Representation of Functional Data in Neural Networks

Abstract : Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data analysis.
Type de document :
Article dans une revue
Neurocomputing, Elsevier, 2005, Neurocomputing, 64, pp.183--210. <10.1016/j.neucom.2004.11.012>
Liste complète des métadonnées
Contributeur : Fabrice Rossi <>
Soumis le : dimanche 23 septembre 2007 - 15:12:24
Dernière modification le : mercredi 28 septembre 2016 - 16:01:09
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:29:55


Fichiers produits par l'(les) auteur(s)




Fabrice Rossi, Nicolas Delannay, Brieuc Conan-Guez, Michel Verleysen. Representation of Functional Data in Neural Networks. Neurocomputing, Elsevier, 2005, Neurocomputing, 64, pp.183--210. <10.1016/j.neucom.2004.11.012>. <inria-00000666v2>



Consultations de
la notice


Téléchargements du document