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Abstract

A discussion of the seniority quantum number in many-body systems is presented.
The analysis is carried out for bosons and fermions simultaneously but is restricted
to identical particles occupying a single shell. The emphasis of the paper is on
the possibility of partial conservation of seniority which turns out to be a peculiar
property of spin-9/2 fermions but prevalent in systems of interacting bosons of any
spin. Partial conservation of seniority is at the basis of the existence of seniority
isomers, frequently observed in semi-magic nuclei, and also gives rise to peculiar
selection rules in one-nucleon transfer reactions.

Key words: quantum mechanics, many-body systems, seniority, nuclear shell
model, interacting bosons
PACS: 03.65.Fd, 21.60.Cs, 21.60.Fw, 03.75.Mn

1 Introduction

The seniority quantum number was introduced by Racah for the classification
of electrons in an ℓN configuration where it appears as a label additional to
the total orbital angular momentum L, the total spin S and the total angular
momentum J [1]. About ten years after its introduction by Racah it was
adopted in nuclear physics for the jj-coupling classification of nucleons in a
single-j shell [2,3]. Seniority refers to the number of particles that are not in
pairs coupled to angular momentum J = 0. The seniority quantum number is
usually denoted by v, from the Hebrew word for seniority, ‘vet(h)ek’ [4,5]. In
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nuclear physics the concept has proven extremely useful, especially in semi-
magic nuclei where only one type of nucleon (neutron or proton) is active and
where seniority turns out to be conserved to a good approximation.

Seniority can be given a group-theoretical definition starting from the Lie alge-
bra U(2j+1) which contains all (infinitesimal) unitary transformations among
the 2j + 1 single-particle states |jmj〉 with mj = −j,−j + 1, . . . ,+j, where
j is the angular momentum (henceforth referred to as spin) carried by the
particle which is integer for bosons and half-odd-integer for fermions. A sys-
tem of N identical particles (i.e., no other internal degrees of freedom for the
particles besides their spin) is characterized by the symmetric representation
[N ] of U(2j + 1) in the case of bosons or the anti-symmetric representation
[1N ] ≡ [1, 1, . . . , 1] in the case of fermions. Seniority arises as a label v associ-
ated with a subalgebra of U(2j+1), either the orthogonal algebra SO(2j+1),
if 2j + 1 is odd (bosons), or the (unitary) symplectic algebra Sp(2j + 1), if
2j+1 is even (fermions). Both SO(2j+1) and Sp(2j+1) contain the rotation
algebra as a subalgebra which shall be denoted as SO(3) and SU(2), respec-
tively, to indicate that the total angular momentum J must by integer for
bosons whereas it can be integer or half-odd-integer for fermions, depending
on N being even or odd. Finally, any many-particle state is characterized by
the projection MJ of the total angular momentum J associated with SO(2).

The seniority classification can be summarized as

U(2j + 1) ⊃ SO(2j + 1) ⊃ · · · ⊃ SO(3) ⊃ SO(2)

↓ ↓ ↓ ↓ ↓
[N ] v α J MJ

, (1)

and

U(2j + 1) ⊃ Sp(2j + 1) ⊃ · · · ⊃ SU(2) ⊃ SO(2)

↓ ↓ ↓ ↓ ↓
[1N ] v α J MJ

, (2)

for bosons and fermions, respectively. In general, this classification is not com-
plete, as indicated by the dots in the above equations. The allowed values of v
are v = N,N−2, . . . , 1 or 0, as can be obtained from the U(2j+1) ⊃ SO(2j+1)
or U(2j + 1) ⊃ Sp(2j + 1) branching rules [6]. The allowed values of the total
spin J are obtained from the SO(2j + 1) ⊃ SO(3) or Sp(2j + 1) ⊃ SU(2)
branching rules, which in general require a multiplicity label α. Alternatively,
seniority can be introduced via the quasi-spin formalism [7,8] where it arises
as a label associated with the Lie algebras SU(1,1) or SU(2) for bosons or
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fermions, respectively. This alternative definition is particularly valuable for
generalizations towards different shells or several types of particles but it is
not needed here.

This paper is concerned with the seniority classification of a system of N iden-
tical particles with spin j interacting through a general rotationally invariant
two-body force. Symmetry arguments then dictate that the eigenstates of the
hamiltonian carry good angular momentum J , as in the classifications (1)
and (2). The central question addressed in this paper is what conditions are
required for seniority v to be a good quantum number for all or for part of
the eigenstates.

To arrive at a more precise formulation of this question, let us introduce the fol-
lowing notation. A rotationally invariant two-body interaction V̂ between the
particles is specified by its ⌊j + 1⌋ matrix elements νλ ≡ 〈j2;λmλ|V̂ |j2;λmλ〉
(where ⌊x⌋ is the largest integer smaller than or equal to x). The nota-
tion |j2;λmλ〉 implies a normalized two-particle state with total angular mo-
mentum λ and projection mλ which can take the values λ = 0, 2, . . . , 2p,
mλ = −λ,−λ + 1, . . . ,+λ, where 2p = 2j for bosons and 2p = 2j − 1 for
fermions. Since the interaction is rotationally invariant, there is no depen-
dence on the label mλ which shall be suppressed henceforth. The interaction
can then be written as V̂ =

∑
λ νλV̂λ where V̂λ is the operator defined through

〈j2;λ′|V̂λ|j2;λ′′〉 = δλλ′δλλ′′ .

A precise formulation can now be given of the question that will be addressed
in this paper: What conditions should the matrix elements νλ satisfy for the
interaction V̂ to conserve seniority, either completely or partially? It is im-
portant to appreciate that these conditions are weaker than those required for
complete solvability on the basis of a dynamical symmetry. To make this point
clear, sufficient conditions of solvability associated with a dynamical symme-
try are derived in Sect. 2. The conditions for complete seniority conservation
are known since long. For completeness, a brief reminder of them is given in
Sect. 3 by analyzing the three-particle case. A surprising consequence of these
conditions is that they lead to diophantine equations in the spin j of the par-
ticles and the component λ of the interaction. With the same procedure as in
Sect. 3, the four-particle case is analyzed in Sect. 4, revealing the existence of a
partial seniority conservation in the j = 9/2 shell. Although this is found to be
an exceptional situation for fermions, it occurs frequently for boson systems
as is shown in Sect. 5. Applications of the seniority formalism in fermionic
systems are presented in Sect. 6. Finally, in Sect. 7 the conclusions of this
work are formulated.
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2 Solvable interactions

A class of solvable interactions can be found by requiring the existence of a
dynamical symmetry which can be viewed as a generalization and refinement
of the concept of symmetry [9,10]. A dynamical symmetry occurs if the hamil-
tonian is written in terms of Casimir operators of a set of nested algebras. Its
hallmarks are (i) solvability of the complete spectrum, (ii) existence of exact
quantum numbers for all eigenstates and (iii) pre-determined structure of the
eigenfunctions, independent of the parameters in the hamiltonian.

A general one- plus two-body hamiltonian for a system of identical interacting
particles considered here is given by

Ĥ = ǫN̂ +
∑

λ

νλV̂λ, (3)

where ǫ is the single-particle energy. If the hamiltonian can be written as
a linear combination of the Casimir operators of the algebras appearing in
Eqs. (1) and (2), then the labels N , v and J are good quantum numbers for
all eigenstates. In this case the hamiltonian has the form

Ĥb
ds = x1Ĉ1[U(n)] + x2Ĉ2[U(n)] + x3Ĉ2[SO(n)] + x4Ĉ2[SO(3)], (4)

or

Ĥ f
ds = x1Ĉ1[U(n)] + x2Ĉ2[U(n)] + x3Ĉ2[Sp(n)] + x4Ĉ2[SU(2)], (5)

for bosons or fermions, respectively, where the notation n ≡ 2j+1 is used and
Ĉi[G] denotes the Casimir operator of order i of the algebra G. By writing
the Casimir operator in terms of N̂ and V̂λ, one obtains a (possibly overcom-
plete) system of linear equations in the coefficients ǫ and νλ of the general
hamiltonian. From a simple counting argument it is clear that these equations
admit a solution for j = 0, 1/2, 1, 3/2, 2 and 5/2. For j > 5/2 there are more
coefficients than there are Casimir operators. The system of equations then
becomes overcomplete, leading to conditions on the coefficients νλ. There will
be one condition for j = 3 or 7/2, two conditions for j = 4 or 9/2, and so on.
The system of equations can be written in general as

x1 = ǫ− 1

2n
ν0 +

n4 + n3 − 41n2 − n+ 40

56n
ν2 −

n4 + n3 − 13n2 − n+ 12

56n
ν4,

x2 =
1

2n

(
ν0 −

n3 − 41n+ 40

28
ν2 +

n3 − 13n+ 12

28
ν4

)
,
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x3 =
1

2n

(
−ν0 +

10

7
ν2 −

3

7
ν4

)
,

x4 =
ν4 − ν2

14
=

νλ − ν2
λ(λ+ 1)− 6

, (6)

and

x1 = ǫ+
1

2n
ν0 −

n4 − n3 − 41n2 + n+ 40

56n
ν2 +

n4 − n3 − 13n2 + n+ 12

56n
ν4,

x2 =
1

2n

(
ν0 +

n3 − 41n− 40

28
ν2 −

n3 − 13n− 12

28
ν4

)
,

x3 =
1

2n

(
−ν0 +

10

7
ν2 −

3

7
ν4

)
,

x4 =
ν4 − ν2

14
=

νλ − ν2
λ(λ+ 1)− 6

, (7)

for bosons and fermions, respectively. In each case the conditions on the in-
teractions νλ follow from the last equation which is the same for bosons and
fermions,

νλ =
20− λ(λ+ 1)

14
ν2 −

6− λ(λ+ 1)

14
ν4, λ = 6, 8, 10, . . . (8)

These are sufficient conditions on the νλ for the hamiltonian to have a dy-
namical symmetry, resulting in complete solvability of the spectrum. In the
following section the weaker conditions are reviewed which are needed for
complete conservation of seniority.

3 Seniority conservation for three identical particles

The conditions for complete seniority conservation are known since long for
fermions (see, e.g., Refs. [4,5]) and can be derived from the analysis of a system
of three particles. This section presents a succinct derivation of the conditions
for seniority conservation for bosons as well as fermions, to prepare the ground
for the analysis of a four-particle system, presented in Sect. 4.

