i∈IN

n+1

δ(ξi
n+1(t) , T−,i

n+1 ≤ t ≤ T +,i
n+1)

In simple words, we draw them uniformly among the sucessfull pieces of trajectories {ξi
n+1, i ∈

IN
n+1}.

3.2 Alternate scheme

As mentioned above the choice of the N -particle approximating model of (3.1) is not unique.
Below, we propose an alternative scheme which contains in some sense less randomness [6].
The key idea is to notice that the updating mapping Ψn : Pn(E) → Pn(E) can be rewritten
in the following form

Ψn(η)(dx′) = (η Sn(η))(dx′) =
∫

E

η(dx) Sn(η)(x, dx′) , (3.4)

with the collection of Markov transition kernels Sn(η)(x, dx′) on E defined by

Sn(η)(x, dx′) = (1 − gn(x)) Ψn(η)(dx′) + gn(x) δx(dx′) ,

PI n˚1797



12 Cérou, Del Moral, LeGland, Lezaud

where

gn(x) = 1(gn(x) = 1) = 1(x ∈ g−1
n (1)) ,

and where g−1
n (1) stands for the set of paths in E entering the level Bn, that is

g−1
n (1) = {x ∈ E : gn(x) = 1} = {x ∈ D([t′, t′′], S) , t′ ≤ t′′ : xt′′ ∈ Bn} .

Indeed

(η Sn(η))(dx′) = Ψn(η)(dx′) (1 − η(gn)) +
∫

E

η(dx) gn(x) δx(dx′) ,

hence

(η Sn(η))(f) = Ψn(η)(f) (1 − η(gn)) + η(f gn) = Ψn(η)(f) ,

for any bounded measurable function f defined on E, which proves (3.4). In this notation,
(3.1) can be rewritten as

ηn+1 = ηn Kn+1(ηn) ,

with the composite Markov transition kernel Kn+1(η) defined by

Kn+1(η)(x, dx′) = (Sn(η)Kn+1)(x, dx′) =
∫

E

Sn(η)(x, dx′′)Kn+1(x′′, dx′)

The alternative N -particle model associated with this new description is defined as before
by replacing (3.3) by

P(ξn+1 ∈ dy | ξn = x) =
N∏

p=1

Kn+1(
1
N

N∑
i=1

δxi)(xp, dyp) (3.5)

By definition of Φn+1 and Kn+1(η) we have for any configuration x = (x1, · · · , xN ) ∈ EN

with
1
N

N∑
i=1

δxi ∈ Pn(E)

Φn+1(
1
N

N∑
i=1

δxi)(dv) =
N∑

i=1

gn(xi)
N∑

j=1

gn(xj)

Kn+1(xi, dv)

In much the same way we find that

Kn+1(
1
N

N∑
i=1

δxi) = Sn(
1
N

N∑
i=1

δxi)Kn+1
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with the selection transition

Sn(
1
N

N∑
i=1

δxi)(xp, dv) = (1 − gn(xp)) Ψn(
1
N

N∑
i=1

δxi)(dv) + gn(xp) δxp(dv)

where

Ψn(
1
N

N∑
i=1

δxi) =
N∑

i=1

gn(xi)
N∑

j=1

gn(xj)

δxi

Thus, we see that the transition ξn → ξn+1 of the former Markov models splits up into two
separate genetic type mechanisms

ξn ∈ EN ∪ {∆} selection−−−−−−→ ξ̂n = (ξ̂i
n)1≤i≤N ∈ EN ∪ {∆} mutation−−−−−−→ ξn+1 ∈ EN ∪ {∆}

By construction we notice that

ξn = ∆ =⇒ ∀p ≥ n ξp = ∆ and ξ̂p = ∆

By definition of the path valued Markov chain Xn this genetic model consists in N -path
valued particles

ξi
n = (ξi

n(t) , T−,i
n ≤ t ≤ T +,i

n ) ∈ D([T−,i
n , T +,i

n ], S)

ξ̂i
n = (ξ̂i

n(t) , T̂−,i
n ≤ t ≤ T̂ +,i

n ) ∈ D([T̂−,i
n , T̂ +,i

n ], S) .

