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Abstract

A first part lists basic rules, taken from the string- and multiperipheral models,
that a recursive quark fragmentation model should obey. A second part describes
spin effects given by the classical “string + 3P0” mechanism of quark-antiquark pair
creation, in pseudoscalar and vector meson production: Collins effect, jet handed-
ness and “hidden spin” effects in unpolarized experiments. The last part constructs
a recursive quantum-mechanical model of spin-dependent fragmentation. In a “ab
initio” approach an integral equation must be solved as a preliminary task. With
a “renormalized input”, this task is reduced to an ordinary integration. A spin-
dependent generalization of the symmetric Lund model is obtained.

1 Introduction

A jet model which takes into account the quark spin degree of freedom must start with
quantum amplitudes rather than probabilities. A “toy model” [1] using Pauli spinors and
inspired from the multiperipheral model and the classical string +3P0 mechanism [2, 3]
followed this principle. Collins- and longitudinal jet handedness [4] effects were generated.
However hadron mass-shell constraints were ignored. These constraints are satisfied in
an improved model [5], which is a symmetric-Lund model endowed with spin factors. In
the ab initio approach of [5] the inputs are quark propagators and quark-hadron vertices

derived from a string action. The recursive splitting function is obtained by solving an
integral equation. We will show that, starting from a renormalized input, this preliminary
task is replaced by an ordinary integration.

Section 2 lists the rules and approximations of a bona fide recursive jet model. Spin
effects produced by the classical string+3P0 mechanism or the “toy model” are sketched
in Sec.3. The next sections develop the model of Ref. [5] in three stages: the ab initio

approach, the renormalized input approach and the application with string anplitudes.

2 Rules and approximations for a recursive model

We take the example of W± decay into qA + q̄B and no gluon (lower part of Fig.1-left)
followed by a hadronisation into mesons and no baryon (upper part of Fig.1-left),

qA + q̄B → h1 + h2... + hN . (1)

1Presented at XVI Advanced Research Workshop on High Energy Spin Physics (DSPIN-13)(Dubna,
October 8-12, 2013)
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Figure 1: Left: quark-diagram of a hadronic decay of W±. Right: associated momentum diagram,
projected on the (p0, pz) plane.

In the multiperipheral picture, (1) is decomposed in recursive quark splittings

q1 → h1 + q2 , q2 → h2 + q3 , · · · · · · qN → hN + qB , (2)

with q1 ≡ qA ; hn is the meson of rank n ≤ N ; qB ≡ qN+1 is the charge conjugate of q̄B
and “propagates backward in time”.

Factorization. We assume the approximate probability convolution

Pevent ≃

∫

dΩ
dP(W±→ qAq̄B)

dΩ
×P(qA + q̄B→ h1 + h2...+ hN ) . (3)

Pevent is the exclusive N -particle distribution of the whole event. dP/dΩ is the angular
distribution of the quark momentum kA in the W± rest frame. The last factor is the
exclusive N -particle distribution of reaction (1). kA/|kA| = ẑ defines the jet axis. In a
more rigorous approach the convolution should bear on the amplitudes. kA is an internal
momentum of the loop diagram of Fig.1-left and Pevent is a double integral: in kA for the
amplitude and in k′

A for the complex conjugate amplitude. Factorization (3) ignores the
pure quantum-mechanical quantity kA − k′

A.

Multiperipheral dynamics. Each splitting conserves 4-momentum: kn = pn + kn+1.
These relations are exhibited in the momentum diagram of Fig.1-right. A basic ingredient
of the multiperipheral model is the cutoff in the quark virtualities −k2. It implies:

• a cutoff in |k+k−| ≡ (k0 + kz) |k0 − kz|, which insures the approximate ordering of
h1, h2, · · ·hN in rapidity and the leading particle effect (or favored fragmentation).

• a cutoff in kT leading to the Local Compensation of Transverse Momenta (LCTM)
[6]. It leads to a cutoff in pT of the hadrons2,3.
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Figure 2: Relation (4) between the quark momentum q3 in the multiperipheral picture and the point
Q3 where the q3q̄3 pair is created in the classical string fragmentation model with mq = 0, kT = 0.

Ladder approximation. A same hadronic final state can be obtained with several
multiperipheral diagrams which differ by permutations. In the ladder approximation the
interferences between these diagrams are neglected. Most often only one diagram is
important, the others having rank ordering too far from the rapidity ordering.