3.1 Conditions for seniority conservation

Let us recall a few elementary properties of (anti-)symmetric three-particle
states [4,5]. A three-particle state can be written as |j2(R)j; J〉 where two
particles are first coupled to angular momentum R which is subsequently
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coupled to total angular momentum J . This state is not (anti-)symmetric in
all three particles; it can be made so by applying the (anti-)symmetry operator
P̂ ,

|j3[I]J〉 ∝ P̂ |j2(I)j; J〉 =
∑

R

[j2(R)j; J |}j3[I]J ] |j2(R)j; J〉, (9)

where [j2(R)j; J |}j3[I]J ] is a three-to-two-particle coefficient of fractional par-
entage (CFP). The notation in round brackets in |j2(R)j; J〉 implies coupling
of two particles to intermediate angular momentum R. On the other hand,
the square brackets [I] label a three-particle state and indicate that it has
been obtained after (anti-)symmetrization of |j2(I)j; J〉. The label [I] defines
an overcomplete, non-orthogonal basis, that is, not all |j3[I]J〉 states with
I = 0, 2, . . . , 2p are independent.

The three-to-two-particle CFP is known in closed form,

[j2(R)j; J |}j3[I]J ] = 1√
N I

jJ


δRI + 2

√
(2R + 1)(2I + 1)

{
j j R

J j I

}
 , (10)

with the normalization coefficient

N I
jJ = 3


1 + 2(2I + 1)

{
j j I

J j I

}
 , (11)

where the symbol between curly brackets is a Racah coefficient [4,5]. Both the
overlap matrix and the matrix element of the operator V̂λ can be expressed in
terms of the CFPs,

〈j3[I]J |j3[L]J〉=
∑

R

[j2(R)j; J |}j3[I]J ] [j2(R)j; J |}j3[L]J ], (12)

〈j3[I]J |V̂λ|j3[L]J〉=3 [j2(λ)j; J |}j3[I]J ] [j2(λ)j; J |}j3[L]J ]. (13)

With use of properties of the Racah coefficient the sum over the CFPs in the
expression for the overlap matrix can be carried out,

〈j3[I]J |j3[L]J〉= 3√
N I

jJN
L
jJ


δIL + 2

√
(2I + 1)(2L+ 1)

{
j j I

J j L

}


=
3√
N I

jJ

[j2(I)j; J |}j3[L]J ], (14)
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leading to closed expressions for both the overlap matrix and the matrix ele-
ment of the operator V̂λ.

3.2 Diophantine equations for seniority conservation

Let us begin with the following simpler problem. Can one find the condition
for a single component V̂λ of the interaction to conserve seniority for a given
particle angular momentum j? Let us first establish a necessary condition for
seniority conservation [4,5]. By definition the seniority v = 1 three-particle
state is

|j3, v = 1, J〉 = |j3[0]J〉, (15)

where the total angular momentum J must be equal to the angular momentum
j of the individual particles. A seniority v = 3 state originates from a different
parent state (i.e., it has I 6= 0) and is defined to be orthogonal to the seniority
v = 1 state. Hence

|j3[I], v = 3, J〉 = |j3[I]J〉 − 〈j3[0]J |j3[I]J〉|j3[0]J〉, I 6= 0. (16)

Seniority conservation for V̂λ requires 〈j3, v = 1, J |V̂λ|j3[I], v = 3, J〉 = 0 or

〈j3[0]J |V̂λ|j3[I]J〉
〈j3[0]J |V̂λ|j3[0]J〉

= 〈j3[0]J |j3[I]J〉. (17)

With use of the expressions (13) and (14) this condition reduces to

[j2(λ)j; J |}j3[I]J ]
[j2(λ)j; J |}j3[0]J ] =

3√
N0

jj

[j2(0)j; J |}j3[I]J ]. (18)

From the general expression (10) the following simple cases are obtained:

[j2(0)j; J |}j3[0]J ] =
√
2j + 1 + 2σ

3(2j + 1)
,

[j2(λ)j; J |}j3[0]J ] = σ

√√√√ 4(2λ+ 1)

3(2j + 1)(2j + 1 + 2σ)
, λ 6= 0, (19)

where σ ≡ (−)2j is +1 for bosons and −1 for fermions. This leads to the
following condition (for λ 6= 0) valid for bosons and fermions:
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δλI + 2
√
(2λ+ 1)(2I + 1)

{
j j λ

j j I

}
=

4
√
(2λ+ 1)(2I + 1)

(2j + 1)(2j + 1 + 2σ)
. (20)

For seniority to be conserved by the interaction V̂λ, this equation must be
satisfied for all even intermediate angular momenta 2 ≤ I ≤ 2p. Let us take
I = 2 and first consider λ 6= I. For bosons the condition (20) then leads to
the equation

3λ4 + 6λ3 − 6[2j(j + 1)− 1]λ2 − 3[4j(j + 1)− 1]λ

+2j(j + 1)(2j − 1)(2j + 1) = 0. (21)

This should be considered as a diophantine equation in λ since only (positive,
even) integer solutions in λ have a physical meaning. For j = 2 the diophantine
equation (21) is satisfied for λ = 4. This confirms a known result namely that
any interaction between d bosons is integrable and conserves seniority, hence
also V̂4. More surprisingly, the equation is also satisfied for j = 5 and λ = 4 and
one may verify that in that case the condition (20) is equally valid for I = 4,
6, 8 and 10. This means that a V̂4 interaction between h bosons conserves
seniority. The result is illustrated in Fig. 1 where the J = 2 spectrum of
six h bosons is shown as a function of the interaction strength ν4. To split
states with different seniorities, a constant (repulsive) pairing interaction V̂0

is taken to which a variable V̂4 part is added. The resulting hamiltonian is
diagonalized numerically with the code ArbModel [11] which can compute the
properties of a system consisting of an arbitrary combination of bosons and/or
fermions interacting through two-body forces. The figure confirms that there
are no avoided crossings for h bosons since the only crossings that do occur are
between levels of different seniority and those are unavoided. For comparison,
the J = 2 spectrum of six g bosons is also shown as a function of the strength
ν4, and in this case the crossings are avoided.

To complete the analysis of the boson case, for λ = I = 2 the condition (20)
leads to

8j5 + 60j4 + 50j3 − 375j2 − 373j + 630 = 0. (22)

This equation has the integer solutions j = 1 and j = 2 as should be since
any interaction between p or d bosons is integrable and conserves seniority.

For fermions the condition (20) leads to the diophantine equation

3λ4 + 6λ3 − 6[2j(j + 1)− 1]λ2 − 3[4j(j + 1)− 1]λ

+2j(j + 1)(2j + 1)(2j + 3) = 0. (23)
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Fig. 1. The energy spectrum of six h bosons (top) or six g bosons (bottom) coupled
to total angular momentum J = 2 as a function of the interaction strength ν4. For
the h bosons all crossings are unavoided which is a consequence of the conserva-
tion of seniority. In contrast, for g bosons crossings are avoided since there is no
conservation of seniority.

This equation is satisfied for (j, λ) = (5/2, 4), (7/2, 4) and (7/2, 6) which
confirms the known result that for fermions with j ≤ 7/2 any interaction is
diagonal in seniority [4,5]. Finally, to complete the analysis for fermions, for
λ = I = 2 the condition (20) leads to

8j5 − 20j4 − 110j3 + 245j2 + 327j − 630 = 0, (24)

which has the half-odd-integer solutions j = 3/2, 5/2 and 7/2, again as should
be.

As an amusing aside, note that the diophantine equations (22) and (24) also
allow negative solutions, namely, −5/2, −7/2 and −9/2 for the bosons and
−2 and −3 for the fermions. It thus transpires that the negative solutions x
for the particles of one statistics correspond to the positive solutions −x − 1
for the particles of the other statistics.
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3.3 Seniority conservation for a general interaction

Let us next consider the condition of seniority conservation for a general in-
teraction V̂ =

∑
λ νλV̂λ. The analogue of the condition (17) is

〈j3[0]J |V̂ |j3[I]J〉
〈j3[0]J |V̂ |j3[0]J〉

= 〈j3[0]J |j3[I]J〉, (25)

where it is again assumed that J = j and I 6= 0. This leads to the following
relation between the coefficients νλ:

∑

λ

[j2(λ)j; J |}j3[0]J ]
(
[j2(0)j; J |}j3[0]J ] [j2(λ)j; J |}j3[I]J ] (26)

−[j2(0)j; J |}j3[I]J ] [j2(λ)j; J |}j3[0]J ]
)
νλ = 0.

With use of the explicit expressions for the various CFPs this can be cast into
the following form:

2p∑

λ=2

√
2λ+ 1


δλI + 2

√
(2λ+ 1)(2I + 1)

{
j j λ

j j I

}

−
4
√
(2λ+ 1)(2I + 1)

(2j + 1)(2j + 1 + 2σ)


 νλ = 0. (27)

This condition has been derived previously in a variety of ways mostly for
fermions [4,5,12,13]. The result (27) shows that a simple expression exists
which covers both the boson and the fermion case. Although Eq. (27) deter-
mines all constraints on the matrix elements νλ by varying I between 2 and
2p, it does not tell us how many of those are independent. This number turns
out to be ⌊j/3⌋ for bosons and ⌊(2j − 3)/6⌋ for fermions, the number of inde-
pendent seniority v = 3 states [14]. Hence no condition on the matrix elements
νλ follows for j = 1 and 2, and for j = 3/2, 5/2 and 7/2. For higher values of
j one finds

j = 3 : 11ν2 − 18ν4 + 7ν6 = 0,

j = 4 : 65ν2 − 30ν4 − 91ν6 + 56ν8 = 0,

j = 5 : 3230ν2 − 2717ν6 − 3978ν8 + 3465ν10 = 0,

j = 6 : 22610ν2 + 4788ν4 − 8099ν6 − 24106ν8 − 23793ν10 + 28600ν12 = 0,

90440ν2 + 156807ν4 − 409136ν6 + 290666ν8 − 275352ν10
+146575ν12 = 0,
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...

and

j = 9/2 : 65ν2 − 315ν4 + 403ν6 − 153ν8 = 0,

j = 11/2 : 1020ν2 − 3519ν4 + 637ν6 + 4403ν8 − 2541ν10 = 0,

j = 13/2 : 1615ν2 − 4275ν4 − 1456ν6 + 3196ν8 + 5145ν10 − 4225ν12 = 0.

j = 15/2 : 1330ν2 − 2835ν4 − 1807ν6 + 612ν8 + 3150ν10 + 3175ν12
−3625ν14 = 0,

77805ν2 − 169470ν4 − 85527ν6 − 4743ν8 + 222768ν10
+168025ν12 − 208858ν14 = 0.

