H. I. Clewell, F. Gentry, T. Covington, and J. Gearhart, Development of a Physiologically Based Pharmacokinetic Model of Trichloroethylene and Its Metabolites for Use in Risk Assessment, Environmental Health Perspectives, vol.108, issue.s2, pp.283-305, 20001.
DOI : 10.1289/ehp.00108s2283

M. Kohn, Achieving credibility in risk assessment models, Toxicology Letters, vol.79, issue.1-3, pp.107-114, 1995.
DOI : 10.1016/0378-4274(95)03362-O

S. Charnick, R. Kawai, J. Nedelman, M. Lemaire, W. Niederberger et al., Physiologically based pharmacokinetic modeling as a tool for drug development, Journal of Pharmacokinetics and Biopharmaceutics, vol.41, issue.2, pp.217-229, 1995.
DOI : 10.1007/BF02354273

T. Ludden, W. Gillespie, and W. Bachman, Commentary on ???physiologically based pharmacokinetic modeling as a tool for drug development???, Journal of Pharmacokinetics and Biopharmaceutics, vol.22, issue.2, pp.231-235, 1995.
DOI : 10.1007/BF02354274

T. Louis, Assessing, Accommodating, and Interpreting the Influences of Heterogeneity, Environmental Health Perspectives, vol.90, pp.215-222, 1991.
DOI : 10.2307/3430871

T. Woodruff and F. Bois, Optimization issues in physiological toxicokinetic modeling: a case study with benzene, Toxicology Letters, vol.69, issue.2, pp.181-196, 19931.
DOI : 10.1016/0378-4274(93)90103-5

S. Vozeh, J. Steimer, R. M. Morselli, P. Mentre, F. Balant et al., The Use of Population Pharmacokinetics in Drug Development, Clinical Pharmacokinetics, vol.30, issue.2, pp.81-93, 19961.
DOI : 10.2165/00003088-199630020-00001

F. Bois, A. Gelman, J. Jiang, D. Maszie, L. Zeise et al., Population toxicokinetics of tetrachloroethylene, Archives of Toxicology, vol.70, issue.6, pp.347-355, 1996.
DOI : 10.1007/s002040050284

URL : https://hal.archives-ouvertes.fr/ineris-00969532

F. Bois, E. Jackson, K. Pekari, and M. Smith, Population toxicokinetics of benzene, Environmental Health Perspectives, vol.104, issue.Suppl 6, pp.1405-1411, 19961.
DOI : 10.1289/ehp.961041405

A. Gelman, F. Bois, and J. Jiang, Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions, Journal of the American Statistical Association, vol.55, issue.436, pp.1400-141211996
DOI : 10.2307/2533402

A. Smith, Bayesian Computational Methods, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.337, issue.1647, pp.369-386, 1991.
DOI : 10.1098/rsta.1991.0130

J. Fisher and B. Allen, Evaluating the Risk of Liver Cancer in Humans Exposed to Trichloroethylene Using Physiological Models, Risk Analysis, vol.10, issue.1, pp.87-9511993
DOI : 10.1016/0041-008X(87)90325-5

J. Fisher, M. Gargas, B. Allen, and M. Andersen, Physiologically based pharmacokinetic modeling with trichloroethylene and its metabolite, trichloroacetic acid, in the rat and mouse, Toxicology and Applied Pharmacology, vol.109, issue.2, pp.183-19511991
DOI : 10.1016/0041-008X(91)90167-D

J. Larson and R. Bull, Metabolism and lipoperoxidative activity of trichloroacetate and dichloroacetate in rats and mice, Toxicology and Applied Pharmacology, vol.115, issue.2, pp.268-277, 1992.
DOI : 10.1016/0041-008X(92)90332-M

M. Templin, J. Parker, and R. Bull, Relative formation of dichloroacetate and trichloroacetate from trichloroethylene in male B6C3F1 mice (correction/addition), Toxicol Appi Pharmacol, vol.133, p.177, 1995.

J. Larson and R. Bull, Species differences in the metabolism of trichloroethylene to the carcinogenic metabolites trichloroacetate and dichloroacetate, Toxicology and Applied Pharmacology, vol.115, issue.2, pp.278-285, 19921.
DOI : 10.1016/0041-008X(92)90333-N

M. Prout, W. Provan, and T. Green, Species differences in response to trichloroethylene, Toxicology and Applied Pharmacology, vol.79, issue.3, pp.389-400, 1985.
DOI : 10.1016/0041-008X(85)90137-1

M. Templin, J. Parker, and R. Bull, Relative Formation of Dichloroacetate and Trichloroacetate from Trichloroethylene in Male B6C3F1 Mice, Toxicology and Applied Pharmacology, vol.123, issue.1, pp.1-8, 19931.
DOI : 10.1006/taap.1993.1214

M. Templin, D. Stevens, R. Stenner, P. Bonate, D. Tuman et al., Factors affecting species differences in the kinetics of metabolites of trichloroethylene, Journal of Toxicology and Environmental Health, vol.95, issue.4, pp.435-147, 1995.
DOI : 10.1006/taap.1993.1214

A. Monster, G. Boersma, and W. Duba, Pharmacokinetics of trichloroethylene in volunteers, influence of workload and exposure concentration, International Archives of Occupational and Environmental Health, vol.12, issue.2, pp.87-102, 1976.
DOI : 10.1007/BF00378619

A. Monster, G. Boersma, and W. Duba, Kinetics of trichloroethylene in repeated exposure of volunteers, International Archives of Occupational and Environmental Health, vol.20, issue.3-4, pp.283-292, 1979.
DOI : 10.1007/BF00377782