String dynamics. The same properties are found in the String Fragmentation Model.
Fig.2 represents the world sheet of the massive string or dart stretched by qA and q̄B and
decaying into hadrons, in a classical 1+1 dimensional model with massless quarks. It is a
particular type of quark multiperipheral model, if one orders the Q-corners according to
the null-plane time variable X− = t− z and make the correspondance4

t(Qn)− t(O) = kz
n/κ , z(Qn)− z(O) = k0

n/κ , (4)

where κ ≃ 1 GeV/fm is the string tension (hereafter we take κ = 1). For a string
breaking point Q the condition that there is no other breaking in its past cone leads to
the suppression of large (OQ)2 ≡ −k+k− by a factor

exp
(

− b |k+k−|
)

(5)

where 2b is the string ”fragility” in units κ = 1. Quarks with masses and transverse
momenta are thought to be produced by a tunneling mechanism similar to the Schwinger
one for e+e− creation in strong electric field. It provides the kT cutoff factor

exp[−π(m2
q + k2

T)/κ]. (6)

3 Properties of the classical string + 3P0 mechanism

Fig.3 depicts the decay of the dart as if all Qn where at equal time. Assuming that a qnq̄n
pair is created at Qn in the 3P0 state and with zero 4-momentum, one predicts a correlation
between the antiquark polarization S̄n and transverse momentum k̄n,T: 〈k̄n · (ẑ× S̄n)〉 is
positive. A similar effect is predicted in atomic physics [7].

2The converse is not true: the pT cutoff alone, used in some models, does not lead to a kT cutoff.
3The symmetric Lund splitting function reinforces the pT cutoff by the factor exp[−b(m2

h + p2T)/Z].
4k = canonical quark momentum = mechanical momentum + string momentum flow through OQ.
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Case where h1, h2, ... are pseudoscalar mesons. In that case qn and q̄n+1 forming
hn have antiparallel spins. Combined with the 〈k̄·(ẑ×S̄)〉 correlations it gives:
− a Collins effect toward S1 × ẑ for the ”favored” meson h1,
− Collins effects of alternate sides for the next mesons,
− a large Collins effect for h2,
− Relative Collins Effects (or IFF ) larger than from “single-Collins” + LCTM alone.

Case where h1 is a leading vector meson. In a vector meson of linear polarization
A (being known from the decay products), the q and q̄ polarizations are symmetrical
about the plane perpendicular to A (Fig.3b). Let us consider a 1rst-rank vector meson:
− if A ‖ ẑ the Collins asymmetry is opposite to that of a leading pseudoscalar meson,
− if A ⊥ ẑ the Collins asymmetry is in the azimuth 2φ(A)− φ(S1)− π/2,
− if both Az 6= 0 and AT 6= 0 and if q1 is helicity-polarized, S1z Az A·〈ẑ× p〉 is positive.
This is a longitudinal jet-handeness [4] effect.

These three effects are reproduced by the “toy model”. They correspond respectively
to lines 3, 5 and 6 of Eq.(27) of [1]. On the average, the Collins effect is -1/3 that of the
pseudoscalar meson [8].

Hidden spin effects. Whether qA is polarized or not, the 〈k̄·(ẑ×S̄)〉 correlation of the
string +3 P0 mechanism has an impact on the pT distribution of the rank≥ 2 mesons:
− for a pseudoscalar meson, 〈p2

T〉meson > 2 〈k2
T〉quark ,

− for a vector meson linearly polarized along ẑ, 〈p2
T〉meson < 2 〈k2

T〉quark ,
− for a vector meson linearly polarized along x̂, 〈p2x〉 < 2 〈k2

T〉 < 〈p2y〉.
On the average, 〈p2

T〉V-meson < 〈p2
T〉PS-meson. These ”hidden spin” effects allow an unex-

pensive test of the string+ 3P0 mechanism (note that the Schwinger mechanism predicts
no 〈k̄·(ẑ×S̄)〉 correlation [9]). At least they suggest that quark spin plays a role even in
unpolarized experiments and should be included in any jet model.

4 The ab initio approach

The starting point is the multiperipheral hadronization amplitude

〈kB, sB|MN{qAq̄B → h1h2 · · ·hN}|kA, sA〉 =
〈kB, sB| D{qB} V{qB, hN , qN} · · ·D{q3} V{q3, h2, q2}D{q2} V{q2, h1, qA}D{qA} |kA, sA〉 . (7)
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Figure 3: (a) string decay into pseudoscalar mesons with the string+3P0 mechanism. (b) spin correlation
of the quark and antiquark in a vector meson linearly polarized along A.
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|kB, sB〉 is the negative energy state whose hole is |k(q̄B), s(q̄B)〉. Inside curly brakets,
{q} = (f, k) gathers the quark flavor f and 4-momentum k. For a meson {h} = (h, p, sh)
gathers the species h, the 4-momentum and the spin state. The quark propagator D{q} ≡
D(f, k) and the vertex function V{f ′, h, f} ≡ Vf ′,h,f(k

