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Spatial particle correlations in light nuclei.

I Two-particle systems

P. Mei and P. Van Isacker

GANIL, CEA/DSM–CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France

Abstract

Expressions for spatial two-particle correlations in an LS-coupled basis of the har-
monic oscillator are used to display the probability distribution of two identical
nucleons as a function of their relative distance and their distance from the center
of the nucleus. It is shown that a two-nucleon state in the p shell with total orbital
angular momentum L = 0 and total spin S = 0 contains a di-neutron and a cigar-
like component with equal probability. This result can also be proven analytically
with the use of angular correlation functions. Scattering of the nucleons from the
p shell to other shells leads to the enhancement of the di-neutron configuration. A
semi-quantitative application to 6He is presented which shows that the probability
of the di-neutron configuration in the ground state is of the order of 60%. The long-
term goal of this work is to obtain a geometric insight into the properties of nuclei
with several nucleons in a valence shell.

Key words: few-body systems, shell model, neutron distributions
PACS: 21.45.+v, 21.60.Cs, 21.10.Gv

1 Introduction

The radius of nuclei close to the stability line grows on average as the power
1/3 of the mass number A. It came therefore as a surprise that for a nu-
cleus as light as 11Li an unusually large value for this quantity was deduced
from interaction-cross-section measurements [1]. Subsequently, it was realized
that this exceptional spatial extension is due to the weak binding of the two
outer neutrons to the 9Li core; the term ‘halo’ was coined to indicate the
phenomenon of one or two particles wandering into a classically forbidden re-
gion around a tightly bound core. After the introduction of this concept in
the study of light nuclear systems in the 1980s, it migrated to atomic and
molecular physics, prompting a generic treatment of halo properties in diverse
systems [2]. Meanwhile, in nuclear physics, other examples of halo nuclei were
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found, among which the isotopes 6He and 8He [3], the focus of the first two of
the present series of papers.

These experimental studies of neutron-rich light nuclei prompted theoretical
work using a variety of approaches, as reviewed by Zhukov et al. [4]. In the
case of 6He most of the calculations were of a three-body character (the α par-
ticle and two neutrons) and all employed rather sophisticated techniques such
as an expansion in hyperspherical harmonics, the coordinate-space Faddeev
approach or the two-particle Green’s function method. In spite of their com-
plexity these calculations gave rise to a simple geometric picture of 6He, with
a ground state divided between a ‘di-neutron’ and a ‘cigar-like’ configuration
(see Fig. 3 of Ref. [4]).

In this series of papers we explore the geometry of few-particle systems starting
from the nuclear shell model formulated in a harmonic-oscillator basis. With
applications to the nuclei 6He and 8He in mind, we concentrate in papers I
and II on systems with two and four identical particles, respectively. In these
first two papers the appropriate background and algorithms are developed,
necessary to probe the geometric structure of systems of non-identical particles
which will be the subject of the third in the series. Our approach is basic and
does not require techniques that go beyond elementary quantum mechanics.
It uses in particular the concept of two-particle correlation function which is
recalled in Sect. 2. Within this simple approach it can be shown (Sect. 3) that
the di-neutron and cigar-like configurations mentioned above are an inevitable
consequence of the geometry of the p shell, to which the effect of correlations
should be added. This property can be derived analytically with use of the
angular correlation function between the two particles, which will be the more
appropriate formulation for the generalization toward more than two particles.
A semi-quantitative application of this approach to 6He is considered in Sect. 4.
In Sect. 5 the conclusions and perspectives of this work are formulated.

2 Two-particle correlation functions

The relevant physical observables that determine the spatial structure of two
valence nucleons outside an inert core, such as in 6He, are the relative distance
between the two nucleons and the distance between the the center of mass of
the closed-shell core and that of the two nucleons. These observables can be
probed by what will be called two-particle correlation functions. A two-particle
correlation function is the expectation value of δ(r̄ − r̄12), where r̄12 ≡ r̄1 − r̄2

is the difference between the position vectors of the two particles, r̄1 and r̄2,
and r̄ is an arbitrary vector. The expectation value of this operator, multiplied
with the appropriate volume element, measures the probability of finding the
two particles separated by r̄. Usually one is only interested in this probability
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as a function of the distance r12 ≡ |r̄1 − r̄2| between the two particles which
then involves the operator δ(r−r12). Also, it is often useful to probe in addition
the distance of the two particles from the center of the nucleus and this can be
achieved by calculating the expectation value of δ(r − r12)δ(R − R12), where
R12 ≡ |r̄1 + r̄2|/2 is the radial coordinate of the center of mass of the two
particles.

These notions can be applied to any quantum-mechanical many-body state
by defining the correlation functions

Cαα′(r̄)≡〈α|
∑

i<j

δ(r̄ − r̄ij)|α′〉,

Cαα′(r)≡〈α|
∑

i<j

δ(r − rij)|α′〉,

Cαα′(r, R)≡〈α|
∑

i<j

δ(r − rij)δ(R − Rij)|α′〉, (1)

where the sum is over all particles in the n-particle states |α〉 and |α′〉, char-
acterized by a set of labels collectively denoted as α or α′, and in general
comprising the total angular momentum J and its projection MJ . It often will
be convenient to refer to all correlation functions (1) simultaneously, in which
case the notation Cαα′ will be used. The interpretation of Cαα′ as a probability
distribution is valid in the diagonal case, α = α′, but expressions for non-
diagonal matrix elements are needed as well in the following. As the operators
δ(r − r12) and δ(r − r12)δ(R − R12) are scalar under rotations, their matrix
elements are diagonal in J and independent of MJ . This is not the case for the
operator δ(r̄ − r̄12) which therefore leads to more complicated expressions for
its matrix elements. Correlation functions satisfy the normalization conditions