G. Müller, M. Spassovski, and D. Henschler, Metabolism of trichloroethylene in man, Archives of Toxicology, vol.25, issue.4, pp.283-295, 19741.
DOI : 10.1007/BF00330110

G. Müller, M. Spassovski, and . Henschler-0, Metabolism of trichloroethylene in man, Archiv f???r Toxikologie, vol.77, issue.3, pp.173-189, 1975.
DOI : 10.1007/BF00311271

R. Stewart, H. Dodd, H. Gay, and D. Ertey, Experimental Human Exposure to Trichloroethylene, Archives of Environmental Health: An International Journal, vol.195, issue.1, pp.64-71, 1970.
DOI : 10.1001/jama.193.13.1097

F. Bois and D. Maszie, MCSim: a Simulation program, J Stat Software lQ, 1997.

J. Wakefield, The Bayesian Analysis of Population Pharmacokinetic Models, Journal of the American Statistical Association, vol.86, issue.433, pp.62-75, 1995.
DOI : 10.1080/01621459.1996.10476664

M. Oavidian and D. Giltinan, Nonlinear Models for Repeated Measurement Data, 1995.

A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, 1995.

A. Gelfand and A. Smith, Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, vol.4, issue.410, pp.398-409, 1990.
DOI : 10.1080/01621459.1986.10478240

A. Gelfand, S. Hills, A. Racine-poon, and A. Smith, Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling, Journal of the American Statistical Association, vol.32, issue.412, pp.972-985, 1990.
DOI : 10.1080/01621459.1986.10478240

A. Gelfand, A. Smith, and T. Lee, Bayesian Analysis of Constrained Parameter and Truncated Data Problems Using Gibbs Sampling, Journal of the American Statistical Association, vol.47, issue.418, pp.523-532, 1992.
DOI : 10.1093/biomet/60.2.319

A. Gelman, Iterative and non-iterative Simulation algorithms, Comput Sei Stat, vol.24, pp.433-438, 1992.

M. Tanner, Tools for Statistical Inference -Observed Oata and Data Augmentation Methods, 1991.

J. Wakefield, A. Smith, A. Racine-poon, and A. Gelfand, Bayesian analysis of linear and non-iinear population modeis using the Gibbs sampler, J Royal Stat Soc Series C, vol.43, pp.201-221, 19941.

A. Gelman and D. Rubin, Inference from Iterative Simulation Using Multiple Sequences, Statistical Science, vol.7, issue.4, pp.457-511, 1992.
DOI : 10.1214/ss/1177011136

. Vesterberg-0, Exposure to trichloroethylene monitored by analysis of metabolites in blood and urine, J Occup Med, vol.18, pp.224-22611976

. Ästrand-l and P. Övrum, Exposure to trichloroethylene. l: Uptake and distribution in man, Scand J Work Environ Health, vol.4, pp.199-211, 19761.

S. Lapare, R. Tardif, and J. Brodeur, Effect of various exposure scenarios on the biological monitoring of organic solvents in alveolar air, International Archives of Occupational and Environmental Health, vol.12, issue.6, pp.375-394, 1995.
DOI : 10.1007/BF00381051

A. Sato, T. Nakajima, Y. Fujiwara, and N. Murayama, A pharmacokinetic model to study the excretion of trichloroethylene and its metabolites after an inhalation exposure., Occupational and Environmental Medicine, vol.34, issue.1, pp.56-63, 1977.
DOI : 10.1136/oem.34.1.56

J. Opdam, Intra and interindividual variability in the kinetics of a poorly and highiy metabolising solvent, Br J Ind Med, vol.46, pp.831-845, 1989.

M. Ikeda, H. Ontsuji, T. Komoike, and Y. , Urinary excretion of total trichloro-compounds. trichloroethanol, and trichloroacetic acid äs a measure of exposure to trichloroethylene and tetrachloroethylene, Br J Ind Med, vol.29, pp.328-333, 1972.

J. Pernandez, P. Droz, B. Humbert, and J. Caperos, Trichloroethylene exposure -Simulation of uptake, excretion. and metabolism using a mathematical model, Br J Ind Med, vol.34, pp.43-55, 1977.

E. Guberan and J. Femandez, Control of industrial exposure to tetrachloroethylene by measuring alveolar concentrations: theoretical approach using a mathematical model, Occupational and Environmental Medicine, vol.31, issue.2, pp.159-167, 1974.
DOI : 10.1136/oem.31.2.159

E. Fanning, F. Bois, N. Rothman, B. Bechtold, L. G. Hayes et al., Population toxicokinetics of benzene and its metabolites, In: SocietyofToxicologyAnnual Meeting, 1997.

G. Johanson, F. Jonsson, and F. Bois, Development of new technique for risk assessment using physiologically based toxicokinetic modeis, Am J Ind Med (suppi, vol.11, pp.101-103, 19991.

F. Bois, Statistical Analysis of Fisher et al. PBPK Model of Trichloroethylene Kinetics, Environmental Health Perspectives, vol.108, issue.s2, pp.275-282, 2000.
DOI : 10.1289/ehp.00108s2275

URL : https://hal.archives-ouvertes.fr/ineris-00961853

R. Spear and F. Bois, Parameter variability and the interpretation of physiologically based pharmacokinetic modeling results, Environmental Health Perspectives, vol.102, issue.Suppl 11, pp.61-66, 1994.
DOI : 10.1289/ehp.94102s1161