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Human cognitive control is uniquely flexible, and has been shown to depend on

prefrontal cortex (PFC). But exactly how the biological mechanisms of the PFC

support flexible cognitive control remains a profound mystery. Existing theoreti-

cal models have posited powerful task-specific PFC representations, but not how

these develop. We show how this can occur when a set of PFC-specific neural

mechanisms interact with breadth of experience to self-organize abstract, rule-

like PFC representations that support flexible generalization in novel tasks. The

same model is shown to apply to benchmark PFC tasks (Stroop and Wiscon-

sin card sorting), accurately simulating the behavior of neurologically intact and

frontally-damaged people.

A fundamental human cognitive faculty is the capacity for cognitive control: The ability to

behave in accord with rules, goals, or intentions, even when this runs counter to reflexive or other-

wise highly compelling competing responses (e.g., the ability to keep typing rather than scratch a

mosquito bite). A hallmark of cognitive control in humans is its remarkable flexibility — we can

perform novel tasks with very little additional experience (e.g., playing a novel card game for the

first time by observing the play or hearing the rules described). This ability appears to depend on
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the prefrontal cortex (PFC) (1–5), and in particular on abstract rule-like representations localized to

this brain area (6–8). However, this capacity only emerges slowly over a protracted period through

late adolescence, closely tracking the development of the PFC (9–11). At the psychological level,

flexible cognitive control has been modeled abstractly in terms of symbol processing computations

that support arbitrary variable binding (12). However, it remains unclear whether or how such

models correspond to the increasingly rich body of knowledge about the neural mechanisms un-

derlying cognitive control, and in particular the functioning of the PFC. At the biological level, a

number of neural models have proposed that cognitive control relies on the active maintenance of

abstract rule-like representations in PFC that guide processing in posterior cortex (13–17). How-

ever, none of these existing frameworks have explained how such representations might develop,

and why this development should take so long — indeed, most models rely on hand-coded repre-

sentations designed explicitly for solving a specific set of tasks. Thus, a major challenge to theories

of the neural bases of cognitive control remains unanswered: How can it be explained in terms of

self-organizing mechanisms that develop on their own, over time, without recourse to unexplained

sources of influence or intelligence (i.e., a “homunculus”) (18).

Here, we present a computational model that provides a novel explanation for the development

of cognitive flexibility. This model shows how neurobiological mechanisms specific to the PFC

result in the self-organization of abstract rule-like PFC representations that support flexible cog-

nitive control. These representations develop through experience on a basic set of sensory-motor

tasks via synaptic learning mechanisms. Both the development of these representations and the

flexibility that they support required a broad range of experience across multiple tasks. Thus, this

model describes a biologically-based alternative to abstract symbol processing models of cogni-

tive flexibility, that illustrates how cognitive flexibility can arise from an interaction between nature

(PFC-specific neurobiological mechanisms) and nurture (breadth of experience). Our model builds

on extensive neurobiological and theoretical work indicating that PFC exhibits the following prop-

erties (see (19) for details of the implementation):

1. Active maintenance of patterns of neural activity over time and against interference from

distracting inputs, so that currently relevant information can be held in working memory (1–

3). Both recurrent excitatory connectivity that sustains active patterns of PFC neural activity,

and intrinsic bistability of PFC neurons have been shown to support active maintenance

(20, 21), and both of these mechanisms are included in our model.

2. Adaptive updating of these PFC activity patterns by dynamically switching between active
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maintenance and rapid updating of new representations (16,17,22,23) This updating function

is implemented by an adaptive gating mechanism based on the circuits and physiology of the

basal ganglia and the midbrain dopaminergic ventral tegmental area (VTA), which project

extensively to the PFC (16, 17, 24, 25). This gating mechanism leverages the close formal

relationship between VTA dopamine firing and reinforcement learning based on expected

rewards (26). Specifically, the gating system stabilizes and destabilizes active maintenance

in the PFC, and is itself driven by differences in expected and received rewards. When

the gating system receives an unexpected reward, the corresponding dopamine spike stabi-

lizes active representations in the PFC by activating intrinsic maintenance currents; when

it does not get an expected reward, it destabilizes the PFC to allow a new activation pat-

tern to emerge. This allows PFC representations to rapidly update to reflect changing task

contingencies.