′, k) are the inputs of the model. In
a step-by-step covariant model, |kA, sA〉 and |kB, sB〉 would be Dirac spinors and D and V
would be 4×4 matrices, e.g., D{q} = D(f, k2) (mf +γ ·k). However Lorentz covariance is
required only globally for the whole process of Fig.1. Together with P and C conservation,
this requires the invariance of M under
− (a) rotations about ẑ,
− (b) Lorentz transformations along ẑ,
− (c) reflection about any plane containing ẑ,
− (d) quark chain reversal or “left-right symmetry” [2], i.e., interchanging qA and q̄B.
These invariances can be realized with Pauli spinors. For instance, we will take [1]

D{q} = D(f, k+k−,k2
T) (µf + σz σ · kT) . (8)

Doing so, we do not take into account the whole information (2 q-bits) carried by an
off-mass-shell Dirac spinor. We leave this question for further studies.

Hadronization “cross section” of quark qn. In the ladder approximation one can
define the hadronization “cross section” of an initial or intermediate polarized quark qn,

H{q̄B +↑qn → X} = TrR{qn} ρ{qn} , (9)

where ρ{qn} = (I+ σ ·Sn)/2 is the spin density matrix of qn,

R{qn} =
1

2

∑

N≥n

∫

d{hn} · · · d{hN}M
†
N−n MN−n δ

4[pn + · · ·+ pN − kA − k(q̄B)] (10)

and
∫

d{h} · · · stands for
∑

h

∑

sh

∫

d3p/p0 · · · . We are interested in the qA fragmentation
region, that is why we will took q̄B unpolarized. R{q} obeys the ladder integral equation
(illustrated by Fig.4):

R{q} =

∫

d{h} T †{q′, h, q}R{q′} T{q′, h, q}+
∑

h, sh

M†
1M1 δ[(k − kB)

2 −m2
h] (11)

with T{q′, h, q} ≡ V{q′, h, q}D{q}. At large m2
X ≃ |k−

B | k
+,

R{q} ≃ B{q} (m2
X)

αR , (12)

B{q} = β(f,k2
T) [1 + A(f,k2

T) σ ·ñ(k)] , (13)

with ñ(k) ≡ ẑ×k/|ẑ×k|. In ordinary multiperipheral models αR and B{q} are the
intercept and residue of the output Regge trajectory. A(f,k2

T) is the single-spin asymmetry
of ↑q + q̄B → X. A(f, 0)=0. B{q} is semi-positive definite: β > 0, |A| ≤ 1.

Recursive Monte-Carlo algorithm. Suppose that we have already generated n−1
steps of (2) and recorded the density matrix ρ{qn}. The simulation of the next step
↑qn → hn+ ↑qn+1 (hereafter rewritten ↑q → h+ ↑q′) proceeds in two sub-steps:
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Figure 4: Ladder unitarity diagram associated to Eqs.(9-11) with n=1, q = q1, q
′ = q2. Black bullets

represent quark propagators. The summation over N is understood.

1) generate the species and momentum of h. From Eqs.(11-12) the type and
momentum distribution of the next-rank particle is proportional to

dH{q̄B+↑q} =
dZ d2pT

Z
|k−

B k′+|αR

∑

sh

Tr
[

B{q′} T{q′, h, q} ρ{q} T †{q′, h, q}
]

, (14)

with Z ≡ p+/k+, k′ = k − p.

2) calculate the polarization of ↑q′. It is given by

ρ{q′} =

[

∑

sh

T{q′, h, q} ρ{q} T †{q′, h, q}

]

/Tr [idem] . (15)

If h has nonzero spin and one wants to simulate its decay, a more complicated algorithm
is needed, following the rules of [11] (see also Sec.5.1 of [12]).

In this ab initio approach one must calculate αR and the functions β(f,k2
T) and

A(f,k2
T) from the integral equation (11), as a preliminary numerical task.