∫

ℜ3
Cα(r̄)dr̄ =

n(n − 1)

2
,

4π
∫ +∞

0
Cα(r)r2dr =

n(n − 1)

2
,

16π2
∫ +∞

0
r2dr

∫ +∞

0
Cα(r, R)R2dR =

n(n − 1)

2
, (2)

where the notation Cα ≡ Cαα is used, as well as the orthogonality conditions
(with α 6= α′)

∫

ℜ3
Cαα′(r̄)dr̄ = 0,

∫ +∞

0
Cαα′(r)r2dr = 0,

∫ +∞

0
r2dr

∫ +∞

0
Cαα′(r, R)R2dR = 0. (3)
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These are generic conditions, valid for any of the correlation functions that
will be derived below.

3 Two-particle correlations in LS coupling

Most of the calculations reported in this paper are carried in the LS-coupling
scheme. Although nuclear physicists, after the introduction of the spin-orbit
interaction by Mayer [5] and by Jensen et al. [6], have been converted to adopt-
ing the jj-coupling scheme, the alternative LS coupling still has arguments
in favor of it. One argument is that it allows a clear separation between spin
and spatial degrees of freedom. One of the basic properties of the nucleon-
nucleon interaction is its short-range, attractive character which favors spatial
symmetry and its consequences are most easily understood in LS coupling.
For example, an extreme short-range interaction δ(r̄1− r̄2) has a non-vanishing
two-body interaction matrix element only between the space-symmetric states
with S = 0, T = 1 or S = 1, T = 0. Another argument is that realistic shell-
model interactions, such as the USD interaction for the 1s0d shell [7] or the
GX1A interaction for the 1p0f shell [8], are more diagonal in LS than they
are in jj coupling. Last but not least, light nuclei (in the 0p shell and the
beginning of 1s0d shell), to a good approximation can be classified in LS
coupling [9].

Let us begin with some elementary definitions, mainly to fix our notation.
A single-particle wave function is determined by its spatial part, φnℓmℓ

(r̄) ≡
φnℓmℓ

(r, θ, φ), multiplied by a spinor for a spin-1/2 particle, χ±1/2. For any
central potential the spatial part can be written as the product of a radial wave
function Rnℓ(r), characterized by the radial quantum number n and the orbital
angular momentum ℓ, and a spherical harmonic Yℓmℓ

(θ, φ), characterized by
ℓ and its projection mℓ. It will sometimes be convenient to denote the polar
and azimuthal angles θ and φ collectively as Ω, so that Yℓmℓ

(Ω) ≡ Yℓmℓ
(θ, φ).

A two-nucleon state in LS coupling is denoted as |n1ℓ1s, n2ℓ2s; LMLSMS〉 ≡
|n1ℓ1n2ℓ2; LMLSMS〉. As the particles always have s = 1/2, their spins are not
shown explicitly; their coupled value is indicated as S. If two identical particles
are in the same nℓ shell, the values of the total orbital angular momentum
L and the total spin S are restricted by overall antisymmetry of the wave
function, that is, even L for S = 0 (spatially symmetric) and odd L for S =
1 (spatially antisymmetric). Since the operators δ(r̄ − r̄12), δ(r − r12) and
δ(r − r12)δ(R − R12) are independent of spin, the correlation functions only
depend on the orbital angular momentum L. Note, however, that allowed
values of L are determined by S, so there exists an indirect dependence on the
total spin of the two particles. Alternatively, instead of the projections ML

and MS, the total angular momentum J , obtained from the coupling of L and
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S, and its projection MJ can be given.

3.1 Talmi-Moshinsky transformation

The evaluation of the correlation functions Cαα′ is greatly simplified if the
particles are placed in a harmonic-oscillator potential. The simplification arises
because, for a harmonic oscillator, the transformation from the individual
particle coordinates r̄1 and r̄2 to the relative and center-of-mass coordinates,
r̄1 − r̄2 ≡ r̄12 = (r12, θ12, φ12) and (r̄1 + r̄2)/2 ≡ R̄12 = (R12, Θ12, Φ12), can be
carried out by means of Talmi-Moshinsky brackets [10–12].

A Talmi-Moshinsky bracket, denoted here as an1ℓ1n2ℓ2
nℓNL,L , is characterized by the

radial and orbital quantum numbers of the two particles (n1ℓ1 and n2ℓ2), by
the similar quantum numbers pertaining to the relative and center-of-mass
coordinates (nℓ and NL), and by the coupled angular momentum L,

〈r̄1, r̄2|n1ℓ1n2ℓ2; LML〉
=
∑

nℓNL

an1ℓ1n2ℓ2
nℓNL,L 〈r̄12/

√
2,
√

2R̄12|nℓNL; LML〉 (4)

=
∑

nℓNL

an1ℓ1n2ℓ2
nℓNL,L [φnℓ(r̄12/

√
2) × φNL(

√
2R̄12)]

(L)
ML

=
∑

nℓNL

an1ℓ1n2ℓ2
nℓNL,L Rnℓ(r12/

√
2)RNL(

√
2R12)[Ynℓ(θ12, φ12) × YNL(Θ12, Φ12)]

(L)
ML

.