...

for bosons and fermions, respectively. The coefficient ν0 is absent from all
equations since pairing (λ = 0) is known to conserve seniority. Note that for
j = 5 there is no term in ν4 which is consistent with the results of Sect. 3.2.

These results establish the necessary conditions for an interaction to be senior-
ity conserving by imposing vanishing matrix elements between seniority v = 1
and v = 3 three-particle states. It can be shown with use of generic properties
of CFPs that these are also sufficient conditions [4,5]. This means that the
conditions (27) are necessary and sufficient for seniority to be a conserved
quantum number in a system of N identical particles.

4 Partial seniority conservation for four identical particles

Let us now turn our attention to the four-particle case. This analysis will,
of course, confirm the results of the previous section pertaining to seniority
conservation in N -particle systems but the particular interest of this section
concerns the possibility of partial seniority conservation. It is important to
clarify first what is meant by partial dynamical symmetry which is an en-
largement of the concept of dynamical symmetry as defined in Sect. 2. The
idea is to relax the conditions of complete solvability and this can be done in
essentially two different ways:

(1) Some of the eigenstates keep all of the quantum numbers. In this case the
properties of solvability, good quantum numbers, and symmetry-dictated
structure are fulfilled exactly, but only by a subset of eigenstates [15–17].

(2) All eigenstates keep some of the quantum numbers. In this case eigen-
states are not solvable, yet some quantum numbers (of the conserved
symmetries) are retained. In general, this type of partial dynamical sym-
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metry arises if the hamiltonian preserves some of the quantum numbers
in a dynamical-symmetry classification while breaking others [18,19].

Combinations of (1) and (2) are possible as well, for example, if some of the
eigenstates keep some of the quantum numbers [20].

A further clarification concerning the notion of solvability is needed. One might
argue, for example, that, as long as the hamiltonian matrix is of finite size (as
it is always the case in this paper), its eigenvalues and eigenvectors can be
determined in a finite number of steps and that as a consequence the secu-
lar equation is exactly solvable. The condition of solvability adopted here is
stronger, and requires the property of a predetermined structure of the eigen-
vector, independent of the parameters in the hamiltonian. So, an eigenstate
will be called solvable only if its structure is independent of the interaction ma-
trix elements νλ. This is also the definition adopted by Talmi [21] who showed
that, if an eigenstate is solvable in this sense, its energy is a linear combination
of the νλ with coefficients that are rational non-negative numbers.

How do seniority-conserving interactions fit in this classification? If the condi-
tions (27) are satisfied by an interaction V̂ , all its eigenstates carry the senior-
ity quantum number v and, consequently, the second type of partial dynamical
symmetry applies. In addition, some of the eigenstates are completely solv-
able. For example, the eigenstate with seniority v = 0 of a seniority-conserving
interaction (this corresponds to the ground state of an even-even nucleus) has
a structure independent of the hamiltonian’s parameters and an analytic ex-
pression is available for its energy. So, one concludes that seniority-conserving
interactions in general satisfy the second type of partial dynamical symmetry
but with the added feature that some states are completely solvable.

And what about more general interactions? More specifically, is it possible to
construct seniority-mixing interactions, some of the eigenstates of which have
good seniority? An example was given by Escuderos and Zamick [22] who
pointed out that four fermions in a j = 9/2 shell display one J = 4 and one
J = 6 state both of which have seniority v = 4 for an arbitrary interaction.
This is an example of a partial symmetry, where seniority is broken for most
but not for all states.

4.1 Conditions for seniority conservation

To shed light on the problem of partial seniority conservation, the four-particle
case can be analyzed, displaying a close analogy with the three-particle case
reviewed in Sect. 3. A four-particle state can be written as |j2(R)j2(R′); J〉
where two particles are first coupled to angular momentum R, the next two
particles to R′ and the intermediate angular momenta R and R′ to total J .
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This state is not (anti-)symmetric in all four particles and can be made so by
applying the (anti-)symmetry operator P̂ ,

|j4[II ′]J〉∝ P̂ |j2(I)j2(I ′); J〉
=
∑

RR′

[j2(R)j2(R′); J |}j4[II ′]J ] |j2(R)j2(R′); J〉, (28)

where [j2(R)j2(R′); J |}j4[II ′]J ] is a four-to-two-particle CFP. The notation in
square brackets [II ′] implies that the state (28) is constructed from a parent
with intermediate angular momenta I and I ′. It is implicitly assumed that I
and I ′ as well as R and R′ are even.

The remarks made in the three-particle case concerning non-orthogonality
and over-completeness apply also here. Because of the difficulties associated
with a non-orthogonal basis, it will sometimes be advantageous to convert to
an orthogonal one, which can be achieved through a standard Gram-Schmidt
procedure. Given an ordered set of p non-orthogonal bases states,

|j4[I1I ′1]J〉, |j4[I2I ′2]J〉, . . . , |j4[IpI ′p]J〉, (29)

the orthonormalized bases states will be denoted as

|j4[Ĩ1I ′1]J〉=
1√
o11

|j4[I1I ′1]J〉,

|j4[Ĩ2I ′2]J〉=
1√

o22 − (õ21)2

(
|j4[I2I ′2]J〉 − õ21|j4[Ĩ1I ′1]J〉

)
,

...

|j4[ĨkI ′k]J〉=
1√
Nk

(
|j4[IkI ′k]J〉 −

k−1∑

i=1

õki|j4[ĨiI ′i]J〉
)
,

... (30)

until k = p, with

Nk = okk −
k−1∑

i=1

(õki)
2, õki = 〈j4[IkI ′k]J |j4[ĨiI ′i]J〉. (31)

The four-to-two-particle CFP is known in closed form,

[j2(R)j2(R′); J |}j4[II ′]J ]
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=
1√
N II′

jJ



δRIδR′I′ + (−)JδRI′δR′I + 4σ




j j R

j j R′

I I ′ J






, (32)

where the symbol in square brackets is related to the 9j symbol through




j1 j2 J12

j3 j4 J34

J13 J24 J



= Ĵ12Ĵ34Ĵ13Ĵ24





j1 j2 J12

j3 j4 J34

J13 J24 J





, (33)

with Ĵ =
√
2J + 1. With use of the following sum over even values of R and

R′,

∑

RR′ even




j j R

j j R′

I I ′ J







j j R

j j R′

L L′ J



=

1

4



δILδI′L′ + (−)I+I′+JδIL′δI′L

+2σ
(
(−)I+L + (−)I

′+L′
)




j j I

j j I ′

L L′ J






, (34)

the normalization coefficient can be obtained as

N II′

jJ = 6



1 + (−)JδII′ + 4σ




j j I

j j I ′

I I ′ J






. (35)

Both the overlap matrix and the matrix element of the operator V̂λ can be
expressed in terms of the CFPs,

〈j4[II ′]J |j4[LL′]J〉
=
∑

RR′

[j2(R)j2(R′); J |}j4[II ′]J ] [j2(R)j2(R′); J |}j4[LL′]J ], (36)

〈j4[II ′]J |V̂λ|j4[LL′]J〉

14



= 6
∑

R

[j2(R)j2(λ); J |}j4[II ′]J ] [j2(R)j2(λ); J |}j4[LL′]J ]. (37)

With use of the result (34) the first of these sums can be carried out, yielding
the expression

〈j4[II ′]J |j4[LL′]J〉

=
6√

N II′
jJ NLL′

jJ



δILδI′L′ + (−)JδIL′δI′L + 4σ




j j I

j j I ′

L L′ J







=
6√
N II′

jJ

[j2(I)j2(I ′); J |}j4[LL′]J ]. (38)

The four-particle case with J = 0 is equivalent to three particles coupled to
J = j which was considered in Sect. 3. Therefore it is assumed in the following
that J 6= 0, corresponding to four-particle states with seniority v = 2 or v = 4.
By definition the seniority v = 2 four-particle state is

|j4, v = 2, J〉 = |j4[0J ]J〉. (39)

A seniority v = 4 state is orthogonal to this state and can thus be written as

|j4[II ′], v = 4, J〉 = |j4[II ′]J〉 − 〈j4[II ′]J |j4[0J ]J〉|j4[0J ]J〉. (40)

There can be more than one seniority v = 4 state for a given J in which case
the indices [II ′] may serve as an additional label. Seniority conservation of V̂λ

implies 〈j4[0J ]J |V̂λ|j4[II ′], v = 4, J〉 = 0 or

〈j4[0J ]J |V̂λ|j4[II ′]J〉
〈j4[0J ]J |V̂λ|j4[0J ]J〉

= 〈j4[0J ]J |j4[II ′]J〉. (41)

With use of the expressions (37) and (38) this condition reduces to

∑
R [j2(R)j2(λ); J |}j4[II ′]J ] [j2(R)j2(λ); J |}j4[0J ]J ]

∑
R [j2(R)j2(λ); J |}j4[0J ]J ] [j2(R)j2(λ); J |}j4[0J ]J ]

=
6√
N0J

jJ

[j2(0)j2(J); J |}j4[II ′]J ]. (42)
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In the same way as in the three-particle case one can also derive the condition
of seniority conservation for a general interaction V̂ =

∑
λ νλV̂λ. The condition

〈j4[0J ]J |V̂ |j4[II ′]J〉
〈j4[0J ]J |V̂ |j4[0J ]J〉

= 〈j4[0J ]J |j4[II ′]J〉, (43)

leads to the following equation:

∑

Rλ

[j2(R)j2(λ); J |}j4[0J ]J ]

×
(
[j2(J)j2(0); J |}j4[0J ]J ] [j2(R)j2(λ); J |}j4[II ′]J ]

−[j2(J)j2(0); J |}j4[II ′]J ] [j2(R)j2(λ); J |}j4[0J ]J ]
)
νλ = 0. (44)

Note the formal equivalence of this condition to the one obtained in the three-
particle case, Eq. (26). Insertion of the values for the four-to-two-particle CFPs
yields exactly the same constraints as those derived in the three-particle case.