3. PFC modulation of processing in other cortical areas (e.g., in posterior cortex) responsible

for task execution (3, 13), supported by extensive interconnectivity with these other cortical

areas (2).

We present the results of two simulation experiments using the model. The first shows that the

model’s mechanisms are sufficient to support the development of rule-like task representations, and

that these representations support generalization of task performance to novel environments. The

second shows that the model accurately simulates detailed patterns of behavior from neurologically

intact and frontally-damaged people on benchmark tasks of cognitive control.

Simulation Study 1

We tested a model implementing the three sets of PFC-specific mechanisms described above (Fig-

ure 1a), as well as versions of it lacking these mechanisms by varying degree. These models were

trained either on two tasks (Task Pairs condition) or four tasks (All Tasks condition), to test the

effects of restricted versus broad training experience, respectively. The tasks were designed to

simulate simple processing of multidimensional stimuli (e.g., varying along dimensions such as

size, shape, color, etc), and active maintenance. Critically, we constructed these tasks so that they

all shared a common requirement: only one stimulus dimension was relevant at a given time. For

example, one task involved naming a stimulus feature value along a given dimension (e.g., if the

stimulus was a blue, large, circular object, and the relevant dimension was shape, then the correct
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a) The Full PFC Model b) Name Feature Task Trials (Rule = Shape)
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Figure 1: a) The model with the complete PFC system. Stimuli are presented in two possible locations
(left, right). Rows represent different stimulus dimensions (e.g., color, size, shape, etc., labeled A-E for sim-
plicity), and columns represent different features (red, orange green, blue; small, medium, etc., numbered
1-4). Other inputs include a task input indicating current task to perform (NF = name feature, MF = match
features, SF = smaller feature, LF = larger feature), and, for the “instructed” condition (used to control for
lack of maintenance in non-PFC networks), a cue as to the currently relevant dimension. Output responses
are generated over the response layer, which has units for the different stimulus features, plus a “No” unit to
signal non-match in the matching task. The hidden layers represent posterior cortical pathways associated
with different types of inputs (e.g., visual, verbal). The AG unit is the adaptive gating unit, providing a
temporal-differences (TD) based dynamic gating signal to the PFC context layer. The weights into the AG
unit learn via the TD mechanism, while all other weights learn using the Leabra algorithm that combines
standard Hebbian and error-driven learning mechanisms, together with k-winners-take-all inhibitory com-
petition within layers, and point-neuron activation dynamics (19, 27, 28). b) Example stimuli and correct
responses for one of the tasks (Name Feature; NF) across three trials where the current rule is to focus on
the Shape dimension (the same rule was blocked over 200 trials to allow networks plenty of time to adapt to
each rule). The corresponding input and target patterns for the network are shown below each trial, with the
unit meanings given by the legend in the lower left. The network must maintain the current dimension rule
to perform correctly.

response was “circle”; Figure 1b). Other tasks included matching features of two stimuli, or their

relative ordinal values, along a given stimulus dimension. Thus, knowing the relevant dimension

was a critical rule in each task, uniquely determining the mapping from stimulus to response. Be-

cause all of the tasks shared this requirement — attention to a single dimension — we predicted

that during training, the PFC would develop abstract representations of these dimensions (i.e.,

learn the relevant set of rules), and that this would allow it to generalize its performance to novel

stimuli in each task. To allow the current rule to be discovered solely by trial-and-error learning

(even in networks without a PFC that adapted relatively slowly to task rule changes), we kept the

relevant dimension the same over blocks of trials. These conditions were designed to simulate
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a) Posterior – All Tasks b) No Gate – All Tasks

c) Full PFC – Task Pairs d) Full PFC – All Tasks
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Figure 2: Representations (synaptic weights) that developed in four different network configurations: a)
Posterior cortex only (no PFC) trained on all tasks; b) PFC without the adaptive gating mechanism (all tasks);
c) Full PFC trained only on task pairs (NF & MF in this case); and d) Full PFC (all tasks). Each panel shows
the weights from the hidden units (a) or PFC (b–d) to the response layer. Larger squares correspond to units
(all 30 in the PFC, and a random and representative subset of 30 from the 145 hidden units in the posterior
model), and the smaller squares within designate the strength of the connection (lighter = stronger) from
that unit to each of the units in the response layer. Note that each row designates connections to response
units representing features in the same stimulus dimension (as illustrated in (d) and Figure 1). It is evident,
therefore, that each of the PFC units in the full model (d) represents a single dimension and, conversely,
that each dimension is represented by a distinct subset of PFC units. This pattern is less evident to almost
entirely absent in the other network configurations.