The number of oscillator quanta is the same before and after the transforma-
tion which translates into the condition 2n1 + ℓ1 +2n2 + ℓ2 = 2n+ ℓ+2N +L.
In these expressions Rnℓ(r) is the radial wave function of the harmonic oscilla-

tor [13] with r expressed in units of the oscillator length b =
√

~/mω, where m
is the nucleon mass and ω the oscillator frequency. The conventions of Barber
and Cooper [14] are followed here for the definition of the Talmi-Moshinsky
bracket.

3.2 Expressions for the correlation matrix elements

With use of the expansion

δ(r̄ − r̄12) =
δ(r − r12)

rr12

+∞
∑

λ=0

+λ
∑

µ=−λ

Y ∗
λµ(θ, φ)Yλµ(θ12, φ12), (5)

the first of the correlation functions (1) can be expressed as
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nas〈n1ℓ1n2ℓ2; LMLSMS|δ(r̄ − r̄12)|n′
1ℓ

′
1n

′
2ℓ

′
2; L

′M ′
LS ′M ′

S〉nas

= δSS′δMSM ′

S
(−)L+L′−ML

[

(2L + 1)(2L′ + 1)

32π

]1/2

×
+∞
∑

λ=0

+λ
∑

µ=−λ

(−)λ
√

2λ + 1





L λ L′

−ML µ M ′
L



Y ∗
λµ(θ, φ)

×
∑

nℓn′ℓ′NL

(−)L
√

(2ℓ + 1)(2ℓ′ + 1) an1ℓ1n2ℓ2
nℓNL,L a

n′

1
ℓ′
1
n′

2
ℓ′
2

n′ℓ′NL,L′

×




ℓ λ ℓ′

0 0 0











ℓ L L
L′ ℓ′ λ







Rnℓ(r/
√

2)Rn′ℓ′(r/
√

2), (6)

where the symbols in round and curly brackets are Wigner 3j symbols and
Racah coefficients, respectively [13]. Furthermore, with use of the property
that the number of quanta is conserved by the Talmi-Moshinsky bracket, the
following expressions are derived for the two other correlations functions:

nas〈n1ℓ1n2ℓ2; LMLSMS|δ(r − r12)|n′
1ℓ

′
1n

′
2ℓ

′
2; L

′M ′
LS ′M ′

S〉nas

= δLL′δMLM ′

L
δSS′δMSM ′

S

× 1√
8
r2

∑

nn′ℓNL

an1ℓ1n2ℓ2
nℓNL,L a

n′

1
ℓ′
1
n′

2
ℓ′
2

n′ℓNL,LRnℓ(r/
√

2)Rn′ℓ(r/
√

2), (7)

and

nas〈n1ℓ1n2ℓ2; LMLSMS|δ(r − r12)δ(R − R12)|n′
1ℓ

′
1n

′
2ℓ

′
2; L

′M ′
LS ′M ′

S〉nas

= δLL′δMLM ′

L
δSS′δMSM ′

S
r2R2

∑

nn′ℓNN ′L

an1ℓ1n2ℓ2
nℓNL,L a

n′

1
ℓ′
1
n′

2
ℓ′
2

n′ℓN ′L,L

×Rnℓ(r/
√

2)Rn′ℓ(r/
√

2)RNL(
√

2R)RN ′L(
√

2R). (8)

Since the total number of oscillator quanta is conserved in the Talmi-Moshinsky
bracket, it follows that ℓ1 + ℓ2 and ℓ′1 + ℓ′2 must have the same parity in the
matrix elements (7) and (8), otherwise they vanish.

The expressions (6), (7) and (8) are valid if particle 1 is in orbit n1ℓ1 (n′
1ℓ

′
1)

and particle 2 in orbit n2ℓ2 (n′
2ℓ

′
2), that is, for non-antisymmetric states in bra

and ket. For identical particles states must be antisymmetric and these will
be denoted as |n1ℓ1n2ℓ2; LMLSMS〉. One has the relation

|n1ℓ1n2ℓ2; LMLSMS〉

=
|n1ℓ1n2ℓ2; LMLSMS〉nas + (−)ℓ1+ℓ2−L−S|n2ℓ2n1ℓ1; LMLSMS〉nas

√

2(1 + δn1n2
δℓ1ℓ2)

, (9)
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with the help of which the matrix elements between antisymmetric states can
be deduced.

3.3 Correlations between two particles in a single shell

With these preliminaries the correlation functions C(nℓ)2;LS(r, R) can now be
investigated for two particles in a single-ℓ shell. This correlation function pos-
sesses a symmetry related to the parity quantum number (see, e.g., Refs. [15,16]).
Let P̂ represent the parity operator that takes r̄ to −r̄, P̂ |r̄〉 = |− r̄〉. This
operator is hermitian, P̂ † = P̂ , with eigenvalues ±1, and P̂ 2 is the identity
operator. Parity operators for different particles are distinguished by the sub-
script i, so that P̂i is the parity operator acting on the coordinates of particle
i. With use of the properties

P̂1δ(r − r12)δ(R − R12) = δ(r − 2R12)δ(R − r12/2), (10)

and
P̂1|(nℓ)2; LMLSMS〉 = (−)ℓ|(nℓ)2; LMLSMS〉, (11)

the following identity can be established:

〈(nℓ)2; LMLSMS|P̂1δ(r − r12)δ(R − R12)|(nℓ)2; LMLSMS〉
= 〈(nℓ)2; LMLSMS|

(

P̂1δ(r − r12)δ(R − R12)|(nℓ)2; LMLSMS〉
)

= (−)ℓ〈(nℓ)2; LMLSMS|δ(r/2 − R12)δ(2R − r12)|(nℓ)2; LMLSMS〉. (12)

