New Results on the Distance Between a Segment and Z². Application to the Exact Rounding

Vincent Lefèvre 1
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : This paper presents extensions to Lefèvre's algorithm that computes a lower bound on the distance between a segment and a regular grid Z². This algorithm and, in particular, the extensions are useful in the search for worst cases for the exact rounding of unary elementary functions or base-conversion functions. The proof that is presented here is simpler and less technical than the original proof. This paper also gives benchmark results with various optimization parameters, explanations of these results, and an application to base conversion.
Type de document :
Communication dans un congrès
Paolo Montuschi and Eric Schwarz. 17th IEEE Symposium on Computer Arithmetic - Arith'17, Jun 2005, Cape Cod, MA, United States. IEEE Computer Society, pp.68-75, 2005, <10.1109/ARITH.2005.4>
Liste complète des métadonnées


https://hal.inria.fr/inria-00000025
Contributeur : Vincent Lefèvre <>
Soumis le : mercredi 6 juillet 2005 - 17:33:04
Dernière modification le : mardi 25 octobre 2016 - 17:01:45
Document(s) archivé(s) le : mardi 2 juin 2015 - 14:00:47

Fichier

Identifiants

Collections

Citation

Vincent Lefèvre. New Results on the Distance Between a Segment and Z². Application to the Exact Rounding. Paolo Montuschi and Eric Schwarz. 17th IEEE Symposium on Computer Arithmetic - Arith'17, Jun 2005, Cape Cod, MA, United States. IEEE Computer Society, pp.68-75, 2005, <10.1109/ARITH.2005.4>. <inria-00000025>

Partager

Métriques

Consultations de
la notice

293

Téléchargements du document

78