The random time-pairs (T−,i
n , T +,i

n ) and (T̂−,i
n , T̂ +,i

n ) represent the first and last time of the
corresponding paths.

In the alternative model (3.5) each particle

ξ̂i
n+1 = (ξ̂i

n+1(t) , T̂−,i
n+1 ≤ t ≤ T̂ +,i

n+1)

is sampled according to the selection distribution

Sn+1(
1
N

N∑
j=1

δ
ξj
n+1

)(ξi
n+1, dv)

= (1 − gn+1(ξi
n+1)) Ψn(

1
N

N∑
j=1

δ
ξj
n+1

)(dv) + gn+1(ξi
n+1) δξi

n+1
(dv)

= 1(ξi
n+1(T

+,i
n+1) 6∈ Bn+1)

Ψn(
1
N

N∑
j=1

δ
ξj
n+1

)(dv) + 1(ξi
n+1(T

+,i
n+1) ∈ Bn+1)

δξi
n+1

(dv)

PI n˚1797



14 Cérou, Del Moral, LeGland, Lezaud

More precisely we have

ξi
n+1(T

+,i
n+1) ∈ Bn+1 =⇒ ξ̂i

n+1 = ξi
n+1 .

In the opposite we have ξi
n+1(T

+,i
n+1) 6∈ Bn+1 when the particle has not succeeded to reach

the (n + 1)–th level. In this case ξ̂i
n+1 is chosen randomly and uniformly in the set

{ξj
n+1 : ξj

n+1(T
+,j
n+1) ∈ Bn+1} = {ξj

n+1 : j ∈ IN
n+1} ,

of all particle having succeeded to enter into Bn+1. In other words each particle which does
not enter into the (n + 1)–th level is killed and instantly a different particle in the Bn+1

level splits into two offsprings.
We denote by τN the lifetime of the N -genetic model

τN = inf{n ≥ 0 :
1
N

N∑
i=1

δξi
n
6∈ Pn(E)} .

For each time n < τN we denote by ηN
n and η̂N

n the particle density profiles associated with
the N -particle model

ηN
n =

1
N

N∑
i=1

δξi
n

and η̂N
n = Ψn(ηN

n ) .

For each time n < τN the N–particle approximating measures γN
n associated with γn are

defined for any f ∈ Bb(E) by

γN
n (f) = ηN

n (f)
n−1∏
p=0

ηN
p (gp) .

Note that

γN
n (gn) =

n∏
p=0

ηN
p (gp) =

n∏
p=1

|IN
p |
N

,

and

η̂N
n = Ψn(ηN

n ) =
1

|IN
n |

∑
i∈IN

n

δ(ξi
n(t) , T−,i

n ≤ t ≤ T +,i
n ) .

The asymptotic behavior as N → ∞ of the interacting particle model we have constructed
has been studied in many works. We refer the reader to the survey paper [7] in the case
of strictly positive potentials gn and [4, 5] for non negative potentials. For the convenience
of the reader we have chosen to present the impact of some exponential and Lp-mean error
estimates, and a fluctuation result, in the analysis of rare events.
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Theorem 2 For any 0 ≤ n ≤ m + 1 there exists a finite constant cn such that for any
N ≥ 1

P(τN ≤ n) ≤ cn exp (−N/cn) .

The particle estimates γN
n (gn) are unbiased

E(γN
n (gn) 1(τN > n)) = P(Tn ≤ T )

and for each p ≥ 1 we have

(E| γN
n (gn) 1(τN > n) − P(Tn ≤ T ) |p)1/p ≤ ap bn/

√
N ,

for some finite constant ap < ∞ which only depends on the parameter p, and for some finite
constant bn < ∞ which only depends on the time parameter n. In addition, for any test
function f ∈ Bb(E), with ‖f‖ ≤ 1

(E| η̂N
n (f) 1(τN > n) − E(f(Xt , Tn−1 ≤ t ≤ Tn) | Tn ≤ T ) |p)1/p ≤ ap bn/

√
N .