4.2 Partial seniority conservation

Let us now turn our attention to the problem of partial seniority conservation
and derive the conditions for an interaction V̂ to have some four-particle eigen-
states with good seniority. Note that there are a number of ‘trivial’ examples
of this. For example, if the total angular momentum J is odd, a four-particle
state cannot be of seniority v = 0 or v = 2 and must necessarily have seniority
v = 4. Also, for J > 2p the four-particle state must be of seniority v = 4.
These trivial cases are not of interest here but rather the situation where both
v = 2 and v = 4 occur for the same J and where a general interaction V̂
mixes the v = 2 state with a subset of the v = 4 states but not with all. Let
us denote such a special v = 4 state as |j4, v = 4, s, J〉 and expand it in terms
of the basis |j4[II ′]J〉 discussed previously,

|j4, v = 4, s, J〉 =
∑

II′∈℘

ηII′ |j4[II ′]J〉, (45)

where the sum runs over q linearly independent combinations [II ′] in the set ℘,
as many as there are independent four-particle states with angular momentum
J . For this state to be an eigenstate of V̂ it should satisfy

V̂ |j4, v = 4, s, J〉 = E|j4, v = 4, s, J〉, (46)
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in addition to the condition of orthogonality to the v = 2 state,

〈j4[0J ]J |j4, v = 4, s, J〉 = 0. (47)

Let us now focus on bosons with 3 ≤ j ≤ 5 or fermions with 9/2 ≤ j ≤ 13/2. In
these cases a general interaction can be written as a single component V̂λ plus
an interaction V̂ ′ that conserves seniority. The conditions (46) and (47) must
therefore be checked for a single λ component only, which can be arbitrarily
chosen. Hence one arrives at the conditions

∑

II′∈℘

ηII′〈j4[LL′]J |V̂λ|j4[II ′]J〉 = Eλ

∑

II′∈℘

ηII′〈j4[LL′]J |j4[II ′]J〉, (48)

for the different indices [LL′] in the set ℘, and

∑

II′∈℘

ηII′〈j4[0J ]J |V̂λ|j4[II ′]J〉 = 0. (49)

There are q + 1 unknowns: the q coefficients ηII′ and the energy Eλ. Equa-
tions (48) and (49) are also q+1 in number and, together with the appropriate
normalization condition for the ηII′ , they define an overcomplete set of equa-
tions in {ηII′ , Eλ}, not satisfied in general but possibly for special values of j
and J . Furthermore, according to the preceding discussion, if these equations
are satisfied for one λ, they must be valid for all λ and in each case the solution
yields Eλ, the eigenvalue of V̂λ.

A symbolic solution of Eqs. (48) and (49) (for general j and J) is difficult
to obtain but, using the expressions derived previously for the various matrix
elements, it is straightforward to find a particular solution for given j and J .
In this way the finding of Refs. [22,23] is confirmed, that is, Eqs. (48) and (49)
have a solution for j = 9/2, J = 4 and for j = 9/2, J = 6. The resulting
solvable states are given by

|(9/2)4, v = 4, s, J = 4〉=
√
25500

25591
|(9/2)4[2̃2]4〉 −

√
91

25591
|(9/2)4[2̃4]4〉,

|(9/2)4, v = 4, s, J = 6〉=
√
27132

27257
|(9/2)4[2̃4]6〉+

√
125

27257
|(9/2)4[2̃6]6〉.

(50)

These states are identical to those of Eq. (8) of Ref. [24] but written here in the
Gram-Schmidt basis defined in Eq. (30). For the definition of this basis one
starts, for J = 4, from the non-orthogonal set |(9/2)4[IkI ′k]4〉 with [IkI

′
k] =

[04], [22] and [24]. The second and third states obtained after the Gram-
Schmidt orthonormalization are orthogonal to |(9/2)4[04]4〉, and hence have by
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definition seniority v = 4. A similar argument is valid for J = 6 where the non-
orthogonal set |(9/2)4[IkI ′k]6〉 has [IkI ′k] = [06], [24] and [26]. Consequently, the
states (50) have seniority v = 4.

Furthermore, for each choice of λ, the solution of the Eqs. (48) and (49) yields
Eλ and these can be used to derive the following energy expressions:

E[(9/2)4, v = 4, s, J = 4]=
68

33
ν2 + ν4 +

13

15
ν6 +

114

55
ν8,

E[(9/2)4, v = 4, s, J = 6]=
19

11
ν2 +

12

13
ν4 + ν6 +

336

143
ν8. (51)

The wave functions of the two states are pre-determined and their energies are
linear combinations of the νλ with coefficients that are rational non-negative
numbers. These results are valid for an arbitrary interaction among j = 9/2
fermions. According to the discussion of Ref. [21], the states are solvable,
independent of whether the interaction conserves seniority or not.

These results are, in fact, rather surprising as can be seen from the structure
of the energy matrices for a general interaction V̂ . For the (9/2)4 states with
angular momentum J = 4 one finds




E[(9/2)4[04]4]
1

495

√
14

2119
∆E1

2

429

√
170

489
∆E1

1

495

√
14

2119
∆E1 E[(9/2)4[22]4]

10

5379

√
595

39
∆E2

2

429

√
170

489
∆E1

10

5379

√
595

39
∆E2 E[(9/2)4[24]4]




, (52)

where the diagonal elements are given by

E[(9/2)4[04]4] =
3

5
ν0 +

67

99
ν2 +

746

715
ν4 +

1186

495
ν6 +

918

715
ν8,

E[(9/2)4[22]4] =
33161

16137
ν2 +

1800

1793
ν4 +

70382

80685
ν6 +

18547

8965
ν8,

E[(9/2)4[24]4] =
2584

5379
ν2 +

48809

23309
ν4 +

65809

26895
ν6 +

114066

116545
ν8, (53)

while in the off-diagonal elements the following combinations of interaction
matrix elements νJ occur:

∆E1 =−65ν2 + 315ν4 − 403ν6 + 153ν8,

∆E2 =−13ν2 + 9ν4 + 13ν6 − 9ν8. (54)

18



The basis which is used for constructing the energy matrix (52) are the states
|(9/2)4[IkI ′k]4〉〉 discussed above. If the combination ∆E1 vanishes in the ma-
trix (52), no mixing occurs between the seniority v = 2 and v = 4 states, and
seniority is a good quantum number for the three eigenstates, in agreement
with the discussion of Subsect. 3.3.

For completeness, the corresponding expressions for J = 6 are




E[(9/2)4[06]6] − 1

1287

√
5

97
∆E1

2

2145

√
2261

291
∆E1

− 1

1287

√
5

97
∆E1 E[(9/2)4[24]6]

10

5379

√
595

39
∆E2

2

2145

√
2261

291
∆E1

10

5379

√
595

39
∆E2 E[(9/2)4[26]6]




, (55)

with the diagonal elements

E[(9/2)4[06]6] =
3

5
ν0 +

34

99
ν2 +

1186

715
ν4 +

658

495
ν6 +

1479

715
ν8,

E[(9/2)4[24]6] =
33049

19206
ν2 +

25733

27742
ν4 +

19331

19206
ν6 +

65059

27742
ν8,

E[(9/2)4[26]6] =
1007

3201
ν2 +

26370

13871
ν4 +

7723

3201
ν6 +

19026

13871
ν8, (56)

while the same combinations (54) occur in the off-diagonal elements.

The energy matrices (52) and (55) are 3 × 3 and, generally, none of the off-
diagonal elements vanishes. The eigenvalues therefore are roots of a cubic
equation and one may expect them to be complicated algebraic expressions in
terms of the interaction matrix elements νJ . Surprisingly, this is not the case
and, for each of the matrices, one eigenenergy is particularly simple and given
by one of the expressions in Eq. (51).

From Eq. (51) the following difference between the excitation energies is de-
rived:

Ex[(9/2)
4, v = 4, s, J = 6]− Ex[(9/2)

4, v = 4, s, J = 4]

= −1

3
ν2 −

1

13
ν4 +

2

15
ν6 +

18

65
ν8. (57)

Since the sum of the coefficients of the matrix elements in the expression (57)
is zero, one can make the replacement νλ → νλ − ν0 to arrive at the result

Ex[(9/2)
4, v = 4, s, J = 6]− Ex[(9/2)

4, v = 4, s, J = 4]
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= −1

3
Ex[(9/2)

2, v = 2, J = 2]− 1

13
Ex[(9/2)

2, v = 2, J = 4]

+
2

15
Ex[(9/2)

2, v = 2, J = 6] +
18

65
Ex[(9/2)

2, v = 2, J = 8], (58)

associating the excitation energies of the J = 2, 4, 6 and 8, seniority v = 2
states in the two-particle system with those of the J = 4 and 6, seniority v = 4
states in the four-particle system.

Another interaction-independent result that can be derived concerns transition
matrix elements between the two states. For example, an electric quadrupole
transition between two states characterized by the expansion coefficients ηIiI′i
and ηIfI′f , as in Eq. (45), has the B(E2) value

B(E2; j4{ηIiI′i}Ji → j4{ηIfI′f}Jf) (59)

= 20(2Jf + 1)(2j + 1)B(E2; 2+1 → 0+1 )

×



∑

IiI
′

i

∑

IfI
′

f

∑

RiRfR′

ηIiI′i

√
2Ri + 1[j2(Ri)j

2(R′); Ji|}j4[IiI ′i ]Ji]
{
Ji Ri R

′

Rf Jf 2

}

× ηIfI′f

√
2Rf + 1[j2(Rf)j

2(R′); Jf |}j4[IfI ′f ]Jf ]
{
Ri j j

j Rf 2

}


2

,

where B(E2; 2+1 → 0+1 ) is the B(E2) value in the two-particle system j2. For
the two solvable states in the j = 9/2 four-particle system this reduces to the
relation

B(E2; (9/2)4, v = 4, s, J = 6 → (9/2)4, v = 4, s, J = 4)

=
209475

176468
B(E2; 2+1 → 0+1 ) ≈ 1.19 B(E2; 2+1 → 0+1 ), (60)

which defines an interaction-independent relation between the properties of
the two- and four-particle systems.

We have searched for other examples of partial seniority conservation but
failed to find any for half-odd-integer values j 6= 9/2. So it transpires that the
two solvable seniority v = 4 states of the four-particle system in the j = 9/2
shell are unique. The situation for bosons is different, as discussed in Sect. 5.

Although the mathematical derivation of the necessary conditions for the ex-
istence of partial seniority conservation is clear, a simple, intuitive reason for
it is still lacking. In Ref. [25] some progress towards this goal has been made,
and in particular a partial understanding with analytic arguments of the coef-
ficients entering the energy expressions (51) has been achieved. So far, the best

20



explanation of the anomalous partial conservation of seniority in the j = 9/2
shell has been given by Qi [26] who found an analytic derivation of this prop-
erty based on the uniqueness of the |j5, v = 5, J = j〉 state for j = 9/2, state
which is no longer unique for j > 9/2.