simple forms of real world learning experience that humans encounter during development (e.g.,

in playing with blocks, a sustained focus on the shapes of these objects is necessary to construct

desired structures). Furthermore, we also included the ability to provide explicit task instructions

to the models via a dimension cue input, to provide as generous a test as possible of models lacking

the ability to maintain task-relevant information internally (see (19,28) for more details and effects

of parametric variations).
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Our primary finding was that over the course of training on these tasks, the PFC layer in the full

model developed synaptic weights and associated patterns of activity that encoded abstract rule-

like representations of the relevant stimulus dimensions (Figure 2d). That is, each PFC unit came

to represent a single dimension, and to represent all features in that dimension. More precisely,

these representations collectively formed a basis set of orthogonal vectors that spanned the space

of task-relevant stimuli, and that were aligned with the dimensions along which features had to be

distinguished for task performance. More generally, we can characterize rule-like representations

as encoding and producing a common abstract pattern of behavior over a broad class of specific

situations. These representations were only partially apparent in the configuration having a PFC

but lacking an adaptive gating mechanism (Figure 2b), as well as the full model trained only on task

pairs (Figure 2c), and were essentially absent from the model entirely lacking a PFC (Figure 2a).

These models tended to memorize specific combinations of stimulus features and responses, rather

than develop abstract representations of feature dimensions that could serve as more general rules.

Note that the total number of training trials and stimulus inputs were equated across simulation

conditions, so that the increased breadth of experience in the All Tasks condition was solely from

exposure to more task contexts (28).

The abstract rule-like representations that developed in the full PFC model supported task

performance by providing top-down excitatory support for the relevant stimulus dimension in the

rest of the network. The adaptive gating system learned to update the PFC layer activity when the

relevant stimulus dimension (i.e., task rule) changed (due to rapid error-based destabilization of

PFC activations), and the PFC actively maintained this rule while it remained in effect. In models

without these active maintenance and updating mechanisms, synaptic learning mechanisms shifted

the network’s processing to the relevant stimulus dimension, but these changes were necessarily

slower than the rapid shifts than can be achieved by dynamic updating of activation states in PFC

(27). This difference accounts for the increased levels of perseveration observed with PFC damage

in the WCST and other tasks, as has been demonstrated in several existing models (14,15,25), and

as we report for our model below.

We hypothesized that the abstract rule-like representations that developed in the full PFC model

should support more flexible cognitive control in this model relative to the others. We tested this

idea by comparing the ability of each network to generalize its performance across the different

tasks. Each network was trained on a subset of stimuli in each task, and then tested on stimuli that

it had not previously seen in that task. We theorized that the abstract dimensional representations
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Figure 3: a) Cross-task generalization results (% correct on task-novel stimuli) for the full PFC network
and a variety of control networks, with either only two tasks (Task Pairs) or all four tasks (All Tasks)
used during training (N=10 for each network, error bars are standard errors). Overall, the full PFC model
generalizes substantially better than the other models, and this interacts with the level of training such
that performance on the All Tasks condition is substantially better than the Task Pairs condition (with no
differences in numbers of training trials or training stimuli). With one feature left out of training for each
of 4 dimensions, training represented only 31.6% (324) of the total possible stimulus inputs (1024); The
roughly 85% generalization performance on the remaining test items therefore represents good productive
abilities. The other networks are: Posterior: a single large hidden unit layer between inputs and response
— a simple model of posterior cortex without any special active maintenance abilities; P + Rec: posterior
+ full recurrent connectivity among hidden units — allows hidden layer to maintain information over time
via attractor dynamics; P + Self: posterior + self recurrent connections from hidden units to themselves
— allows individual units to maintain activations over time; SRN: simple recurrent network, with a context
layer that is a copy of the hidden layer on the prior step — widely used form of temporal maintenance; SRN-
PFC: an SRN context layer applied to the PFC layer in the full model (identical to the full PFC model except
for this difference) — tests for role of separated hidden layers; NoGate: the full PFC model without the AG
adaptive gating unit. b) The correlation of generalization performance with the extent to which the units
distinctly and orthogonally encode stimulus dimensions (the rule representation measure, described in (29))
for the networks shown in Figure 2. c) Relative stability of PFC and hidden layer (posterior cortex) in the
model, as indexed by euclidean distance between weight states at the end of subsequent epochs (epoch =
2,000 trials). The PFC takes longer to stabilize (i.e., exhibits greater levels of weight change across epochs)
than the posterior cortex. For PFC, within-PFC recurrent weights were used. For Hidden, weights from
stimulus input to Hidden were used. Both sets of weights are an equivalent distance from error signals at
the output layer. The learning rate is reduced at 10 epochs, producing a blip at that point.