We illustrate the impact of this asymptotic convergence theorem by chosing some par-
ticular test functions. For each u > 0 we define the function f (u) on E by setting for each
x = (xr , s ≤ r ≤ t) ∈ D([s, t], S) with s ≤ t,

f (u)(x) =
{

1 if |t − s| ≤ u
0 if |t − s| > u

(3.6)

In this notation u → Ψn(ηn)(f (u)) is the repartition function of the intertime Tn − Tn−1

between two consecutive levels Bn−1 and Bn, that is

Ψn(ηn)(f (u)) = P(Tn − Tn−1 ≤ u | Tn ≤ R)

The particle approximation of this quantity is the proportion of paths having passed from
Bn−1 to Bn in time u.

Now a CLT-type result on the error fluctuations. Let us first introduce the following
notation:

an =
n∑

p=0

E
[
[∆n

p−1,p(Tp, XTp) 1Tp≤T − 1]2 |Tp−1 ≤ T
]
,

and

bn =
n∑

p=0

E
[
1Tp≤T [∆n

p,p(Tp, XTp) − 1]2 |Tp−1 ≤ T
]
,

with the functions ∆n
p,q defined by

∆n
p,q(t, x) =

P(Tn ≤ T |Tq = t, XTq = x)
P(Tn ≤ T |Tp ≤ T )

.
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16 Cérou, Del Moral, LeGland, Lezaud

Theorem 3 For any 0 ≤ n ≤ m, the sequence of random variables

WN
n+1 =

√
N

(
1τN<n γN

n+1(1) − P(Tn ≤ T )
)

converges in distribution to a Gaussian N(0, σ2
n), with

σ2
n = P(Tn ≤ T )2(an − bn).

We end this section with a physical discussion on the terms an, and bn.

Proposition 4 For any time horizon, we have the formula

an − bn =
n∑

p=0

(
1

P(Tp ≤ T |Tp−1 ≤ T )
− 1

)

+
n∑

p=0

E

[[
P(Tn ≤ T |Tp, XTp)
P(Tn ≤ T |Tp ≤ T )

− 1
]2

|Tp ≤ T

]

×
[

1
P(Tp ≤ T |Tp−1 ≤ T )

− P(Tp ≤ T |Tp−1 ≤ T )
]

.

Proof:
Firstly, we observe that

E
[
∆n

p−1,p(Tp, XTp) | Tp ≤ T
]

= E

[
P(Tn ≤ T |Tp, XTp)

P(Tn ≤ T |Tp−1 ≤ T )
| Tp ≤ T

]

=
P(Tn ≤ T |Tp ≤ T )

P(Tn ≤ T |Tp−1 ≤ T )
.

Using the fact that
q ≥ p =⇒ P(Tq ≤ T , Tp ≤ T ) = P(Tq ≤ T )

we conclude that

E
[
∆n

p−1,p(Tp, XTp) | Tp ≤ T
]

=
1

P(Tp ≤ T |Tp−1 ≤ T )
. (3.7)

In much the same way, we observe that

E
[
fp(Tp, XTp) 1Tp≤T | Tp−1 ≤ T

]
E

[
1Tp≤T | Tp−1 ≤ T

] = E
[
fp(Tp, XTp) | Tp ≤ T

]
for any measurable function fp on (R+ × S). This yields that

E
[
fp(Tp, XTp) 1Tp≤T | Tp−1 ≤ T

]
= E

[
fp(Tp, XTp) | Tp ≤ T

] × P(Tp ≤ T |Tp−1 ≤ T ).
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Using (3.7), we find that

E
[
∆n

p−1,p(Tp, XTp) 1Tp≤T |Tp−1 ≤ T
]

= E
[
∆n

p−1,p(Tp, XTp)|Tp ≤ T
] × P(Tp ≤ T |Tp−1 ≤ T ) = 1.