On the other hand, since P̂i is hermitian, the following identity is valid:

〈(nℓ)2; LMLSMS|P̂1δ(r − r12)δ(R − R12)|(nℓ)2; LMLSMS〉
=
(

〈(nℓ)2; LMLSMS|P̂1

)

δ(r − r12)δ(R − R12)|(nℓ)2; LMLSMS〉
= (−1)ℓ〈(nℓ)2; LMLSMS|δ(r − r12)δ(R − R12)|(nℓ)2; LMLSMS〉. (13)

It therefore follows that in a single-ℓ shell the two-particle correlation function
must satisfy the property

C(nℓ)2;LS(r, R) = C(nℓ)2;LS(2R, r/2), (14)

which corresponds to a “reflection-like” symmetry about the plane r = 2R
that will be present throughout this section.

Let us now illustrate the character of the two-particle correlation function
Cα(r, R) for a variety of states |α〉. Figure 1 shows the correlation function for
different s shells. Since ℓ = 0 in this case, it follows necessarily that L = 0 and
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(a) |(0s)2; 00〉 (b) |(1s)2; 00〉 (c) |(2s)2; 00〉

Fig. 1. The correlation function Cα(r, R) for the two-particle configurations
|α〉 = |(ns)2;L = S = 0〉 with radial quantum number n = 0, 1 and 2.

(a) |(0p)2; 00〉 (b) |(0p)2; 11〉 (c) |(0p)2; 20〉

(d) |(1p)2; 00〉 (e) |(1p)2; 11〉 (f) |(1p)2; 20〉

Fig. 2. The correlation function Cα(r, R) for the two-particle configurations
|α〉 = |(np)2; LS〉 with total orbital angular momentum and spin (LS) = (00),
(11) and (20), and with radial quantum number n = 0 and 1.

S = 0, and that the spatial wave function is symmetric. For a state |(ns)2; 00〉
with radial quantum number n, n + 1 maxima are observed. Starting from
n = 0, where there is one maximum, the pattern repeats itself as n increases
with higher intensity while at the same time spanning out to larger radii. The
n + 1 maxima are positioned in n + 1 concentric rings radiating out from
the center and situated on the line r = 2R. As the maximum goes out to
larger radii, it also becomes higher. The recurring pattern can be understood
as the effect of nodes of the radial wave functions. A radial wave function
characterized by the quantum number n has n nodes, giving rise to n + 1
rings.

The three possible configurations for the 0p shell have (LS) = (00), (11) and
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(20), whose correlation functions are shown in the upper part of Fig. 2. Two
maxima are observed for |(0p)2; 00〉 and one for |(0p)2; 11〉 whereas an indis-
tinct coexistence of two maxima can be perceived in the |(0p)2; 11〉 correlation.

A closer look at the form of correlation function of the three possible states
in the 0p shell may shed some light on these results. The correlation functions
for the three configurations are

C(0p)2;00(r, R) =
4

3π

(

r6R2 − 8r4R4 + 16r2R6
)

e−r2/2−2R2

,

C(0p)2;11(r, R) =
64

9π
r4R4e−r2/2−2R2

,

C(0p)2;20(r, R) =
8

15π

(

r6R2 + 16r2R6
)

e−r2/2−2R2

. (15)

Consistent with the relation (14), the correlation function C(0p)2;00(r, R) has
two maxima at

(r, R) =





√

2(2 ±
√

2),

√

1

2
(2 ∓

√
2)



 , (16)

and C(0p)2;11(r, R) has only one maximum at (r, R)=(2, 1). As for C(0p)2;20(r, R),
it is the linear combination

C(0p)2;20(r, R) =
2

5
C(0p)2;00(r, R) +

3

5
C(0p)2;11(r, R), (17)

which explains the vaguely perceivable two-maximum structure.

By analogy with the correlation function for the ns shells, one expects that
each plot for the 0p shell is repeated for the 1p shell, in a ring farther away
from the origin with higher intensity. This is confirmed by the examples shown
in the lower part of Fig. 2.

In addition to the pattern concerning the radial quantum number n, as one
accesses higher shells, another pattern related to ℓ becomes apparent. As illus-
trated by the correlation function for configurations in the 0d shell in Fig. 3,
if ℓ increases by one from p to d, one more maximum is found for the state
with (LS) = (00). Another pattern worth mentioning is that for the lowest-L
configurations, the number of maxima decreases by one as the total orbital
angular momentum L increases by one.

The patterns described above are confirmed as one examines other shells. For
0f shell, as shown in Fig. 4, the (LS) = (00), (11) and (20) configurations ex-
hibit four, three and two maxima, respectively. For higher total orbital angular
momenta the plots are less distinctly defined.
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(a) |(0d)2; 00〉 (b) |(0d)2; 11〉 (c) |(0d)2; 20〉

(d) |(0d)2; 31〉 (e) |(0d)2; 40〉

Fig. 3. The correlation function Cα(r, R) for the two-particle configurations
|α〉 = |(0d)2;LS〉 with total orbital angular momentum and spin (LS) = (00),
(11), (20), (31) and (40).