in the PFC would be able to guide processing for the task-novel test stimuli in a similar manner as

the trained stimuli. Indeed, only the Full PFC model exhibited substantial generalization, achiev-

ing 85% accuracy (i.e., only 1/3 as many errors as other networks) on stimuli for which it had no

prior same-task experience (Figure 3a). However, this was only the case for the All Tasks regi-

men — training on pairs of tasks resulted in more than four times as many generalization errors.

This indicates that breadth of experience was critical for exploiting the mechanisms present in the

PFC, just as we had earlier observed in the development of the abstract rule-like PFC representa-
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tions. Indeed, Figure 3b shows that, as we hypothesized, the degree to which different networks

developed abstract dimensional representations (29) was strongly correlated with the network’s

generalization performance (r=0.97).

There is a clear mechanistic explanation for why the combination of rapid updating and sus-

tained active maintenance of task rule representations in the full PFC model was critical for the

formation of abstract rule-like representations during training. Within a block of trials with the

same relevant dimension, the specific features within that dimension varied, but a constant PFC

activity pattern was maintained due to the gating mechanism. This caused these PFC representa-

tions, which initially had random connections, to begin to encode all of the varying features within

a dimension, resulting in an abstract dimensional representation. In contrast, other networks tended

to activate new representations for each new stimulus (as the specific features changed), and thus

were unable to form the dimensional abstraction across features. Interestingly, the dimensional

alignment of PFC representations was greater for the All Tasks condition than the Task Pairs con-

dition. This is because the pressure to use the same PFC representations across all tasks increased

with the number of tasks: with only two tasks, it was possible for the network to use different PFC

representations for different tasks, but this strategy becomes less and less efficient as the number

of tasks increases. The adaptive gating mechanism also caused the PFC representations to focus

on single dimensions, instead of encoding features across multiple dimensions (30).

Our model makes the further prediction that PFC representations should stabilize later in devel-

opment (training) than those in posterior areas, because it is necessary for representations in poste-

rior systems to stabilize before the PFC can extract the dimensions of these representations relevant

to task performance. We tested this by measuring the average magnitude of weight changes from

projections into the main hidden (posterior cortex) layer and in the PFC layer. The hidden layer sta-

bilized within 20 epochs (one epoch is 2,000 trials), while the PFC did not stabilize until 70 epochs

(Figure 3c). This slower development of PFC representations, together with the breadth of training

required, is consistent with the protracted developmental course of the human PFC (extending into

late adolescence), which allows a broad range of experience to shape PFC representations (9–11).

Simulation Study 2

We next explored whether the rule-like PFC representations learned by our model can produce

appropriate patterns of performance in tasks specifically associated with prefrontal function. To
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do so, we used the full PFC model trained in the All Tasks condition to perform simulations of the

Stroop task and the Wisconsin Card Sort Task (WCST), two tasks that have been used widely as

benchmarks of prefrontal function (31–34). Converging evidence from a variety of sources sug-

gests that the kinds of dimensional stimulus representations found in our model are localized in

dorsolateral areas of prefrontal cortex (DLPFC) in humans (see (19) for more discussion). Accord-

ingly, we focused on DLPFC lesion data in both of these tasks.