From the above observations, we arrive at

E
[
[∆n

p−1,p(Tp, XTp) 1Tp≤T − 1]2 |Tp−1 ≤ T
]

= E
[
[∆n

p−1,p(Tp, XTp)]2 |Tp ≤ T
] × P(Tp ≤ T |Tp−1 ≤ T ) − 1.

Using again (3.7), we end up with the following formula

E
[
[∆n

p−1,p(Tp, XTp) 1Tp≤T − 1]2 |Tp−1 ≤ T
]

= E

[
∆n

p−1,p(Tp, XTp)
E

[
∆n

p−1,p(Tp, XTp) |Tp ≤ T
]]2

|Tp ≤ T

 × 1
P(Tp ≤ T |Tp−1 ≤ T )

− 1.

Next, we see that

E
[
[∆n

p−1,p(Tp, XTp) 1Tp≤T − 1]2 |Tp−1 ≤ T
]

=
(

1
P(Tp ≤ T |Tp−1 ≤ T )

− 1
)

+E

[
∆n

p−1,p(Tp, XTp)
E

[
∆n

p−1,p(Tp, XTp) |Tp ≤ T
] − 1

]2

|Tp ≤ T

 × 1
P(Tp ≤ T |Tp−1 ≤ T )

an =
n∑

p=0

(
1

P(Tp ≤ T |Tp−1 ≤ T )
− 1

)

+
n∑

p=0

1
P(Tp ≤ T |Tp−1 ≤ T )

E

[
∆n

p−1,p(Tp, XTp)
E

[
∆n

p−1,p(Tp, XTp) |Tp ≤ T
] − 1

]2

|Tp ≤ T

 .

To take the final step, we observe that

∆n
p−1,p(Tp, XTp)

E
[
∆n

p−1,p(Tp, XTp) |Tp ≤ T
] =

P(Tn ≤ T |Tp, XTp)
E

[
P(Tn ≤ T |Tp, XTp) |Tp ≤ T

]
=

P(Tn ≤ T |Tp, XTp)
P(Tn ≤ T |Tp ≤ T )

= ∆n
p,p(Tp, XTp).
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This ends the proof of the proposition.

Now we explain the meaning of this proposition. If P(Tn ≤ T |Tp, XTp) does not depend
on (Tp, XTp) given (Tn ≤ T ), i.e. does not depend on the hitting time and point of the level
set Bp, then

E

[[
P(Tn ≤ T |Tp, XTp)
P(Tn ≤ T |Tp ≤ T )

− 1
]2

|Tp ≤ T

]
= 0

and if this holds for any p = 0, 1, . . . , n, then the asymptotic variance reduces to the expres-
sion

σ2
n =

n∑
p=0

(
1

P(Tp ≤ T |Tp−1 ≤ T )
− 1

)

as given in [10]. Idealy, the level set Bp should be chosen such that P(Tn ≤ T |Tp, XTp) does
not depend on (Tp, XTp) given (Tn ≤ T ). Even if this is clearly unrealistic for most practical
problems, this observation gives an insight on how to choose the level sets.

4 Genealogical tree based models

The genetic particle approximating model described in the previous section can be inter-
pretated as a birth and death particle model. The particle dies if it does not succeed to
reach the desired level and it duplicates in some offsprings when it hits this level. One way
to model the genealogical tree and the line of ancestors of the particles alive at some given
date is to consider the stochastic sequence

Yn = (X0, · · · , Xn) ∈ En = E × · · · × E︸ ︷︷ ︸
(n + 1)–times

It is not difficult to check that Yn forms a time inhomogenous Markov chain with Markov
transitions Qn+1 from En into En+1

Qn+1(x0, · · · , xn, dx′
0, · · · , dx′

n, dx′
n+1) = δ(x0, · · · , xn)(dx′

0, · · · , dx′
n) Kn+1(x′

n, dx′
n+1)

Let hn be the mapping from En into [0,∞) defined by

hn(x0, · · · , xn) = gn(xn)
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In this notation we have for any fn ∈ Bb(En) the Feynman–Kac representation