To summarize, other than the reflection-like symmetry (14), the correlation
function of two particles in the nℓ shell coupled to total angular momentum
L exhibits a few patterns related to n, ℓ and L. Such a correlation function
displays an (n+1)-circle structure in that, compared to the maxima observed
for the configuration |(0ℓ)2; LS〉, n + 1 times as many peaks positioned on
n + 1 concentric circles radiating out from the center exist for |(nℓ)2; LS〉.
This is so because the radial wave function Rnℓ(r) has n nodes and hence its
square has n + 1 maxima. On each circle, the number of maxima is related
to ℓ and L. For L = 0, there are ℓ + 1 maxima on each circle. As L increases
by one, the number of maxima decreases by one for the first few L. For large
values of L, the peak shapes become less defined. Catara et al. [15], who
studied two-particle correlations in the jj-coupling scheme, made similar but
less conclusive observations, and did not give the analytical explanation of the
observed regularities which is given here in Subsect. 3.5.

3.4 Correlations between two particles in different shells

In this subsection the properties are studied of correlation functions of the
type Cαα′(r, R), where |α〉 and |α′〉 stand for two-particle states in different
shells, |(nℓ)2; LS〉 and |(n′ℓ′)2; LS〉, respectively. As opposed to Cα(r, R), which
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(a) |(0f)2; 00〉 (b) |(0f)2; 11〉 (c) |(0f)2; 20〉

(d) |(0f)2; 31〉 (e) |(0f)2; 40〉 (f) |(0f)2; 51〉

(g) |(0f)2; 60〉

Fig. 4. The correlation function Cα(r, R) for the two-particle configurations
|α〉 = |(0f)2;LS〉 with total orbital angular momentum and spin (LS) = (00),
(11), (20), (31), (40), (51) and (60).

has its physical interpretation as the probability distribution of the state |α〉
as a function of r and R, Cαα′(r, R) makes for better understanding of the
interference of contributions from different shells. Such an understanding is
useful when studying the probability distribution of any two-particle state
that is an admixture of different shells.

To examine the role of parity, examples of correlation functions Cαα′(r, R)
between two shells of the same parity and between two shells of opposite
parity are presented in Fig. 5 and Fig. 6, respectively. By way of an argument
similar to the one leading to Eq. (14), the following property can be shown to
be valid:

(−)ℓC(nℓ)2;LS,(n′ℓ′)2;LS(r, R) = (−)ℓ′C(nℓ)2;LS,(n′ℓ′)2;LS(2R, r/2). (18)
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(a) |(0s)2; 00〉, |(0d)2; 00〉 (b) |(0s)2; 00〉, |(0g)2; 00〉 (c) |(0p)2; 00〉, |(0f)2; 00〉

Fig. 5. The correlation function Cαα′(r, R) for two-particle configurations |α〉 6= |α′〉
with the same parity.

(a) |(0s)2; 00〉, |(0p)2; 00〉 (b) |(0s)2; 00〉, |(0f)2; 00〉 (c) |(0p)2; 00〉, |(0d)2; 00〉

Fig. 6. The correlation function Cαα′(r, R) for two-particle configurations |α〉 6= |α′〉
with different parity.

Therefore, between a pair of shells of the same parity, Cαα′(r, R) has a reflection-
like symmetry as Cα(r, R) does, obeying the relation (14). Between a pair of
shells of opposite parity, the appropriate relation becomes

Cαα′(r, R) = −Cαα′(2R, r/2), (19)

giving rise to a “rotation-like” symmetry with respect to the line r = 2R.

3.5 The angular correlation function

Spatial correlations between two particles should also be reflected in their
angular separation, that is, the relative angle θ12 between them. While the
results of the previous subsection are obtained with the functions (1) in terms
of the relative distance r12 between the particles and the distance R12 of their
center of mass from the origin, they can also be studied from a different angle
by deriving, for a given two-particle state, the probability density as a function
of θ12.

To illustrate the essential idea of the method, consider a state of two particles
in a single-ℓ shell coupled to orbital angular momentum L = 0. Its wave
function can be expressed as

12



〈r̄1, r̄2|n1ℓ, n2ℓ; L = ML = 0〉
= Rn1ℓ(r1)Rn2ℓ(r2)[Yℓ(Ω1) × Yℓ(Ω2)]

(0)
0

= Rn1ℓ(r1)Rn2ℓ(r2)
ℓ
∑

m=−ℓ

(−)ℓ−m

√
2ℓ + 1

(−)mYℓm(Ω1)Y
∗
ℓm(Ω2)

= Rn1ℓ(r1)Rn2ℓ(r2)(−)ℓ

√
2ℓ + 1

4π
Pℓ(cos θ12). (20)

In the last step use is made of the addition theorem for spherical harmon-
ics [13], with Pℓ(x) a Legendre polynomial. The angular part of the wave
function, therefore, is a function of the relative angle θ12 between the two
particles.

This result can be generalized to the case of a two-particle state in two different
shells coupled to any total orbital angular momentum L and total spin S,
|n1ℓ1, n2ℓ2; LMLSMS〉. To obtain its probability density, the average over all
projections ML and MS should be taken. Since the angular part is independent
of MS, the following quantity must be evaluated:

1

2L + 1

∑

ML

[Y ∗
ℓ1

(Ω1) × Y ∗
ℓ2

(Ω2)]
(L)
ML

[Yℓ1(Ω1) × Yℓ2(Ω2)]
(L)
ML

. (21)

A closed expression can be obtained by use of the general result

1

2L + 1

∑

ML

[Y ∗
ℓ1

(Ω1) × Y ∗
ℓ2

(Ω2)]
(L)
ML

[Yℓ′
1
(Ω1) × Yℓ′

2
(Ω2)]

(L)
ML

=
1

16π2

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ′1 + 1)(2ℓ′2 + 1)(−)L
∑

λ

(−)λ(2λ + 1)

×






ℓ2 ℓ′2 λ

ℓ′1 ℓ1 L











ℓ1 ℓ′1 λ

0 0 0









ℓ2 ℓ′2 λ

0 0 0



Pλ(cos θ12). (22)

This is a Legendre-polynomial expansion having the cosine of the relative angle
θ12 as its argument; ℓ1 +ℓ′1 and ℓ2 +ℓ′2 have to be of the same parity, otherwise
the expression (22) vanishes. More specifically, if ℓ1 + ℓ′1 and ℓ2 + ℓ′2 are even,
it is an expansion in even-degree Legendre polynomials whereas if ℓ1 + ℓ′1 and
ℓ2 + ℓ′2 are odd, it is an expansion in odd-degree Legendre polynomials.