5 Partial seniority conservation for N identical bosons

In Sect. 2 are given the sufficient conditions (8) for a hamiltonian describing
a system of interacting bosons or fermions to have a dynamical symmetry.
The derivation is based on a simple counting argument which for bosons is
as follows. For identical bosons the number of independent quadratic Casimir
operators in the canonical classification (1) is two for ℓ = 1 and three for ℓ > 1.
(In this section the notation ℓ instead of j is used for the spin of the particles,
to emphasize that they are bosons.) This matches the number of two-body
interactions for p and d bosons which therefore are solvable systems. If the
spin of the bosons exceeds ℓ = 2 (f bosons and beyond), there are more two-
body interactions than quadratic Casimir operators, and a general two-body
hamiltonian does not have a dynamical symmetry. In this section it is shown
that in systems of interacting bosons with spin ℓ ≥ 3 many states occur to
which additional constraints apply as a consequence of which they are solvable.

For the present discussion it is convenient to replace the quadratic Casimir
operators in the hamiltonian (4) with equivalent operators that are of pure
two-body character. The quadratic Casimir operator of U(n) (with n ≡ 2ℓ+1)
is, up to a term linear in the boson number operator N̂ , equivalent to a
constant interaction between the bosons which shall be denoted as Ĉ. The
quadratic Casimir operator of SO(n) is, up to linear and quadratic terms in N̂ ,
equivalent to a pairing interaction P̂ . Finally, the quadratic Casimir operator
of SO(3) is identical to the square of the angular momentum operator Ĵ2;
again it is more convenient to retain only its two-body part which shall be
denoted as Ĵ2

tb. In terms of the earlier defined two-body operators V̂λ, one has
the identities

Ĉ =
∑

λ

V̂λ, P̂ = V̂0, Ĵ2
tb =

∑

λ

[λ(λ+ 1)− 2ℓ(ℓ+ 1)]V̂λ. (61)

Given their connection with the quadratic Casimir operators in the classifica-
tion (1), matrix elements of the operators Ĉ, P̂ and Ĵ2

tb can be found in closed
form,

〈ℓNvαJ |Ĉ|ℓNvαJ〉= 1

2
N(N − 1),
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〈ℓNvαJ |P̂ |ℓNvαJ〉=N(N + n− 2)− v(v + n− 2),

〈ℓNvαJ |Ĵ2
tb|ℓNvαJ〉= J(J + 1)−Nℓ(ℓ+ 1). (62)

Let us consider now a state |ℓNvαJ〉 and ask the question whether values of
boson number N , seniority v, multiplicity label α and angular momentum
J exist for which this is an eigenstate of an arbitrary two-body hamiltonian
V̂ =

∑
λ νλV̂λ with analytic eigenvalues of the form

E(ℓNvαJ) =
∑

λ

aλνλ, (63)

in terms of the two-body matrix elements νλ with coefficients aλ that are func-
tions of ℓ, N , v, α and J . The analysis concerns states of maximum seniority,
v = N . It has been remarked earlier that partial conservation of seniority oc-
curs ‘trivially’ in a number of cases. The most obvious example is an N -boson
state of stretched angular momentum J = ℓN . It is clear that this state must
have seniority v = ℓ and that only the stretched interaction matrix element
with λ = 2ℓ can contribute to its energy. Formally, this result is obtained from
the expression for the matrix element in terms of N -to-(N−2)-particle CFPs,

〈ℓNvαJ |V̂λ|ℓNv′α′J〉= N(N − 1)

2

∑

v1α1J1

[ℓN−2(v1α1J1)ℓ
2(λ); J |}ℓNvαJ ]

×[ℓN−2(v1α1J1)ℓ
2(λ); J |}ℓNv′α′J ]. (64)

For a state with J = ℓN the intermediate state is unique with v1 = N − 2
and J1 = ℓ(N − 2), and the only interaction that couples J1 to J has λ = 2ℓ.
Since the corresponding CFP is unique it equals one and hence

E(ℓN , v = N, J = ℓN) =
N(N − 1)

2
ν2ℓ. (65)

This argument clearly is only appropriate for J = ℓN and v = N . Similar but
modified versions of it are possible for J < ℓN and rely on the knowledge of the
multiplicity d(ℓ)v (J), which specifies how many times the angular momentum J
occurs for a given seniority v. A closed formula is available for d(ℓ)v (J) in terms
of an integral over characters of the orthogonal algebras SO(n) and SO(3),
known from Weyl [27]. This leads to the following complex integral [28]:

d(ℓ)v (J) =
i

2π

∮

|z|=1

(z2J+1 − 1)(z2v+2ℓ−1 − 1)
∏2ℓ−2

k=1 (z
v+k − 1)

zℓv+J+2
∏2ℓ−2

k=1 (z
k+1 − 1)

dz. (66)

By virtue of Cauchy’s theorem the multiplicity d(ℓ)v (J) is obtained as the neg-
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ative of the residue of the integrand in Eq. (66).

To illustrate how multiplicity enters into the discussion of partial conservation
of seniority, it is easier to specify a value for the boson spin ℓ. Let us choose
ℓ = 3. Multiplicities for f bosons are given in Table 1 up to seniority v = 15.
No state exists with angular momentum J = 3N − 1 and the highest possible,
non-stretched angular momentum is J = 3N−2. This state is unique and must
have seniority v = N since J = 3N − 2 does not occur for lower seniorities,
that is, d(f)v (3N − 2) = 0 for v = N − 2, N − 4, . . .. The eigenvalue of this
state can be found by noting from the expression (64) that the interaction V̂2

cannot contribute to its energy since the highest angular momentum of the
intermediate fN−2 system is J1 = 3(N − 2) which cannot couple with λ = 2
to J = 3N − 2. Hence one establishes the equations

a0 = a2 =0,

a0 + a2 + a4 + a6 =
1

2
N(N − 1),

−24a0 − 18a2 − 4a4 + 18a6 =(3N − 2)(3N − 1)− 12N, (67)

which can be solved to yield the energy expression

E(fN , v = N, J = 3N − 2) =
6N − 1

11
ν4 +

11N2 − 23N + 2

22
ν6. (68)

The next highest angular momentum J = 3N − 3 is also unique and exists for
N ≥ 3. A closed energy expression can be found with the same argument,

E(fN , v = N, J = 3N − 3) =
9N − 3

11
ν4 +

11N2 − 29N + 6

22
ν6. (69)

For angular momentum J = 3N − 4 one encounters the first case with mul-
tiplicity 2 (provided N ≥ 4). The seniority of this state is still necessarily
v = N since d(f)v (3N − 4) = 0 for v = N − 2, N − 4, . . .. However, unlike the
previous cases, it can couple with the interaction V̂2 to the stretched state of
the intermediate fN−2 system with angular momentum J1 = 3(N − 2), so the
interaction energy associated with V̂2 does not necessarily vanish but is given
by

〈fN , v = N,α, J = 3N − 4|V̂2|fN , v = N,α, J = 3N − 4〉

=
N(N − 1)

2
[fN−2(J1 = 3N − 6)f 2(2); J |}fNvαJ ]2. (70)

There are two states with J = 3N −4 and v = N , characterized by α1 and α2,
and only one intermediate state with J1 = 3N − 6. One can therefore always
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Table 1
Multiplicity d

(f)
v (J) for f bosons up to seniority v = 15.

J\v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 1 0 1 0 1 0 2 0 2 0 2 1
1 0 0 1 0 1 0 2 1 2 1 3 2 4 2 5
2 0 1 0 1 1 2 1 3 2 4 3 5 4 7 5
3 1 0 1 1 2 2 3 2 5 4 6 5 8 7 10
4 0 1 1 2 1 3 3 5 4 6 6 9 8 11 10
5 0 0 1 1 3 2 4 4 6 6 9 8 11 11 15
6 0 1 1 2 2 4 4 6 6 9 8 12 12 15 15
7 0 0 1 1 3 3 5 5 8 8 11 11 15 15 19
8 0 0 0 2 2 4 4 7 7 10 11 14 14 19 19
9 0 0 1 1 2 3 6 6 9 9 13 14 18 18 23

10 0 0 0 1 2 4 4 7 8 12 12 16 17 22 23
11 0 0 0 0 2 2 5 6 9 10 14 15 20 21 26
12 0 0 0 1 1 3 4 7 8 12 13 18 19 24 26
13 0 0 0 0 1 2 4 5 9 10 15 16 21 23 29
14 0 0 0 0 0 2 3 6 7 11 13 18 20 26 27
15 0 0 0 0 1 1 3 4 8 10 14 16 22 24 31
16 0 0 0 0 0 1 2 5 6 10 12 18 20 26 29
17 0 0 0 0 0 0 2 3 6 8 13 15 21 24 31
18 0 0 0 0 0 1 1 3 5 9 11 16 19 26 29
19 0 0 0 0 0 0 1 2 5 6 11 14 20 23 30
20 0 0 0 0 0 0 0 2 3 7 9 14 17 24 28
21 0 0 0 0 0 0 1 1 3 5 9 12 18 21 29
22 0 0 0 0 0 0 0 1 2 5 7 12 15 22 26
23 0 0 0 0 0 0 0 0 2 3 7 9 15 19 26
24 0 0 0 0 0 0 0 1 1 3 5 10 13 19 23
25 0 0 0 0 0 0 0 0 1 2 5 7 12 16 24
26 0 0 0 0 0 0 0 0 0 2 3 7 10 16 20
27 0 0 0 0 0 0 0 0 1 1 3 5 10 13 20
28 0 0 0 0 0 0 0 0 0 1 2 5 7 13 17
29 0 0 0 0 0 0 0 0 0 0 2 3 7 10 16
30 0 0 0 0 0 0 0 0 0 1 1 3 5 10 14
31 0 0 0 0 0 0 0 0 0 0 1 2 5 7 13
32 0 0 0 0 0 0 0 0 0 0 0 2 3 7 10
33 0 0 0 0 0 0 0 0 0 0 1 1 3 5 10
34 0 0 0 0 0 0 0 0 0 0 0 1 2 5 7
35 0 0 0 0 0 0 0 0 0 0 0 0 2 3 7
36 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5
37 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5
38 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3
39 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3
40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
42 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

choose a linear combination of α1 and α2, say ᾱ, such that

[fN−2(J1 = 3N − 6)f 2(2); J |}fNvᾱJ ] = 0. (71)
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This state satisfies