µ̂n(fn) =

E(fn(Yn)
n∏

p=0

hp(Yp))

E(
n∏

p=0

hp(Yp))

= E(fn(X0, (Xt , 0 ≤ t ≤ T1), · · · , (Xt , Tn−1 ≤ t ≤ Tn)) | Tn ≤ T )

= E(fn([Xt , 0 ≤ t ≤ Tn]) | Tn ≤ T )

Using the same lines of reasoning as above the N -particle approximating model associated
with these Feynman–Kac distributions is again a genetic algorithm with mutation transitions
Qn and potential functions hn. Here the path-particle at time n take values in En and they
can be written as follows

ζi
n = (ξi

0,n, · · · , ξi
n,n) and ζ̂i

n = (ξ̂i
0,n, · · · , ξ̂i

n,n) ∈ En

with for each 0 ≤ p ≤ n

ξi
p,n = (ξi

p,n(t) , T i
p−1,n ≤ t ≤ T i

p,n) and ξ̂i
p,n = (ξ̂i

p,n(t) , T̂ i
p−1,n ≤ t ≤ T̂ i

p,n) ∈ E

The selection transition consists in randomly selecting a path-sequence

ζi
n = (ξi

0,n, · · · , ξi
n,n)

proportionally to its fitness

hn(ξi
0,n, · · · , ξi

n,n) = gn(ξi
n,n)

The mutation stage consists in extending the selected paths according to an elementary
Kn+1-transition, that is

ζi
n+1 = ((ξi

0,n+1, · · · , ξi
n,n+1), ξ

i
n+1,n+1) = ((ξ̂i

0,n, · · · , ξ̂i
n,n), ξi

n+1,n+1) ∈ En+1 = En × E

where ξi
n+1,n+1 is a random variable with law Kn+1(ξ̂i

n,n, ·). By a simple argument we see
that the evolution associated with the end points of the paths

ξn = (ξ1
n,n, · · · , ξN

n,n) and ξ̂n = (ξ̂1
n,n, · · · , ξ̂N

n,n) ∈ E

coincide with the genetic algorithms described in Section 3. We conclude that the former
path-particle Markov chain models the evolution in time of the corresponding genealogical
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20 Cérou, Del Moral, LeGland, Lezaud

trees. For each time n < τN we denote by µN
n and µ̂N

n the particle density profiles associated
with the ancestor lines of this genealogical tree based algorithm

µN
n =

1
N

N∑
i=1

δ(ξi
0,n, · · · , ξi

n,n) and µ̂N
n =

1
|IN

n |
∑
i∈IN

n

δ(ξi
0,n, · · · , ξi

n,n)

with

IN
n = {1 ≤ i ≤ N : ξi

n,n(T i
n,n) ∈ Bn}

The asymptotic behavior of genealogical tree based algorithm has been studied in [8] in the
context of strictly positive potentials and further developped in [4] for non negative ones.
In our context the path-version of the Lp-mean error estimates presented in theorem 2 can
be stated as follows.

Theorem 5 For any p ≥ 1, 0 ≤ n ≤ m + 1 and any test function fn ∈ Bb(En), with
‖f‖ ≤ 1 we have

(E| µ̂N
n (fn) 1(τN > n) − E(fn([Xt , 0 ≤ t ≤ Tn]) | Tn ≤ T ) |p)1/p ≤ ap bn/

√
N

for some finite constant ap < ∞ which only depend on the parameter p and some finite
constant bn < ∞ which depends on the time parameter n.

Following the observations given the end of the previous section let us choose a collection of
times u1 > 0,..., un > 0. Let f

(u)
n , u = (u1, · · · , un), be the test function on En defined by

f (u)
n (x0, · · · , xn) = f (u1)(x1) · · · f (un)(xn)

with f (up) defined in (3.6). In this situation we have

µn(f (u)
n ) = P(T1 − T0 ≤ u1, · · · , Tn − Tn−1 ≤ un | Tn ≤ T )

The particle approximations consists in counting at each level 1 ≤ p ≤ n the proportion of
ancestral lines having succeeded to pass the p-th levels in time up.