Availing of the result (22) involving two two-particle states |ℓ1ℓ2; LMLSMS〉
and |ℓ′1ℓ′2; LMLSMS〉, we can evaluate the angular probability density of two
particles in the same nℓ shell or in two shells characterized by the same ℓ,
coupled to total orbital angular momentum L and total spin S. It takes the
form of an expansion of even-degree Legendre polynomials, 1

1 There is no dependence on the radial quantum number n which is therefore omit-
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Fig. 7. The angular correlation function C̃α(θ12) for the two-particle configuration
|α〉 = |s2; L = S = 0〉.
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(a) |p2; 00〉
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(b) |p2; 11〉
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(c) |p2; 20〉

Fig. 8. The angular correlation function C̃α(θ12) for the two-particle configurations
|α〉 = |p2;LS〉 with (LS) = (00), (11) and (20).

Pℓ2;LS(θ12)≡
1

2L + 1

∑

ML

[Y ∗
ℓ (Ω1) × Y ∗

ℓ (Ω2)]
(L)
ML

[Yℓ(Ω1) × Yℓ(Ω2)]
(L)
ML

(23)

=
(2ℓ + 1)2

16π2
(−)L

∑

λ

(2λ + 1)







ℓ ℓ λ

ℓ ℓ L











ℓ ℓ λ

0 0 0





2

Pλ(cos θ12).

Assume that one of the particles is in the zenith direction and hence the
angular separation θ12 is the polar angle. The probability of finding the other
particle in the differential solid angle element dΩ is 4πPℓ2;LS(θ12) sin θ12dθ12dφ.
Integration over φ yields the expression for the probability of finding the other
particle within an angle dθ12. The corresponding probability density

C̃ℓ2;LS(θ12) = 8π2Pℓ2;LS(θ12) sin θ12, (24)

shall be referred to as the angular correlation function.

In Figs. 7 to 10 are plotted the angular correlation functions for the s, p, d and
f shells. They are to be compared with Figs. 1 to 4. Both sets are illustrations,
but from different perspectives, of the spatial structure of a pair of particles
in a single-ℓ shell. Figures 7 to 10 can be best described as the projected
2D images along the direction r = 2R of the Figs. 1 to 4 and reinforce the
observations made in Subsect. 3.3 about the patterns related to ℓ and L. In
fact, a study of the properties of the angular correlation function for two
particles coupled to total orbital angular momentum L = 0 and total spin

ted henceforth in this subsection.
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(e) |d2; 40〉

Fig. 9. The angular correlation function C̃α(θ12) for the two-particle configurations
|α〉 = |d2;LS〉 with (LS) = (00), (11), (20), (31) and (40).
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Π

4
Π

2
3 Π
4 Π

Θ12

0.1
0.2
0.3
0.4
0.5

(d) |f2; 31〉

Π

4
Π

2
3 Π
4 Π

Θ12

0.2

0.4

0.6

0.8

(e) |f2; 40〉

Π

4
Π

2
3 Π
4 Π

Θ12

0.1
0.2
0.3
0.4
0.5

(f) |f2; 51〉

Π

4
Π

2
3 Π
4 Π

Θ12

0.1

0.2

0.3

0.4
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Fig. 10. The angular correlation function C̃α(θ12) for the two-particle configurations
|α〉 = |f2;LS〉 with (LS) = (00), (11), (20), (31), (40), (51) and (60).
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S = 0 shows that C̃ℓ2;00(θ12) has ℓ + 1 distinct maxima. This is because the
angular correlation function in this case

C̃ℓ2;00(θ12) =
2ℓ + 1

2
P 2

ℓ (cos θ12) sin θ12, (25)

is proportional to the square of the ℓ-th degree Legendre polynomial. Fur-
thermore, it can also be shown with the help of the expression (23) that this
number of maxima decreases by one if the total orbital angular momentum
increases to L = 1, as the angular correlation function

C̃ℓ2;11(θ12) =
2ℓ + 1

2ℓ(ℓ + 1)
sin3 θ12P

′2
ℓ (cos θ12), (26)

is proportional to the square of the derivative of the ℓ-th degree Legendre
polynomial. For higher L values the maxima of the angular correlation function
C̃ℓ2;LS(θ12) become less distinct which also coincides with the conclusion of
Subsect. 3.3.

3.6 Angular correlations between two particles in different shells

In the same manner the angular correlations can be studied between two
particles in different shells ℓ and ℓ′. The relevant expression for the angular
correlation function is

C̃ℓℓ′;LS(θ12) =
1

2
(2ℓ + 1)(2ℓ′ + 1)(−)L (27)

×
∑

λ

(−)λ(2λ + 1)







ℓ ℓ′ λ

ℓ′ ℓ L











ℓ ℓ′ λ

0 0 0





2

Pλ(cos θ12) sin θ12.