〈fN , v = N,αi, J = 3N − 4|V̂2|fN , v = N, ᾱ, J = 3N − 4〉 = 0, (72)

and by the same argument as before one can derive its energy in closed form,

E(fN , v = N, ᾱ, J = 3N − 4) =
12N − 6

11
ν4 +

11N2 − 35N + 12

22
ν6. (73)

The next highest angular momentum J = 3N − 5 has also multiplicity 2 for
N ≥ 5. A closed energy expression can be found with the same argument,

E(fN , v = N, ᾱ, J = 3N − 5) =
15N − 10

11
ν4 +

11N2 − 41N + 20

22
ν6. (74)

The next case with angular momentum J = 3N − 6 presents the additional
complication that its seniority quantum number is not unique but can be
v = N or v = N − 2. It can still be dealt with in the following way. There are
two intermediate states in the expression for the matrix element of V̂2,

〈fN , v = N,α, J = 3N − 6|V̂2|fN , v = N,α, J = 3N − 6〉

=
N(N − 1)

2

∑

J1

[fN−2(J1)f
2(2); J |}fNvαJ ]2, (75)

with J1 = 3N − 6 or 3N − 8. However, the state with angular momentum
J = 3N − 6 has multiplicity 3 (for N ≥ 6) and hence a linear combination ᾱ
can always be chosen such that

[fN−2(J1)f
2(2); J |}fNvᾱJ ] = 0, for J1 = 3N − 6, 3N − 8. (76)

As a consequence, the contribution of V̂2 to the energy of the state |fN , v =
N, ᾱ, J = 3N − 6〉 vanishes. In addition, one has from Eq. (64) and the van-
ishing CFPs (76) that

〈fN , v = N − 2, J = 3N − 6|V̂2|fN , v = N, ᾱ, J = 3N − 6〉 = 0, (77)

that is, the state does not mix with the state with seniority v = N −2. This is
thus a first example of ‘non-trivial’ conservation of seniority since one has for
a given angular momentum J several possible seniorities v and one state with
seniority v = N that does not mix with states of lower seniority. Its eigenvalue
is found to be

E(fN , v = N, ᾱ, J = 3N − 6) =
18N − 15

11
ν4 +

11N2 − 47N + 30

22
ν6. (78)

25



The arguments for finding states which conserve seniority while all others do
not, become increasingly complex but are still valid for the next two cases
with angular momentum J = 3N − 7 (N ≥ 7) and J = 3N − 8 (N ≥ 8). The
eigenvalue expressions are

E(fN , v = N, ᾱ, J = 3N − 7) =
21N − 21

11
ν4 +

11N2 − 53N + 42

22
ν6, (79)

and

E(fN , v = N, ᾱ, J = 3N − 8) =
24N − 28

11
ν4 +

11N2 − 59N + 56

22
ν6. (80)

The preceding analysis can be generalized to bosons with any spin ℓ. The
solvable states satisfy the following energy expression:

E(ℓN , v = N, ᾱ, J = ℓN − q) = aℓNq ν2ℓ−2 + bℓNq ν2ℓ, (81)

with

aℓNq =
qℓN − (q − 1)q

4ℓ− 1
,

bℓNq =
(4ℓ− 1)N2 − [(4ℓ− 1) + 2qℓ]N + (q − 1)q

2(4ℓ− 1)
. (82)

According to this analysis, partial conservation of seniority is restricted to
states with maximal seniority, v = N , and occurs at the high end of allowed
angular momenta. The surprising aspect of the result (82) is that partial con-
servation of seniority persists for high values of q, up to q = 8.

6 Applications in fermionic systems

Many studies exist which show the relevance of seniority in nuclei. It is not
the intention here to review all such applications, many of which are discussed
in Ref. [5]. Rather, two consequences of the partial conservation of seniority
are pointed out, which are related to the existence of seniority isomers and to
properties of one-nucleon transfer.
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6.1 Seniority isomers

Isomers are metastable quantum states. In nuclei isomers generally adopt a
configuration which is different from those of states at lower energy and their
decay is therefore hindered. The type of configuration change determines the
nature of the isomer and hence one distinguishes, for example, shape isomers,
spin isomers and K isomers [29].

Seniority isomers exist by virtue of seniority and its associated selection rules.
Generally, and in particular in semi-magic nuclei, states with low seniority
occur at low energy. For example, the ground state of an even-even semi-
magic nucleus has approximately seniority v ≈ 0 (all nucleons in pairs coupled
to J = 0) while its yrast levels with angular momenta J = 2, 4, 6, . . . have
seniority v ≈ 2 (containing one ‘broken’ pair with J 6= 0). Seniority isomerism
is expected to occur in semi-magic nuclei because electric quadrupole (E2)
transitions between states with seniority v = 2 are small when the valence
shell is close to half-filled. This result is a consequence of the fact that the
matrix elements of even tensor operators—and hence also of the quadrupole
operator—between states with seniority v = 2 vanish at mid-shell [4,5].

Examples of seniority isomers have been found in the N = 50 isotones with
protons dominantly confined to the π1g9/2 shell [30]. In particular, the Jπ = 8+

levels in 92Mo (Z = 42), 94Ru (Z = 44), 96Pd (Z = 46) and 98Cd (Z =
48) have half-lives of 0.190(3), 71(4), 2.10(21) and 0.48(16) µs, respectively,
resulting from a combination of slow E2 decay and a small energy difference
with the Jπ = 6+ level below it. A review is given by Grawe et al. [31]. On
the basis of similar arguments one would expect the same phenomenon to
occur in the neutron-rich nickel (Z = 28) isotopes from 70Ni to 76Ni with
neutrons dominantly confined to the ν1g9/2 shell. Isomers with Jπ = 8+ are
indeed observed in 70Ni and 76Ni with half-lives of 0.232(1) and 0.59+18

−11 µs,
respectively, but, in spite of intensive searches [32], none was found so far in
72Ni or 74Ni. Only recently, a possible Jπ = (8+) level was identified in 72Ni at
an excitation energy 2590 keV, decaying to a Jπ = (6+) level with the emission
of a 199-keV gamma [33]; only an upper limit of 20 ns could be determined
for the half-life which therefore seems to exclude the isomeric character of this
level.

An explanation of these observations is given in this subsection. The problem
was discussed by Grawe et al. [34] who noted that the disappearance of the
isomers in 72Ni and 74Ni is related to an inversion of levels with seniority v = 2
and v = 4. It will be shown that an analytic explanation exists on the basis
of the results derived in Sect. 4.

Let us begin with a discussion of the nickel isotopes from 70Ni to 76Ni; since
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Fig. 2. The low-energy spectra of the nickel isotopes 70−76Ni. The left-hand columns
‘Exp’ show the observed levels while the columns ‘Th1’ and ‘Th2’ contain the results
of a (ν1g9/2)

n shell-model calculation with constant or linearly varying two-body
matrix elements, respectively. The two solvable Jπ = 4+ and Jπ = 6+ states with
seniority v = 4 are shown with thick lines; the dashed line corresponds to an intruder
level.

virtually nothing is known about the odd-mass nuclei, let us concentrate on
the even-even ones. The left-hand columns of the spectra in Fig. 2 show the
observed levels [33,35,36]. The nucleus 70Ni displays, in a single-shell approx-
imation, a two-neutron-particle spectrum (ν1g9/2)

2 with excited states with
Jπ = 2+, 4+, 6+ and 8+. This is indeed found to be the case except for the
additional Jπ = (2+) level at 1867 keV. This level is equally absent in shell-
model calculations in a large basis consisting of the 2p1/2, 2p3/2, 1f5/2 and 1g9/2
shells for neutrons and protons [37]. A possible explanation of the 1867 keV
level would therefore seem to require the 1f7/2 shell and, in particular, proton
excitations across the Z = 28 shell gap might lead to low-lying states in 70Ni.
The nucleus 76Ni displays a two-neutron-hole spectrum (ν1g9/2)

−2 with the
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same yrast sequence as in 70Ni. The two-particle and the two-hole spectra fix
the two-body matrix elements νλ, or rather the differences νλ − ν0. This is
done at two levels of sophistication by taking either constant matrix elements
that are the average of those in 70Ni and 76Ni (Th1) or by letting them vary
linearly from 70Ni to 76Ni (Th2). In the latter approximation the spectra of
the two-particle and the two-hole nuclei are exactly reproduced [except for
the intruder Jπ = (2+) state in 70Ni]; the description of the two intermediate
isotopes, 72Ni and 74Ni, should be rather accurate, albeit very empirical.

The two solvable Jπ = 4+ and Jπ = 6+ levels with seniority v = 4 are shown
with thick lines in Fig. 2. A noteworthy feature of the calculated spectra of
72,74Ni is the occurrence of two levels for Jπ = 4+ and for Jπ = 6+ which are
very close in energy, especially in the latter case. This is a direct consequence
of the solvability of one member of each doublet which cannot mix with the
close-lying, predominantly v = 2 state with the same spin. At least for the
Jπ = 6+ levels, this feature is still clearly present in the large-scale shell-model
calculations of Lisetskiy et al. [37].

A similar analysis in the same approximation can be performed for the N = 50
isotones with protons in the π1g9/2 shell. In Fig. 3 the results of the calcula-
tion are compared with the observed spectra [38–41]. In 94Ru (4+2 ) and (6+2 )
levels are observed at energies of 2503 and 2818 keV, respectively [39]; these
are possible candidates for the solvable states which are calculated at 2422
and 2828 keV in the approximation ‘Th2’. It would be of interest to confirm
the spin assignment and to attempt to measure the E2 transition probability
between the two levels.

There is a striking difference between the calculated four-particle (or four-
hole) spectra of the nickel isotopes and those of the N = 50 isotones: the
solvable Jπ = 4+ and Jπ = 6+ states are yrast in 72Ni and 74Ni while they are
yrare in 94Ru and 96Pd. For this reason one may conjecture that the observed
yrast (4+) and (6+) levels in 72Ni and the observed yrast (4+) level in 74Ni are
the solvable states in question, as is done in Fig. 2.