In the Stroop task participants are presented with color words printed in various colors, and

are asked to either read the word or name the color in which it is printed. Due to greater famil-

iarity with word reading, it is relatively faster than color naming, and an incongruent word (e.g.,

“green” displayed in red) interferes with color naming (saying “red”) while word reading is rela-

tively unaffected. To simulate these asymmetries of experience in our model, one of the stimulus

dimensions was trained less (25% as much) than the other four dimensions, with all other factors

unchanged from the first study. The model captures the characteristic effects seen in human Stroop

performance (Figure 4a). These results replicate previous modeling work showing that top-down

excitation from PFC representations of the dimensions that define each task (colors vs. words)

can partially compensate for the differences in relative strength of the relevant posterior path-

ways (13, 27). However, unlike these earlier models, PFC representations in our model developed

through learning. Furthermore, Figure 4b shows that simulated lesions to the model’s PFC layer

(30% unit removal, post training) replicate the color naming impairments observed from DLPFC

lesions in human patients (34), consistent with the observation that this PFC area supports abstract

color dimension representations (33).

In the WCST task, participants are provided with a deck of cards bearing multidimensional

stimuli that vary in shape, size, color, and number. These must be sorted according to a particular

dimension (rule), which must be discovered from trial-and-error feedback. The rule switches with-

out warning after the participant makes a criterion number of correct responses in sequence (e.g, 8).

Patients with frontal damage typically are able to discover the first rule without difficulty, but after

a switch they perseverate in sorting according to the previous rule. This and other similar findings

have led many authors to conclude that PFC plays a critical role in the cognitive flexibility required

to switch “mental set” from one rule to another (4). In our model, we used the feature naming task

to simulate the WCST: a stimulus is presented and the feature value in the relevant dimension

must be output. The relevant dimension is discovered via trial-and-error learning, and switches

after eight correct responses in a row. Figure 4c shows that increasing amounts of PFC damage
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Figure 4: a) Performance of the full PFC network on a simulated Stroop task, demonstrating the classic
pattern of conflict effects on the subordinate task of color naming with unaffected performance on the dom-
inant word reading task (human data from (35)). This was simulated by training one dimension (A) with 1/4
the frequency of the others, making it weaker. In the neutral condition a single feature was active, while the
conflict condition had two features present, and the dimension cue input specified which was to be named.
Reaction time was measured as the number of cycles to activate a feature in the response layer > .75 (mul-
tiplied by 35 to match human RT’s in msec). b) Stroop performance for a 30% lesion (removal) of PFC
units in the model (post training), compared with data from (34) on patients with Left Frontal (DLPFC)
lesions (LF) and matched controls (Ctrl) (data in seconds to complete a block of trials; model cycles were
transformed with an offset of -30 and slope 5.5 to fit this scale; the Conflict Word reading conditions were
not run on the human subjects). The main effect of damage is an overall slowing of color naming, consistent
with the notion that the PFC provides top-down support to this weaker pathway via abstract dimensional
representations. c) Performance in a simulated WCST task, demonstrating the classic pattern of increasing
perseveration with increased PFC damage (% of units removed, post training). Perseverations = number of
sequential productions of feature names corresponding to the previously-relevant dimension after a switch.
Clearly, the simulated PFC is critical for rapid, flexible switching. d) WCST results (perseverations) for the
three different training conditions used by (32) (128 is the standard case plotted before, while 64A involves
providing instructions about the relevant dimensions along which cards could be sorted, and 64B has explicit
instruction when the rule changes; see (19) for details). N=10 networks, error bars = standard error for all
graphs.

(unit removal, post training) produces a disproportionate increase in perseverative responding rela-

tive to other types of errors (consistent with earlier modeling studies with manually-imposed PFC

representations (14, 15)). Furthermore, the model successfully reproduced the modest effects on

perseveration (Figure 4d) that were observed with various levels of additional instruction provided
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by Stuss and colleagues (32).

Discussion

The findings reported here provide new insight into how the capacity for flexible cognitive control

can develop without invoking unexplained forms of intelligence (i.e., a “homunculus”). Our model

shows how specialized neural mechanisms that support adaptive updating of active maintenance in-

teract with breadth of learning experience to produce abstract rule-like representations in the PFC.