Some examples are shown in Fig. 11. They are projected 2D images of the
3D plots of correlation function in Figs. 5 and 6. The reflection-like symmetry
about the line θ12 = 1

2
π for angular correlation functions between shells of

the same parity and the rotational-like symmetry around the point (1
2
π, 0)

for those between shells of opposite parity are determined by the Wigner
3j symbol in the expression (27). If ℓ and ℓ′ are both even or both odd,
λ must be even, resulting in symmetric Legendre polynomials Pλ(x) and a
reflection-symmetric angular correlation function C̃ℓℓ′;LS(θ12); otherwise, only
anti-symmetric Legendre polynomials contribute and the rotational symmetry
ensues.
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Fig. 11. The angular correlation function C̃αα′(θ12) for two-particle configurations
|α〉 6= |α′〉.

4 Two-particle correlations in 6He

Let us now apply to the nucleus 6He what has been formulated in Sect. 3. It is
assumed that the α particle is inert, the 0s shell being occupied by two neu-
trons and two protons, so that only the two valence neutrons come into play.
A residual interaction should be considered between the two valence neutrons
which is taken to be a schematic delta interaction. The valence neutrons are
first assumed to occupy the 0p shell and, subsequently, scattering into higher
shells is allowed for. In the latter case, spurious center-of-mass motion must
be eliminated which can be achieved in the framework of the cluster-orbital
shell model. In a final subsection, phenomenological estimates are derived for
the oscillator length and the interaction strength, to arrive at a quantitative
prediction of the two-particle correlations in 6He.

4.1 The delta interaction

The matrix elements of the delta function δ(r̄1 − r̄2) are obtained by putting
r̄ = 0̄ in the expression (6). Since only s waves do not vanish at the origin,
one must have ℓ = ℓ′ = 0 which in turn implies λ = µ = 0, L = L′ = L and
ML = M ′

L. The expression (6) then reduces to

〈n1ℓ1n2ℓ2; LMLSMS|δ(r̄1 − r̄2)|n′
1ℓ

′
1n

′
2ℓ

′
2; L

′M ′
LS ′M ′

S〉
= δLL′δMLM ′

L
δSS′δMSM ′

S

1

8π
√

2

∑

nn′N

an1ℓ1n2ℓ2
n0NL,L a

n′

1
ℓ′
1
n′

2
ℓ′
2

n′0NL,L Rn0(0)Rn′0(0). (28)
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An alternative expression is found from the expansion

δ(r̄1 − r̄2) =
1

r1r2

δ(r1 − r2)δ(cos θ1 − cos θ2)δ(φ1 − φ2), (29)

which, after straightforward integration and use of the properties of the spher-
ical harmonics, leads to

〈n1ℓ1n2ℓ2; LMLSMS|δ(r̄1 − r̄2)|n′
1ℓ

′
1n

′
2ℓ

′
2; L

′M ′
LS ′M ′

S〉 (30)

= δLL′δMLM ′

L
δSS′δMSM ′

S

1

4π

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ′1 + 1)(2ℓ′2 + 1)

×




ℓ1 ℓ2 L

0 0 0









ℓ′1 ℓ′2 L

0 0 0





∫ +∞

0
Rn1ℓ1(r)Rn2ℓ2(r)Rn′

1
ℓ′
1
(r)Rn′

2
ℓ′
2
(r)r2dr.

Because of the definition of the radial wave functions Rnℓ(r) (see, e.g., Ref. [13]),
the matrix elements (28) and (30) are equal to a dimensionless factor multi-
plied by b−3, where b is the oscillator length. The constant g in the delta
interaction −gδ(r̄1 − r̄2), therefore, has units of MeV fm3.

4.2 Two neutrons in the 0p shell

The simplest possible approach to describe the structure of the Jπ = 0+

ground state of 6He is to assume an inert α-particle core with the neutron pair
in the 0p shell of a harmonic oscillator. If the residual interaction between the
two valence neutrons is taken to be a delta interaction, then, in the limit of
no spin-orbit splitting between 0p3/2 and 0p1/2, the Hamiltonian reads

Ĥ =
2
∑

i=1

(

1

2m
p2

i +
1

2
mω2r2

i

)

− gδ(r̄1 − r̄2). (31)

The LS classification is exact, the ground state of 6He has L = S = 0 and the
results of Sect. 3 are recovered. In particular, the correlation function shown
in Fig. 2(a) applies to the ground state of the Hamiltonian (31). As argued in
Sect. 3, it displays two peaks, one on each side of the line r = 2R, which can
be identified with the di-neutron and cigar-like configurations that have been
extensively discussed for 6He [4].

The assumptions of no spin-orbit splitting between the 0p3/2 and 0p1/2 shells,
of a schematic residual interaction of the delta type and of an isolated 0p shell,
obviously, are rather drastic approximations. Departures from the former two
of these approximations can be conveniently studied by using a realistic effec-
tive interaction defined in the 0p shell. In fact, a calculation confined to the
0p shell with spin-orbit splitting and matrix elements as obtained by Cohen
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and Kurath [17], yields a 6He ground state which is 99% L = S = 0 and
only 1% L = S = 1. Therefore, essentially the same two-particle correlations
are obtained in this realistic shell-model calculation as compared with those
found with the schematic Hamiltonian (31). In any case, for whatever residual
interaction and for arbitrary spin-orbit splitting, the symmetry property (14)
requires the existence of a di-neutron and a cigar-like configuration with equal

probability as long as the two valence neutrons are confined to the 0p shell.
Any departure from this equiprobable geometry must be the consequence of
excitations of particles into other shells, which is the topic of the next subsec-
tion.