For any reasonable interaction between identical nucleons in a j = 9/2 shell,
the seniority classification is a good approximation. This was shown to be
true for specific cases by Grawe et al. [34] but can be argued from general
considerations. Consider as an example the Jπ = 0+ states. There are two
Jπ = 0+ states for four particles in a j = 9/2 shell with seniority v = 0 and
v = 4, respectively. Introducing the notation |0+v=0〉 ≡ |(9/2)4, v = 0, J = 0〉
and |0+v=4〉 ≡ |(9/2)4, v = 4, J = 0〉, one finds with the help of the results of
Sect. 4 the following matrix elements:

〈0+v=0|V̂ |0+v=0〉=
8

5
ν0 +

1

2
ν2 +

9

10
ν4 +

13

10
ν6 +

17

10
ν8,
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Fig. 3. The low-energy spectra of the N = 50 isotones 92Mo, 94Ru, 96Pd and 98Cd.
The left-hand columns ‘Exp’ show the observed levels while the columns ‘Th1’ and
‘Th2’ contain the results of a (π1g9/2)

n shell-model calculation with constant or
linearly varying two-body matrix elements, respectively. The two solvable Jπ = 4+

and Jπ = 6+ states with seniority v = 4 are shown with thick lines; the dashed line
corresponds to an intruder level.

〈0+v=0|V̂ |0+v=4〉=
−65ν2 + 315ν4 − 403ν6 + 153ν8

10
√
429

,

〈0+v=4|V̂ |0+v=4〉=
13

66
ν2 +

735

286
ν4 +

961

330
ν6 +

459

1430
ν8. (83)

The extent of the breaking of seniority depends on the size of the off-diagonal
matrix element divided by the difference between the diagonal ones. For any
reasonable choice of interaction this ratio is small. For example, for any of
the interactions fitted to the nickel isotopes or the N = 50 isotones, the
differences between the exact and the diagonal energies are less than 2 keV
and the admixtures of seniority v = 4 in the ground state do not exceed 0.1%

30



in amplitude. A similar argument applies to the Jπ = 2+ and Jπ = 8+ states.

The proof that seniority mixing is negligible for all Jπ = 4+ and Jπ = 6+ states
of a four-particle j = 9/2 system is more subtle. There are three states for each
of these angular momenta, two of which, with seniority v = 2 and v = 4, are
close in energy and could possibly strongly mix. However, the seniority v = 4
members of the closely-spaced doublets are precisely the solvable Jπ = 4+

and Jπ = 6+ states discussed in Sect. 4, and they conserve seniority for any
interaction. As a consequence, breaking of seniority only arises through mixing
of the seniority v = 2 and the higher-lying seniority v = 4 state and, by the
same argument as above, this mixing is found to be small.

The conclusion of this discussion is that, for any reasonable two-body inter-
action, seniority is a good quantum number for all states in a j = 9/2 shell.
Exact energies obtained from a diagonalization are close to the approximate
seniority formulas, which for the Jπ = 4+ and Jπ = 6+ states with seniority
v = 2 are given by

E[(9/2)4, v = 2, J = 4]=
3

5
ν0 +

67

99
ν2 +

746

715
ν4 +

1186

495
ν6 +

918

715
ν8,

E[(9/2)4, v = 2, J = 6]=
3

5
ν0 +

34

99
ν2 +

1186

715
ν4 +

658

495
ν6 +

1479

715
ν8. (84)

Comparison of these expressions with the corresponding ones for the solvable
Jπ = 4+ and Jπ = 6+ states with seniority v = 4, Eq. (51), makes it clear
that the lowering of the solvable states in 72,74Ni is associated with the low
excitation energy of the Jπ = 2+ level in the two-particle and two-hole nuclei
70Ni and 76Ni. In the corresponding N = 50 isotones, 92Mo and 98Cd, the
Jπ = 2+ level is at higher energy and, because the coefficient of ν2 in Eq. (51)
is larger than the one in Eq. (84), this results in a higher excitation energy of
both solvable states in 94Ru and 96Pd.

Partial seniority conservation sheds also some new light on the existence of
seniority isomers [24,42]. Figure 4 illustrates the E2 decay for four particles
in the j = 9/2 shell as obtained with a seniority-conserving interaction. On
the left-hand side it shows the ‘typical’ decay with very small B(E2) values
between states with seniority v = 2 which is characteristic of the seniority
classification in nuclei near mid-shell (N ≈ j + 1/2) and which is at the basis
of the explanation of seniority isomers [31]. This situation applies to 94Ru
and 96Pd where the states with seniority v = 2 are yrast. Another condition,
necessary for the existence of the Jπ = 8+ state as an isomer, is that it
should occur below the solvable Jπ = 6+, which can be easily verified by
comparing its energy, Eq. (51), with the one of the Jπ = 8+ state, in a seniority
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Fig. 4. E2 decay in the (9/2)4 system as expected in the N = 50 isotones (left) and
the Z = 28 nickel isotopes (right). The numbers between the levels denote B(E2)
values expressed in units of B(E2; 2+1 → 0+1 ) of the two-particle system and obtained
with a seniority-conserving interaction.

approximation given by

E[(9/2)4, v = 2, J = 8] =
3

5
ν0 +

6

11
ν2 +

486

715
ν4 +

87

55
ν6 +

1854

715
ν8. (85)

On the right-hand side of Fig. 4 is shown the E2 decay pattern as it is calcu-
lated in 72,74Ni. As argued above, it can be expected in these isotopes that the
yrast Jπ = 4+ and Jπ = 6+ levels have seniority v = 4, and this drastically
alters the E2 decay pattern in the yrast band. As a consequence, unless the
Jπ = 8+ and Jπ = 6+ levels are very close in energy, the former is unlikely to
be isomeric.

The results of this analysis are schematically summarized in Fig. 5 which
shows the evolution of the two- and four-particle spectra as a function of
R(4/2), the ratio of excitation energies of the yrast Jπ = 4+ and Jπ = 2+

levels in the two-particle spectrum. This ratio is assumed in the figure to vary
between two extreme values, R(4/2) = 1 and R(4/2) = 2, beyond which a
seniority classification certainly is not any longer a reasonable approximation.
The excitation energies of the yrast levels in the two-particle spectrum with
Jπ = 4+, Jπ = 6+ and Jπ = 8+ are assumed to be constant. In the upper
panel of Fig. 5 is shown the evolution of levels of the four-particle spectrum
as a function of R(4/2) in the two-particle spectrum. If effects of seniority
mixing (which are small) are neglected, excitation energies vary linearly with
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Fig. 5. Schematic illustration of the effect of R(4/2), the ratio of excitation energies
of the yrast Jπ = 4+ and Jπ = 2+ levels in the two-particle spectrum (bottom), on
the properties of the four-particle spectrum (top). The arrows indicate the positions
of a number of isotopes according to their R(4/2) ratio in the two-particle (or
two-hole) spectra, and the corresponding four-particle (or four-hole) isotopes.

R(4/2). Not surprisingly, the excitation energy of the Jπ = 2+ level in the
four-particle spectrum approximately drops by a factor two as R(4/2) changes
from 1 to 2 but the other levels with seniority v = 2 remain approximately
constant in energy. The biggest change, however, occurs for the two solvable
levels with seniority v = 4 to the extent that they cross some of the levels
with seniority v = 2. The dashed line indicates the point where the Jπ = 6+

level with seniority v = 4 crosses the Jπ = 8+ level with seniority v = 2; the
latter level is expected to be isomeric for smaller values of R(4/2). The arrows
indicate the positions on this diagram of a number of isotopes according to
their R(4/2) ratio in the two-particle (or two-hole) spectra. Extrapolation to
the four-particle (or four-hole) spectra then leads to the conclusion that no
Jπ = 8+ isomer should exist in 72Ni (nor in 74Ni) while they should occur in
212Pb (and 214Pb), 94Ru (and 96Pd), as well as in 128Pd (and 126Ru).

In a less schematic analysis the exact positions of the Jπ = 6+ and Jπ = 8+
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Fig. 6. The low-energy spectra of the isotopes 130Cd and 128Pd. The left-hand
columns ‘Exp’ show the observed levels while the columns ‘Theo’ contain the results
of a (π1g9/2)

n shell-model calculation with constant two-body matrix elements. The
two solvable Jπ = 4+ and Jπ = 6+ states with seniority v = 4 are shown with thick
lines.

levels of the two-particle spectrum should be taken instead of the plausible
but somewhat arbitrary values of Fig. 5. The influence of these energies in
this analysis is weak, however, and the same conclusion is obtained with the
correct energies, that is, the Jπ = 8+ levels of the four-particle (or four-hole)
nuclei are isomeric except those in 72Ni and 74Ni.

Besides the nickel isotopes and the N = 50 isotones, already discussed in
the preceding paragraphs, Fig. 5 predicts properties of the neutron-rich lead
isotopes (Z = 82) and the proton-poor N = 82 isotones. The two-particle
nucleus 210Pb is particularly stiff, characterized by a low ratio R(4/2) = 1.37
and therefore Jπ = 8+ seniority isomers should exist in 212Pb and 214Pb. This
is indeed confirmed by recent experiments [43].

Another interesting application concerns the existence of a Jπ = 8+ senior-
ity isomer in 128Pd. An isomer in this extremely neutron-rich palladium iso-
tope (Z = 46) was detected at the RIBF facility at RIKEN with a delayed-
coincidence technique between the identified radioactive ion and gamma rays
de-exciting the isomeric state after passing through the spectrometer [44]. The
two-hole spectrum of 130Cd is well known and contains a Jπ = 8+ isomer with
a half-life of 0.22(3) µs [45]. On the basis of these properties of 130Cd, a simple
prediction can be made of those of 128Pd (see Fig. 6) with a Jπ = 8+ level at
2116 keV which turns out to be isomeric since it occurs below the Jπ = 6+

state with seniority v = 4 at 2460 keV and just above the Jπ = 6+ state with
seniority v = 2 at 2051 keV. The half-life T1/2(

128Pd; 8+1 ) of the Jπ = 8+ level
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in 128Pd can be estimated from

T1/2(
128Pd; 8+1 )

T1/2(130Cd; 8
+
1 )

=
1 + αCd(128)

1 + αPd(75)

(
128

75

)5 B(E2; 8+1 → 6+1 )130Cd

B(E2; 8+1 → 6+1 )128Pd
, (86)

where αX(Eγ) is the internal electron conversion coefficient for a transition
with energy Eγ (in keV) in the element X. The gamma-ray energies for the
8+1 → 6+1 transitions in 128Pd and 130Cd, Eγ = 75 and 128, are taken from
experiment [44,45]. In the seniority scheme the following relations are valid
(see Fig. 4):

B(E2; 8+1 → 6+1 )130Cd =0.318B(E2; 2+1 → 0+1 )130Cd,

B(E2; 8+1 → 6+1 )128Pd =0.035B(E2; 2+1 → 0+1 )130Cd, (87)

which, together with the values for the conversion coefficients as obtained from
the database BrIcc [46], αCd(128) = 0.621 and αPd(75) = 3.90, leads to the
estimate T1/2(

130Cd; 8+1 ) ≈ 9.6 µs, which is reasonably close to the observed
value of 5.8(8) µs [44]. A possible source of error in the theoretical estimate
is the smallness of the B(E2; 8+1 → 6+1 ) value in 128Pd, which is sensitive to
small admixtures in the wave functions.