These PFC representations produced significantly higher levels of generalization across tasks by

guiding stimulus processing according to abstract dimensions that apply across both familiar and

task-novel stimuli. This cross-task generalization is an important measure of cognitive flexibil-

ity. Thus, the model illustrates how nature and nurture can interact to produce human cognitive

abilities. It explains in explicit mechanistic terms why rule-like representations are predominantly

found in the PFC (6–8), and why cognitive flexibility, dependent upon the biological substrate of

the PFC, takes a long time to develop, extending into late adolescence (9–11).

Although we found that abstract, rule-like PFC representations supported good generalization

in the fully regular domains that we explored here, we do not claim that these representations are

universally beneficial. In particular, it is unlikely that such discrete, abstract representations are

as useful in task domains characterized by more graded knowledge structures, where distributed

representations may perform better (e.g., perceptual categorization, face recognition, etc). Thus,

there may be a tradeoff between PFC and posterior cortical forms of representation, in which each

is better suited for different types of tasks. This is consistent with data showing that posterior cortex

may be better at learning complex, similarity-based categories, whereas PFC can more quickly

acquire simple rule-based categories (36). More work is needed to explore these potential tradeoffs,

for example in richer, more complex domains such as language, wherein our model may provide a

productive middle ground between the neural network and symbolic modeling perspectives in the

long-standing “rules and regularities in language processing” debates (37).

The model illustrates another critical factor that contributes to flexibility of control: The use of

patterns of activity rather than changes in synaptic weights as a means of exerting control over pro-

cessing (27, 38). We showed that PFC representations in our model developed slowly over many

trials of synaptic modification. However, once these were learned, adaptive behavior in novel cir-

cumstances was mediated by a search for the appropriate pattern of activity (using simple principles
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of reinforcement learning), rather than the need to learn a new set of connection strengths. This

may clarify the mechanisms underlying the adaptive coding hypothesis (5), which holds that PFC

dynamically reconfigures itself for the task at hand. Importantly, this activation-based processing

differs fundamentally from the arbitrary variable binding mechanisms of traditional symbolic mod-

els (12), where the meaning of the underlying representations (symbols) can be arbitrarily bound

to novel inputs to achieve flexible performance. Thus, the representations in our model produce

rule-like behavior without implementing biologically-problematic symbolic processing computa-

tions.

The tasks used in our simulations were relatively simple, with the common requirement that the

network selectively process one dimension of information. Nevertheless, the principles developed

here are likely to apply in more realistic task domains, where the relevant rules may be more com-

plex. These complex rule representations must also be maintained over a sequence of behaviors

operating on specific stimuli (e.g., rules of a card game applied over different rounds of play), to

guide behavior in a more systematic fashion. Thus, the learning mechanisms in our model, which

form abstract rule-like representations by integrating over trials of processing specific instances of

the rule, should also apply in these cases.

Finally, although our model provides an important step toward understanding the neurobio-

logical mechanisms underlying flexible human cognitive control, it captures only a subset of such

mechanisms. An understanding of how PFC representations can be dynamically recombined, and

interact with other systems (such as those supporting episodic memory, language function, and

affect) will be equally important in developing a full understanding of how cognitive control is

implemented in the brain.

References

1. P. S. Goldman-Rakic, Handbook of Physiology — The Nervous System 5, 373 (1987).

2. J. M. Fuster, The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal

Lobe, 3rd Edition. (Lippincott-Raven, New York, 1997).

3. E. K. Miller, J. D. Cohen, Annual Review of Neuroscience 24, 167 (2001).

4. T. Shallice, From Neuropsychology to Mental Structure (Cambridge University Press, New

York, 1988).



Prefrontal Cortex and Flexible Cognitive Control Rougier et al. 13

5. J. Duncan, Nature Reviews Neuroscience 2, 820 (2001).

6. I. M. White, S. P. Wise, Experimental Brain Research 126, 315 (1999).

7. J. D. Wallis, K. C. Anderson, E. K. Miller, Nature 411, 953 (2001).

8. K. Sakai, R. E. Passingham, Nature Neuroscience 6, 75 (2003).

9. A. Diamond, P. S. Goldman-Rakic, Society for Neuroscience Abstracts 12, 742 (1986).

10. P. R. Huttenlocher, Neuropsychologia 28, 517 (1990).

11. J. B. Morton, Y. Munakata, Developmental Science 5, 435 (2002).

12. A. Newell, H. A. Simon, Human Problem Solving (Prentice-Hall, Englewood Cliffs, NJ,

1972).

