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3D Acoustic and Microseismic Location of
Collapse Events in Complex, 3D Geological
Structures
E. Klein* (INERIS), A. Lomax (ALomax Scientific), A. Lizeur (INERIS), F.
Klingelhoefer (IFREMER), I. Contrucci (INERIS) & P. Bigarre (INERIS)

Passive microseismics is a well developed technique that has gained importance in petroleum exploration
operations as well as in geohazard assessment. When applied in complex geological environments, it
requires advanced processing capabilities to ensure useful accuracy in the source location and
characterization.
Here we investigate a fast marching method to determine the travel-time field, rays and ray take-off angles
in complex 3D media, for application with a direct-search event location method. We then illustrate and
discuss the potential of the chosen methodology in the mining context. This methodology allows
improvements in acoustic monitoring of large-scale underground mines by taking into account the intrinsic
characteristics of propagation of the acoustic waves. Ongoing work on a dataset collected during the
monitoring of a large-scale salt cavern collapse is also discussed. We expect that the use of an evolving 3D
model wil l help to reduce the location errors and improve the dataset analysis, improving risk management
for time-varying collapse events.



Introductio n

Passive microseismics is a well developed technique that has been widely used since the 1970s and
1980s in active underground mines to monitor stress changes around the workings and in geothermal
fields to image fracture networks activated during production and injection. In addition, application of
this technique to petroleum characterization has been increasing in the past decade following its
successful use on the Barnett Shale in the Fort Worth basin, Texas (Maxwell et a l, 2010). Real-time
microseismic monitoring and more recently acoustic monitoring of underground silent voids is also
often included in early-warning systems dealing with geohazards (Contrucci et a l, 2010a; Nadim et
a l, 2010).

Event location is of primary importance to accurately identify the zones of rupture and determine
source characteristics such as magnitude or moment tensor. For a mine geometry, this location
requires taking into account complex velocity models with direct-search event location methods. For
the case of acoustic monitoring it can be assumed that the acoustic waves do not transmit through the
host rock, so their propagation is governed by reflection and diffraction at the cavity boundaries. This
leads to a complex travel-time field that can be modelled based on the same algorithms as those used
currently in microseismics.

In this extended abstract we first present a fast marching method to determine the travel-time field,
rays and ray take-off angles in complex 3D media, for application with direct-search event location
methods. We then present a series of examples to illustrate the potential of the chosen methodology
using a 2D model based on the geometry of an abandoned salt mine instrumented with dual
microseismic - acoustic stations. Finally, we discuss further applications on 3D complex structures.

Event location in 3D complex media with a few numbers of sensors

Among the three basic classes of methods to calculate travel-times and rays (full-waveform methods,
ray methods, and eikonal and shortest-path, graph-based methods), the eikonal fast-marching method
(FMM) is one of the most efficient and stable when considering complicated 3D velocity structures.
FMM solves the wavefront propagation problem through numerical solution of the eikonal equation
for ray propagation, with repeated application of Huygen's principle while taking into account
causality - that is to say that information only flows forward in time (Sethian, 1999). This condition
makes the method unconditionally stable in the presence of shadow zones, diffractions and caustics,
and also makes it applicable to 2D and 3D regular and irregular grids.

In addition to the generation of the travel-times from one point in a gridded velocity model to all
others points in the model, FMM also permits the calculation of ray-paths and take-off angles through
post-processing of the travel-time field using finite-differences to follow the local time gradient back
from the receiver to the source. This is of great importance for improving microseismic locations
when using only a small numbers of sensors. Take-off angles measured at a 3D receiver are useful to
constraint direct search event location method, especially in limited-aperture situations like borehole
monitoring.

Application to the case of an abandoned salt mine

An abandoned room and pillar salt mine located below an urbanized area has been instrumented in
2005 by INERIS (Nadim et a l, 2010). The mine can approximately be circumscribed into a
300 meters * 350 meters area with regular and large galleries (-17 meters wide and 6 meters high),
with an approximated total of 360 pillars (-15 meters large * 15meters wide) cut by around 20 km of
cumulated intersecting galleries and an extraction ratio close to 75%.

Three dual acoustic-microseismic stations have been set up in different locations with the aim of
detecting precursory signals of fracturing that may lead to a roof collapse process. Each station is
composed of a highly sensitive microphone installed in a gallery and of a geophone clamped above in



the solid part of the roof, both sensors being equipped with built-in amplifiers. The objective of the
monitoring system is to alert if a significant event occurs between two inspection visits, triggering
then an extra inspection.