One should be aware of the limits of validity of the simple estimates given on
the basis of seniority. To illustrate this point, let us return to the example of
the nickel isotopes. Besides the half-life of the Jπ = 8+ isomer in 70Ni, also
the Coulomb-excitation probability of the first-excited Jπ = 2+ state is known
in this nucleus, leading to a B(E2; 2+1 → 0+1 ) value of 172(28) e2fm4 [47]. On
the basis of the seniority relation between the B(E2) values for the 2+1 →
0+1 and 8+1 → 6+1 transitions, see the first equation of Eq. (87), a half-life
T1/2(

70Ni; 8+1 ) = 73(12) ns is deduced, a factor three shorter than what is
observed. In other words, the 2+1 → 0+1 E2 transition is faster by a factor three
than expected on the basis of seniority, indicating that the Jπ = 2+1 state has
a collective structure that goes beyond a pure ν1g9/2 shell.

One can push this argument further and estimate the half-life of the Jπ =
(8+) level in 72Ni. Because of the structure of the solvable Jπ = 6+ state
with seniority v = 4, see the second equation of Eq. (50), the 8+1 → 6+1 E2
transition arguably can be expected to be collectively enhanced as well. It
should therefore be estimated from the 2+1 → 0+1 and not from the 8+1 → 6+1
E2 transition in 70Ni, leading to

T1/2(
72Ni; 8+1 )

T1/2(70Ni; 2
+
1 )

=
1 + αNi(1260)

1 + αNi(199)

(
1260

199

)5 B(E2; 2+1 → 0+1 )70Ni

B(E2; 8+1 → 6+1 )72Ni

. (88)
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Fig. 7. Selection rules for one-particle transfer in a j = 9/2 shell. In the left panel
seniority is an exact quantum number for all states while in the right panel it is
broken for most states, except for the two-particle states and for the four-parti-
cle Jπ = 4+ state with seniority v = 4. Full lines indicate transitions allowed in
one-particle transfer, dotted lines correspond to forbidden transitions and dashed
lines are transitions which arise due to seniority mixing and therefore are weak but
not exactly zero. Example nuclei corresponding to the two-, three- and four-particle
systems are indicated on top. Energies of levels are not drawn to scale.

From the relation (see Fig. 4)

B(E2; 8+1 → 6+1 )72Ni = 1.08B(E2; 2+1 → 0+1 )70Ni, (89)

and the half-life T1/2(
70Ni; 2+1 ) = 1.6(3) ps, deduced from the B(E2; 2+1 → 0+1 )

value, one obtains the estimate T1/2(
72Ni; 8+1 ) ≈ 14 ns, which is consistent with

the current upper limit of 20 ns [33].

6.2 Seniority and one-nucleon transfer

The energy spectrum of four identical particles (or holes) in a j = 9/2 shell
will, for any reasonable nuclear interaction, display two Jπ = 4+ and two
Jπ = 6+ levels which are close in energy. Despite this closeness in energy all
states retain their character. In fact, under the assumption of a pure (9/2)4

configuration, the partial conservation of seniority leads to one level with exact
seniority v = 4 and the other with approximate seniority v ≈ 2 as it mixes
(but only weakly) with the other state with seniority v = 4 at higher energy.

Partial conservation of seniority should therefore have consequences with re-
gard to one-particle transfer. Since the seniority of a single particle is v = 1,
the selection rule associated with this reaction is ∆v = ±1. If seniority is
conserved for all eigenstates in a j = 9/2 shell, the intensities of the transfer
from a two- to a three-particle system and from a three- to a four-particle sys-
tem are therefore as indicated in the left panel of Fig. 7: they vanish exactly
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if ∆v 6= ±1. For clarity only the selection rules for the Jπ = 4+ states are
indicated in Fig. 7 but the same ones are valid for the Jπ = 6+ states.

If, more realistically, a general and arbitrary interaction is taken in the j = 9/2
shell, the intensity pattern shown in the left panel of Fig. 7 applies. As ex-
pected, since most of the levels do not carry any longer exact seniority, some of
the forbidden transitions become allowed; their intensities remain small, how-
ever, since the seniority mixing is expected to be weak. More surprisingly, two
of the one-particle transfer intensities remain exactly zero in spite of the se-
niority mixing. The explanation of these selection rules is intricate and related
to the geometry of the j = 9/2 shell.

Firstly, the one-particle transfer from the Jπ = 9/2+ three-particle ground
state with seniority v ≈ 3 to the second Jπ = 0+ four-particle state with
seniority v ≈ 4 remains exactly forbidden. The seniority mixing for the Jπ =
9/2+ states is derived from the matrix

〈9/2+v=1|V̂ |9/2+v=1〉=
4

5
ν0 +

1

4
ν2 +

9

20
ν4 +

13

20
ν6 +

17

20
ν8,

〈9/2+v=1|V̂ |9/2+v=3〉=
−65ν2 + 315ν4 − 403ν6 + 153ν8

20
√
429

,

〈9/2+v=3|V̂ |9/2+v=3〉=
13

132
ν2 +

735

572
ν4 +

961

660
ν6 +

459

2860
ν8. (90)

It is seen that this mixing matrix is proportional to the one for the Jπ = 0+

states given in Eq. (83). The mixings cancel as a result and the seniority
selection rule remains exact.

Secondly, the one-particle transfer from the Jπ = 9/2+ ground state of the
three-particle system to the solvable Jπ = 4+ and Jπ = 6+ four-particle state
with seniority v = 4 also remains exactly forbidden, despite v = 3 admixtures
in the former state. The reason in this case is that

[j3(v = 3, J3 = j)jJ |}j4, v = 4, s, J ] = 0, (91)

for j = 9/2 and for the solvable four-particle states with J = 4 and 6 [25,26].

In summary, the interesting aspect of these results is that two Jπ = 4+ states
and two Jπ = 6+ states are predicted to be close in energy but that they should
be differently excited in a one-particle transfer reaction. To test whether these
schematic predictions remain valid in a more realistic scenario, they should
be compared with the results of a large-scale shell-model (LSSM) calculation.
This has been done for the neutron-rich nickel isotopes with the conclusion
that these characteristic features are still present in the LSSM calculation for
the Jπ = 6+ but not for the Jπ = 4+ states [48].
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7 Conclusions

In this paper a review of the seniority quantum number in many-body systems
was given. The analysis was carried out for bosons and fermions simultaneously
but was restricted to identical particles occupying a single shell (or, alterna-
tively, particles with the same spin). The conditions of complete solvability
were shown to be more restrictive than those for the conservation of seniority.
The partial conservation of seniority was shown to be a peculiar property of
spin-9/2 fermions but prevalent in systems of interacting bosons of any spin.
Partial conservation of seniority was shown to be at the basis of the existence
of seniority isomers which are frequently found in semi-magic nuclei, and to
give rise to selection rules in one-nucleon transfer reactions that have yet to
be tested experimentally.

A general result of the present analysis is the proof that any system of inter-
acting bosons with spin ℓ ≤ 2 is integrable and that its spectrum in energy
is analytically available for any number of bosons. This property has been
exploited in the discussion of Bose-Einstein condensates consisting of atoms
with hyperfine spins f = 1 [49] and f = 2 [50–52]. A more subtle property is
the partial conservation of seniority in systems of interacting bosons with spin
ℓ > 2. The consequences of this finding for Bose-Einstein condensates are still
to be explored.

This work, elementary though it may be, paves the way for further studies
which can be carried out along similar lines. Possible generalizations con-
cern systems of (i) non-identical particles and (ii) particles distributed over
several shells. Open-shell atomic nuclei provide examples of fermionic sys-
tems of type (i). The isoscalar component of the nuclear interaction, however,
strongly breaks seniority and, therefore, the study of seniority in such systems
has seemed irrelevant so far. Given the current interest in two-component
Bose-Einstein condensates, the problem should be revisited for bosons. By
considering semi-magic nuclei as examples of systems of type (ii), they can
be treated more realistically than with the approach advocated in the present
paper. Moreover, interesting formal questions can be explored concerning con-
nections with generalized seniority [53] as well as with integrable Richardson-
Gaudin models [54]. These problems are currently under study and will be the
material of the subsequent papers in this series.
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Zamick. We wish to thank Alex Brown, Ami Leviatan, Igal Talmi and John

38



Wood for illuminating discussions at various stages of this work.

References

[1] G. Racah, Phys. Rev. 63 (1943) 367.

[2] G. Racah, in L. Farkas Memorial Volume, Research council of Israel, Jerusalem,
1952, p. 294.

[3] B.H. Flowers, Proc. Roy. Soc. (London) A 212 (1952) 248.

[4] A. de-Shalit and I. Talmi, Nuclear Shell Theory, Academic Press, New York,
1963.

[5] I. Talmi, Simple Models of Complex Nuclei. The Shell Model and Interacting
Boson Model, Harwood, Chur, 1993.

[6] B.G. Wybourne, Classical Groups for Physicists, Wiley, New York, 1974.

[7] A.K. Kerman, Ann. Phys. (NY) 12 (1961) 300.

[8] K. Helmers, Nucl. Phys. 23 (1961) 594.

[9] A. Frank and P. Van Isacker, Algebraic Methods in Molecular and Nuclear
Structure Physics, Wiley-Interscience, New York, 1994.

[10] F. Iachello, Lie Algebras and Applications, Springer-Verlag, Berlin, 2006.

[11] S. Heinze, Program ArbModel, University of Köln (unpublished).

[12] D.J. Rowe and G. Rosensteel, Phys. Rev. Lett. 87 (2001) 172501.

[13] G. Rosensteel and D.J. Rowe, Phys. Rev. C 67 (2003) 014303.

[14] J.N. Ginocchio and W.C. Haxton, in Symmetries in Science VI, edited by
B. Gruber and M. Ramek, Plenum, New York, 1993.

[15] Y. Alhassid and A. Leviatan, J. Phys. A 25 (1992) L1265.

[16] A. Leviatan, Phys. Rev. Lett. 77 (1996) 818.
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