5 The renormalized input approach

The physical properties (e.g., the multi-particle distributions) are unchanged by two kinds
of “renormalization” of the propagators and vertices:

(a) new D{q} = |k−k+|λD{q} , new V{q′,h,q} = |k′+k−|λ V{q′,h,q}

(b) new D{q} = Λ{q}D{q}Λ{q} , new V{q′,h,q} = Λ−1{q′} V{q′,h,q}Λ−1{q} ,
(16)

where Λ{q} ≡ Λ(f,kT) is a matrix in spin space. Under (a) αR is shifted by 2λ. Under
(b), new B{q} = Λ†{q}B{q}Λ{q}. Let us combine (a) and (b) with λ = −αR/2 and

Λ = B− 1

2 (D†/D)
1

4 (these matrices commute). Then new αR = 0, new R{q} = I. Taking
the renormalized V{q′,h,q} as unique input, the renormalized propagator is obtained from
(11):

D{q} = U− 1

2{q} with U{q} ≡

∫

d{h} V†{q′, h, q} V{q′, h, q} . (17)
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The preliminary task is now to evaluate (17). It is much easier than solving the integral
equation (11). Besides, (14) is simplified by the absence of |k−

B k′+|αR and B{q′}.

6 Application with string amplitudes

An ab initio string hadronization amplitude [5] can be expressed in the multiperipheral
form with the propagator and vertex

D{q} = (k−k+ − i0)α{q} exp
[

(i− b) k−k+/2
]

d{q} , (18)

V{q′, h, q} = (p+/k′+)α{q
′} exp

[

(b− i) k′−k+/2
]

(−p−/k−)α{q} g{q′, h, q} . (19)

d{q} = d(f,kT) and g{q′, h, q} = gf ′,h,f(k
′
T,kT) are spin matrices and α{q} = α(f,k2

T).
In the ladder approximation one can remove the phases of the exponential factors and of
(k−k+ − i0)α{q}. This does not change the probabilities. After renormalization,

V{q′, h, q} = (k′+/p+)a{q
′}/2 exp(b k+k′−/2) (−k−/p−)a{q}/2 g{q′, h, q} , (20)

with a new g{q′,h,q} and a{q} = old (αR − 2Reα{q}). The right Eq.(17) becomes

U{q} = E(a{q},−k−k+) u{q} with E(a, x) ≡ xa e−bx , (21)

u{q} =
∑

h, sh

∫

d2pT
dZ

Z

(

1− Z

Z

)a{q′}

E

(

−a{q},
m2

h + p2
T

Z

)

g†{q′, h, q} g{q′, h, q} . (22)

Example: a{q} = constant and

g{q′, h, q} = e−B (k′2

T
+kT

2) (µf ′ + σz σ · k′
T) Γ (µf + σz σ · kT) (23)

with Γ = σz for a pseudoscalar meson and Γ = GL V
∗
z I+GT σ·V ∗

T σz for a vector meson,
like in the “toy model ” [1]. A complex µf with Imµf > 0 reproduces the effects of the
string +3P0 mechanism.

The receipe (14-15) becomes

1. generate the species and momentum of h following the distribution

d2pT
dZ

Z

(

1− Z

Z

)a{q′}

E

(

−a{q},
m2

h + p2
T

Z

)

∑

sh

Tr
(

t{q′, h, q} ρ{q} t†{q′, h, q}
)

(24)

with t{q′, h, q} = g{q′, h, q} u− 1

2{q},

2. calculate the polarization of ↑q′ with

ρ{q′} =
[

∑

sh

t{q′, h, q} ρ{q} t†{q′, h, q}
]

/Tr
[

idem
]

. (25)

If quark spin is ignored, g{q′, h, q}=gf ′,h,f(k
′2
T,p

2
T,k

2
T), u{q}=u(f,k2

T) and one recovers
the symmetric Lund model. U{q} and 〈j| V†{q′, h, q} |j′〉 〈i′| V{q′, h, q} |i〉 are the spin-
dependent generalizations of ρν(V ) and ρν,ν′(V, V

′) in [10].
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7 Conclusion

We have built a bona fide recursive quark fragmentation model including the quark spin
degree of freedom. For pseudo-scalar and vector mesons the model can reproduce the
Collins effects of the classical string+3P0 mechanism and also give longitudinal jet hand-
edness. It can be a guide for quark polarimetry and may also account for ”hidden spin”
effects in unpolarized quark fragmentation. The ab initio input consists in quark prop-
agators and vertices. Using it, an integral equation has to be solved in order to fix the
splitting distribution. Starting from the renormalized input, which consists in exponents
a{q} = a(f,k2

T) and vertex matrices g{q′, h, q} = gf ′,h,f(k
′
T,kT), only an ordinary inte-

gration is needed. Putting vertices derived from the semiclassical string action in 1+1
dimension, one obtains a spin-dependent generalization of the symmetric Lund model
which may be implemented in a Monte-Carlo code of quark jet simulation.
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