To analyze acoustic wave propagation and assess the resolution of FMM along with the Oct-Tree
direct-search location method (Lomax and Curtis, 2001) in the context of the abandoned salt mine, we
consider various virtual geometries of sensors and collapse events.

First we consider an ideal situation with a dense and regular receiver distribution (acoustic sensors are
placed at every second gallery intersection). In Figure 1 (left), the reverse travel-time field is
computed for a receiver in the third gallery from the West and first gallery from the South; the
acoustic travel-time field is constrained to not transmit into the host rock (pillars). It shows that the
travel-time field is almost circular, due to the regular geometry of the mine and large proportion of
void space however, the diffractions around the pillars are visible as cusps and perturbations in the
travel-time field (Figure 1-Left).
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Figure 1. Left) Travel-time field computed when considering a receiver placed in the third gallery
starting from the West and first gallery from the South. Right) Location of events throughout the site
obtained using the ideal array geometry. Stations are represented by black triangles, true and
calculated locations are represented respectively by green and blue symbols; the location pdf is
shown in red (red cloud of points).

Then, given this ideal geometry and synthetic arrival-times with 0.01s noise corresponding to events
throughout the site, we observe a good ability to relocate correctly the synthetic events: stations are
available at a wide range of distances and directions enabling good constraint on the location
(Figure 1-Right). At the boundaries of the site the pdf locations can be elongated or irregular, with
some significant mislocations, due to the absence of stations outside of the modeled area and
consequent poor station coverage.

In general, within the station network the maximum likelihood hypocenter is very close to the
theoretical hypocenter almost every time, with close coincidence near the centre of the network.

Practically, for costs and technical reasons, monitoring devices often comprise only a few numbers of
receivers, sometimes positioned far away from the area of interest due to difficul t access conditions.
Thus the receiver distribution is often very poor.



When relocating a theoretical event while considering a poor receiver distribution with few stations
near the source, the location pdf increases in volume (Figure 2-left). Besides, a discrepancy in the
relocation is observed: the event is located in a gallery intersection adjacent to the intersection where
the theoretical event was placed.

Figure 2. Left) Location of an event occurring in the upper right corner of the site obtained using a
poor receiver distribution. Right) Several locations using a dispersed and irregular receiver
distribution. Stations are represented by black triangles, true and calculated locations are
represented respectively by green and blue symbols; the location pdf is shown in red (red cloud of
points).

When considering few stations irregularly dispersed across the site (Figure 2-Right), the /«//locations
remain quite well constrained in areas surrounded by receivers, thanks to the aperture of the available
stations. The pdfs increase in volume and become more complex for events occurring outside of the
network (southeast corner for example) indicating low confidence in event location: in some
configurations, it becomes difficul t to locate the source at the scale of the mine quarter.

Further  application: the monitoring of a large-scale cavern collapse

Between 2005 and 2009, a solution mine was instrumented in order to monitor a large-scale cavern
collapse (see Figure 3 and Contrucci et a l, 2010b for full detail). It allowed the recording of the
unique microseismic database comprising more than 60 000 events, including 30 000 events during
the last three days preceding the collapse.

Until now, a ID velocity model was used to process the data and locate the events. This velocity
model was estimated using a series of calibration shots made on the surface at the beginning of the
experiment in 2005. For computational convenience, the model was taken as fixed during the whole
experiment.

The geology of the site however considerably evolved along with the cavern extension, leading to a
for more complex velocity model. First, massive roof falls occurred due to the failure of the indurated
anhydrites overlying the salt layer allowing vertical propagation of cavern dome the towards the
surface. Second, the rupture of a massive and competent bed of dolomite overlying the cavern at -120
meters depth led 24 hours later to the general collapse of the overburden (Contrucci et a l, 2010b).
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Figure 3. Left) Location of the multi-parameter monitoring network and simplified E-W geological
section showing the position of the 3D microseismic probes (black symbols) and ID (unfilled
symbols) with depth. Right) 3D view of the microseismic events location a few days before the
collapse.

The fixed velocity model assumption undoubtedly leads to strong location errors, especially during
the last days of the experiment. Also, it almost prohibits the use of S-arrivals in the location process,
since the computed travel-time field does not take into the increasing volume of brine in the cavern
which clearly affects S-wave propagation.

Thus the possibility of using an evolving, 3D model would help to reduce the location errors and
improve the analysis
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