13. J. D. Cohen, K. Dunbar, J. L. McClelland, Psychological Review 97, 332 (1990).

14. S. Dehaene, J. P. Changeux, Cerebral Cortex 1, 62 (1991).

15. R. C. O’Reilly, D. Noelle, T. S. Braver, J. D. Cohen, Cerebral Cortex 12, 246 (2002).

16. T. S. Braver, J. D. Cohen, Control of Cognitive Processes: Attention and Performance XVIII,

S. Monsell, J. Driver, eds. (MIT Press, Cambridge, MA, 2000), pp. 713–737.

17. R. C. O’Reilly, T. S. Braver, J. D. Cohen, Models of Working Memory: Mechanisms of Active

Maintenance and Executive Control., A. Miyake, P. Shah, eds. (Cambridge University Press,

New York, 1999), pp. 375–411.

18. S. Monsell, Unsolved mysteries of the mind: Tutorial essays in cognition, V. Bruce, ed. (Psy-

chology press, Hove, UK, 1996), pp. 93–148.

19. See supporting online material: ?

20. J. M. Fellous, X. J. Wang, J. E. Lisman, Nature Neuroscience 1, 273 (1998).

21. D. Durstewitz, J. K. Seamans, T. J. Sejnowski, Journal of Neurophysiology 83, 1733 (2000).

22. J. D. Cohen, T. S. Braver, R. C. O’Reilly, Philosophical Transactions of the Royal Society

(London) B 351, 1515 (1996).



Prefrontal Cortex and Flexible Cognitive Control Rougier et al. 14

23. S. Hochreiter, J. Schmidhuber, Neural Computation 9, 1735 (1997).

24. M. J. Frank, B. Loughry, R. C. O’Reilly, Cognitive, Affective, and Behavioral Neuroscience 1,

137 (2001).

25. N. P. Rougier, R. C. O‘Reilly, Cognitive Science 26, 503 (2002).

26. P. R. Montague, P. Dayan, T. J. Sejnowski, Journal of Neuroscience 16, 1936 (1996).

27. R. C. O’Reilly, Y. Munakata, Computational Explorations in Cognitive Neuroscience: Under-

standing the Mind by Simulating the Brain (MIT Press, Cambridge, MA, 2000).

28. The sequencing of tasks and relevant dimensions was organized in a hierarchically blocked

fashion, with the outermost block consisting of a loop through all instructed tasks followed by

all uninstructed tasks, with each task being performed for a block of 25 input/output trials. The

relevant dimension was switched after every 2 of the outermost blocks (200 trials). This rela-

tively low rate of switching allows the networks without adaptive gating mechanisms plenty of

time to adapt to the relevant dimension. Other training schedules were explored with similar

overall results, as described in the online supplemental materials. For a given task the model

saw only a subset of the feature values along each dimension, and a relatively small frac-

tion (about 30%) of all possible stimuli (i.e., combinations of features across dimensions). A

given training run consisted of 100 epochs of 2,000 trials per epoch; it took the networks only

roughly 10 epochs to achieve near-perfect performance on the training items, but we measured

cross-task generalization performance every 5 epochs throughout the duration to find the best

generalization for each network, unconfounded by any differences in architecture or in the raw

amount of exposure to features across different training scenarios. Generalization testing mea-

sured the network’s ability to respond to stimuli it had not seen in that task. To evaluate how the

range of task experience influenced performance, the model was trained with two regimens:

one involving all possible pairs of tasks, and the other involving all four tasks. We trained and

tested different network configurations, in order to test the contribution made by constituent

mechanisms to learning and performance. All network configurations had the same total num-

ber of processing units, in order to control for the effects of overall computing resources. The

only differences among configurations were the patterns of connectivity and the presence or

absence of the adaptive gating mechanism. The various configurations are described in Fig-

ure 3. These ranged from a simple feedforward network with 145 hidden units (equaling the