In Figure 1 we illustrate the genealogical particle model associated with a particle X
evolving in a pocket C ⊂ S containing four ”hard obstacles” R. We associate to a given
stratification of the pocket C

R ⊂ C0 ⊂ C1 ⊂ C2

the sequence of exit levels

B0 = S \ R ⊃ B1 = S \ C0 ⊃ B2 = S \ C1 ⊃ B3 = S \ C2

The desired target set here is B = B3.
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B=S-C(2)

hard obstacles=

killed particles= or

C(0) C(1) C(2)

Figure 1: Genealogical model, [exit of C(2) before killing] (N=7)

In Figure 2 we illustrate the genealogical particle model for a particle X evolving in a set
A ⊂ S with recurrent subset R = S \A. To reach the desired target set B4 the process need
to pass the sequence of levels

B0 ⊃ B1 ⊃ B2 ⊃ B3 ⊃ B4

5 Discussion

In this section we will discuss some practical aspects of the proposed method and compare
it with the main other algorithms in the literature for the same purpose, that is importance
sampling (IS) and splitting.

First of all, when IS already gives very good results, then very likeky that it is not
necessary to find something else. One good feature of IS is to give i.i.d. sequences, which
are quite simple to analyze. Very often the proposition distribution is chosen using large
deviation arguments, at least in the case of static problems, see for instance [3]. But clearly
it is not always obvious how to design an IS procedure for a given problem, especially
for dynanical models such as Markov processes. Though in some very important practical
problems, it may be quite easy to find a sequence of nested sets containing the rare event.
In such cases, it is then appealing to use some splitting technique.

So let us focus now on splitting. Our main point here is that our algorithm has the same
application domain as splitting, but performs better with virtually no additional cost. Let
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=B(4)=target set

A

B(0)

B(1)

B(2)

B(3)

Figure 2: Genealogical model, [ballistic regime, target B(4)] (N=4)

us consider a simplified framework: assume the Markov process is in one dimension, and
that we have managed to set the levels such that all the probabilities P(Tq+1 ≤ T |Tq ≤ T )
are equal to the same P . For the splitting algorithm, assume all the branching rates are
1/P . This is an optimal setting for the splitting algorithm as shown in [10]. In this case,
the variance of the splitting astimator is:

n
1 − P

P
P(Tn ≤ T )2,

which is the same as the asymptotic variance of our algorithm as given by theorem 3. This
means that the particle method performs (asymptotically) just as well as the splitting with
optimal branching rates. So we have a method close to splitting, but with less parameters to
tune, and still with the same accuracy. Moreover, the complexity is the same, the only added
work is to randomly choose which particles have offsprings in the selection step, which is
negligeable compared to the simulation of the trajectories. Note that both are much better
than naive Monte-Carlo which have in this case a variance equal to:

P(Tn ≤ T )(1 − P(Tn ≤ T )).

It is also worth noting that the n factor in the asymptotic variance does not mean that the
variance increases with n. For a given problen, the rare event probability is fixed, so the
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level crossing probability is close to P ' P(Tn ≤ T )
1
n , and we have

n
1 − P

P
' n(exp[− 1

n
log P(Tn ≤ T )] − 1)

' − log P(Tn ≤ T ) +
1
2n

log2
P(Tn ≤ T ) + o(

1
n2

),

which means that as n goes to ∞, the variance is decreasing to − log[P(Tn ≤ T )] P(Tn ≤ T )2.
In practical applications the best is sometimes a pragmatic approach combining IS and

our algorithm. Let us mention in this case [12], with numerical simulations of a hybrid
model, which can be considered as a toy model for those used in Air Traffic Management.
The theoretical study of this promissing approach is still to be done.

6 Numerical example : application to the Ornstein-
Uhlenbeck process

We will show in this section how the previous method to simulate rare events works in a
simple case. Although this is clearly a toy model, it allows us to check the method accuracy
on the computation of some quantities that have formal rigorous expressions. Moreover, this
process having simple Gaussian increments, there is no numerical error due to discretization
scheme.