Prefrontal Cortex and Flexible Cognitive Control Rougier et al. 15

number of hidden plus PFC units in the full PFC model) to the complete model including full

recurrent connectivity within the PFC and an adaptive gating mechanism. For all networks, we

ran 10 different random initial networks to generate statistics, and error bars in figures reflect

the standard error over these runs. The model was implemented in the Leabra algorithm, which

includes error-driven and associative (Hebbian) learning mechanisms, k-winners-take-all in-

hibitory competition within layers, and point-neuron ion-channel based neural dynamics with

bidirectional excitatory connectivity. Leabra integrates the most widely-used neural modeling

principles developed by a variety of researchers into one unified framework, which has been

used to simulate over 40 different cognitive models from perception and attention to learning,

memory, language, and higher-level cognition (27), plus many more published simulations in

other papers. In keeping with the goal of using the same set of mechanisms and parameters

across a wide range of models, default parameters and mechanisms were used in this model.

The details of these standard mechanisms and the PFC-specific mechanisms in our model are

described in (25) and the online supplemental material.

29. The rule-like representation measure was computed by comparing each unit’s pattern of

weights to the set of 5 orthogonal, complete dimensional target patterns (i.e., the A dimen-

sion target pattern has a 1 for each A feature, and 0’s for the features in all other dimensions,

etc.). A numeric value between 0 and 1, where 1 represents a completely orthogonal and com-

plete dimensional representation was computed for unit i as: di =

maxk |wi·tk|∑
k

|wi·tk|
where tk is the

dimensional target pattern k and wi is the weight vector for unit i, and |wi · tk| represents

the normalized dot product of the two vectors (i.e., the cosine). This value was then averaged

across all units in the layer (PFC or Hidden, as shown in Figure 3) and then correlated with

that network’s generalization performance.

30. When the network produced an incorrect response, the adaptive gating mechanism temporarily

inhibited PFC units that were active during that response, favoring activation of other units

on the next trial. This implemented a simple form of search (random sampling with delayed

replacement). The influence of this search mechanism interacted with the requirement that, for

each task, the network had to attend to features in one dimension and ignore the others (the

“rule” for the task). Together, these put pressure on the network to commit individual units to

a single dimension. If a unit represented several dimensions, then even if one of these was the

correct one, nevertheless that unit would often be inhibited because the other dimensions it

represented were incorrect (and supported spurious responses). As a result of this inhibition,



Prefrontal Cortex and Flexible Cognitive Control Rougier et al. 16

connection weights supporting the activation of these units were weakened. In contrast, units

that represented a single dimension were allowed to remain fully active as long as that was the

correct dimension, and thus their connection weights were strengthened. As a consequence,

the network developed PFC representations in which each unit was committed to a single

dimension.

31. D. R. Weinberger, K. F. Berman, D. G. Daniel, Frontal Lobe Function and Dysfunction, H. S.

Levin, H. M. Eisenberg, A. L. Benton, eds. (Oxford University Press, New York, 1991), pp.

276–285.

32. D. T. Stuss, et al., Neuropsychologia 38, 388 (2000).

33. A. W. MacDonald III, J. D. Cohen, C. S. Carter, Science 288, 1835 (2000).

34. D. T. Stuss, D. Floden, M. P. Alexander, B. Levine, D. Katz, Neuropsychologia 39, 771 (2001).

35. K. Dunbar, C. M. MacLeod, Journal of Experimental Psychology: Human Perception and

Performance 10, 622 (1984).

36. E. E. Smith, A. L. Patalano, J. Jonides, Cognition 65, 167 (1998).

37. J. L. McClelland, K. Patterson, Trends in Cognitive Sciences 6, 465 (2002).

38. Y. Munakata, Developmental Science 1, 161 (1998).

39. Supported by ONR grants N00014-00-1-0246 and N00014-03-1-0428, and NIH grants

MH64445. Last authorship reflects equal contribution; order was determined by a flip of coin.

We thank Carlos Brody, Tim Curran, Michael Frank, Tom Hazy, Dave Jilk, Ken Norman, Yuko

Munakata, Alex Petrov, and members of the CCN lab for helpful comments.