The process X is taken to be the 1-D Ornstein-Uhlenbeck process, i.e. the solution of
the SDE

dXt = −a Xt dt + σ
√

2a dWt ,

where a and σ are strictly positive constants and W the standard Brownian motion in
R. The recurrent set R is chosen as (−∞, b−], and then the process X is started at some
x0 ∈ A = (b−, +∞). Given some b+ > x0, we set the target B = [b+, +∞). It is clear that
if we take b+ large enough, the probability to hit the target can be made arbitrarily small.
Let us denote by τ the stopping time

τ = inf{t > 0 : Xt 6∈ (b−, b+)} .

In order to check the method, we will compute E[τ | Xτ = b+] using both a Monte–Carlo
method based on our rare event analysis approach and the theoretical expression. From [2]
we have

L(α) = Ex0 [e
−ατ1(Xτ = b+)] =

S(
α

a
,
x0

σ
,
b−

σ
)

S(
α

a
,
b+

σ
,
b−

σ
)
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where S is a special function to be defined in the sequel. Using the derivative of the Laplace
transform we get

E[τ | Xτ = b+] = − 1
P(Xτ = b+)

dL(α)
dα

∣∣∣∣
α=0

. (6.1)

The probability in the denominator is given by

P(Xτ = b+) =
u(x0) − u(b−)
u(b+) − u(b−)

, (6.2)

where the function u (the scale function of the process) is in our case a primitive of u′(x) =

exp{ x2

2σ2
}. This function u is then easily computed using any standard numerical integration

routine. The derivative of L is more tricky. First we write the expression of the function S,
for any real x and y, and ν > 0,

S(ν, x, y) =
Γ(ν)

π
e

1
4 (x2+y2) [ D−ν(−x)D−ν(y) − D−ν(x)D−ν(−y) ] ,

where the functions D are the parabolic cylinder functions defined by

D−ν(x) = e−
1
4x2

2−
ν
2
√

π
[ 1

Γ(1
2 (ν + 1))

[ 1 +
∞∑

k=1

ν(ν + 2) . . . (ν + 2k − 2)
3 · 5 · · · (2k − 1) k!

(1
2 x2)k ]

− x
√

2
Γ(1

2 ν)
[ 1 +

∞∑
k=1

(ν + 1)(ν + 3) · · · (ν + 2k − 1)
3 · 5 · · · (2k + 1) k!

(1
2 x2)k ]

]
.

These functions are computed using the numerical method and the source code provided
in [11]. Now we still need to compute the derivative in equation (6.1). We did not want to
derive formaly this quite complicated expression, and used instead a numerical appriximation
from a local rate of variation:

dL(α)
dα

∣∣∣∣
α=0

' L(2ε) − L(ε)
ε

,

where ε > 0 is chosen small enough.
Now we explain how the Monte-Carlo computation was carried out. For the decreasing

sequence of Borel sets {Bj , j = 1 . . . M} we chose an increasing squence of real numbers
{bj , j = 1 . . .M}, with b− < b1 < · · · < bM < b+ and take Bj = (bj , +∞). In our special
case, we can choose the probability for a particle started at bj to reach bj+1, and compute
both he number of levels and each level accordingly. If we take these probability equal for
all j to say p, then

M = b log E[τ | Xτ = b+]
log p

c.
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Alternatively we can choose M and compute p. Note that the probability of the N–particle
cloud to be killed before reaching b+ is 1 − (1 − (1 − p)N )M which can be small even with
a small number N of particles when p is say larger than 1/2. From this we see that a good
strategy is to make many runs of our algorithm on a small number of particles, instead of
only a few runs on a large number of particles (on the same run, all the generated trajectories
are obviously strongly correlated). All the corresponding values bj are easily computed using
expressions as the one in equation (6.2).

In Figure 3 we see the expectation E[τ | Xτ = b+] as a function of b+, with b− = 0.
The blue curve is the numerically computed theoretical value, and the red curve is the
Monte–Carlo simulation result, with 880 runs of 8 particles each. The parameters of the
Ornstein-Uhlenbeck process are a = 0.1, σ

√
2a = 0.3 and x0 = 0.1. The largest value of b+

was 4.0. This means that the probability for the process started at x0 = 0.1 to reach the
desired level is approximatly 1.6460×10−08, so there is no way of simulating trajectories by
the naive approach.

Another examples of rare events for diffusions may be found in Aldous [1], which presents
a Poisson clumping heuristic as well as numerous examples and references. For instance,
following [1, Section I11], let consider a diffusion in R

d starting from 0 with drift µ(x) =
−∇H(x) and variance σ(x) = σ0I. Suppose H is a smooth convex function attaining its
minimum at 0 with H(0) = 0 and such that H(x) → ∞ as |x| → ∞. Let B be a ball with
center at 0 with radius r, where r is sufficiently large that π(Bc) is small, where π is the
stationary distribution

π(x) = c exp{ −2 H(x)
σ2

0

} ≈ (σ2
0π)−d/2|Q|1/2 exp{ −2 H(x)

σ2
0

} ,

where

Q =
(

∂2H

∂xi∂xj
(0)

)
i,j≥1

.

We want an estimation of the first exit time from the ball B. There are two qualitatively
situations : radially symmetric potentials (H(x) = h(|x|)) and non-symmetric potentials.
We presents here only the second one, by assuming that H attains its minimum, over the
spherical surface ∂B, at a unique point z0 = (r, 0, 0, · · · ). Since the stationary distribution
decreases exponentially fast as H increases, we can suppose that exits from B will likely occur
near z0 and then approximate TB by TF , the first hitting time on the (d − 1)-dimensional
hyperplane F tangent to B at z0. The heuristic used in [1] gives that TB is approximatively
exponentially distributed with mean (πF |∇H(z0)|)−1, where πF designed the restriction of
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Figure 3: Theoretical and Monte–Carlo mean conditional stopping times
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the measure π to F . We obtain

πF ≈ (σ2
0π)−d/2 |Q|1/2 exp{−2 H(z0)

σ2
0

}
∫

F

exp{−2 (H(x) − H(z0)
σ2

0

} dx

≈ (σ2
0π)−1/2 |Q|1/2 |Q1|−1/2 exp{−2 H(z0)

σ2
0

} ,

where

Q1 =
(

∂2H

∂xi∂xj
(z0)

)
i,j≥2

.

Thus

E(TB) ≈ σ0
π1/2|Q|−1/2|Q1|1/2

− ∂H

∂x1
(z0)

exp{ 2 H(z0)
σ2

0

} .

The simplest concrete example is the Ornstein-Uhlenbeck process in wich H(x) = 1
2

∑
ρix

2
i

whith 0 < ρ1 < ρ2 < · · · . Here H has two minima on ∂B, at ±z0 = ±(r, 0, 0, · · · ) and so
the mean exit time is

E(TB) ≈ 1
2
σ0π

1/2(
∏
i≥2

ρi/
∏
i≥1

ρi ) ρ−1
1 r−1 exp{ ρ1r

2

σ2
0

} .

To adapt this example to the formalism, introduced previously, we slightly modify it by
considering the first exit time from the ball B before reaching a little ball Bε centered at
0 with radius ε small. Thus, we suppose that R

d is decomposed into two separate regions
Bc and B and that the process X evolves in B starting from outside Bε, but near from
∂Bε. The process will be killed as soon as it hits ∂Bε. By considering a particle system
algorithm and a genealogical model, an estimation of the first exit time before returning in
the neighbourhood of the origin and of the distribution of the process during its excursions
should be obtained.

It will also be interesting to study the Kramers equation{
dXt = Vt dt

dVt = −H ′(Xt) dt − γ Vt dt +
√

2 γ dBt

In [1, Section I13], the heuristic may be applied for small and large coefficients γ, but it is a
hard problem to say which of these behaviors dominates in a specific non-asymptotic case,
hence the simulation approach.
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