4.3 Schematic calculations for two neutrons in many shells

In this subsection the approximation of confining the two outer neutrons in 6He
to the 0p shell is lifted and the effect of configuration mixing on two-particle
correlations in the 0+

gs ground state is examined. More explicitly, the changes
in the correlation function C0+

gs
(r, R) are studied as a result of configuration

mixing between the 0p and other shells induced by the delta interaction.

If the spin-orbit interaction is neglected, the ground-state wave function and
hence its two-particle correlation function, depend on a single parameter ξ ≡
gb−3/~ω, the ratio of the interaction strength g times b−3 to the spacing be-
tween two consecutive harmonic-oscillator levels, ~ω. To gain insight into the
effect of configuration mixing, first a series of schematic calculations is per-
formed with varying ξ. These calculations depend on the choice of valence
space, that is, the shells of the harmonic oscillator into which the two neutrons
are allowed to scatter. A certain truncated valence space is chosen, specified by
the number of included major shells, and the evolution of the spatial structure
of the ground state is examined as a function of ξ.

The resulting correlation functions in the valence space comprising the shells
with principal quantum numbers 1 ≤ N ≤ 3 (i.e., 0p, 1s, 0d, 1p and 0f) are
shown in Fig. 12. As the strength of the interaction g increases (or, equiva-
lently, the spacing between the oscillator shells diminishes), the two maxima
observed in the 0p-shell calculation are differently affected. These effects stem
from the interferences from other shells, either constructive or destructive.
In short, the di-neutron configuration stands firm while the cigar-like config-
uration subsides. The probability of di-neutron configuration increases as ξ
augments until ξ becomes very large (≫ 100). At that point, the di-neutron
probability drops from its maximum value of about 70% because higher shells
in the valence space become more involved. As a result small peaks emerge,
originating from higher shells and arranged in concentric rings at bigger radii,
a phenomenon due to the behavior of the correlation functions Cα(r, R) dis-
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(a) ξ = 1 (b) ξ = 5 (c) ξ = 10

(d) ξ = 30 (e) ξ = 80 (f) ξ = 1000

Fig. 12. The ground-state correlation function C0+
gs

(r, R) for various values of the pa-

rameter ξ, in the valence space containing the major oscillator shells with 1 ≤ N ≤ 3.

(a) ξ = 5 (b) ξ = 10 (c) ξ = 100

Fig. 13. The ground-state correlation function C0+
gs

(r, R) for various values of the pa-

rameter ξ, in the valence space containing the major oscillator shells with 1 ≤ N ≤ 4.

cussed in Sect. 3. Contrastingly, the probability of the cigar-like configuration
diminishes continually with increasing ξ. In both configurations the relative
distance between the two particles also alters perceivably with increasing ξ.
The short-range attractive interaction “draws” the two neutrons closer to-
wards each other and reduces the size of the neutron pair.

Similar conclusions can be drawn if the next major shell, N = 4, is included in
the valence space (see Fig. 13). As for the effect of the valence-space dimension,
the ground state and hence its correlation function are more sensitive to the
variation of ξ in bigger valence spaces than they are in smaller ones. For
example, in the valence space N ≤ 4, a given value of ξ, say 5, brings about
a stronger shrinkage of the cigar-like configuration than it does for N ≤ 3
[compare Figs. 12(b) and 13(a)].
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(a) ξ = 5 (b) ξ = 10 (c) ξ = 100

Fig. 14. The ground-state correlation function C0+
gs

(r, R) for various values of the pa-

rameter ξ, in the valence space containing the major oscillator shells with 1 ≤ N ≤ 5.

(a) ξ = 5 (b) ξ = 10 (c) ξ = 100

Fig. 15. The ground-state correlation function C0+
gs

(r, R) for various values of the pa-

rameter ξ, in the valence space containing the major oscillator shells with 1 ≤ N ≤ 6.

As the valence space is further expanded, the evolution of the ground-state
correlation function maintains its major features (see Fig. 14 for the valence
space with 1 ≤ N ≤ 5). With expanding valence space the maximum of
the di-neutron configuration grows more pronounced. The results obtained so
far indicate that the effect of the configuration interaction does not strongly
depend on the size of the valence space into which the two neutrons are excited
from the 0p shell. This is further supported by the calculation carried out in
the valence space with 1 ≤ N ≤ 6 shown in Fig. 15.

4.4 Elimination of the center-of-mass motion

The assumption in the shell model of a fixed origin is in violation of transla-
tional invariance that is a requisite for a nuclear Hamiltonian. If particles are
allowed to occupy more than one major oscillator shell, spurious states may
occur as a result. The results of the preceding subsection, therefore, should be
taken with care since spurious admixtures have not been eliminated.

A convenient way of dealing with the elimination of the center-of-mass motion,
is by adopting the cluster-orbital shell model (COSM) [18–20], which unifies
the shell model and the cluster model. The model is well suited for the present
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purpose since it is specifically designed to treat halo nuclei. In addition, it
has the advantage that it is free from spurious center-of-mass motion, which
is achieved by introducing translationally invariant coordinates between the
nucleons and the center-of-mass of the core. No description is given here of
COSM for which the reader is referred to the original papers by Suzuki et

al. [18–20], whose notation will be closely adhered to in the following.

4.5 The two-particle correlation function in 6He

Suzuki et al. have studied the helium isotopes in the strictly formulated COSM
in Refs. [19,20]. In this subsection the results of this work are used to explore
two-particle spatial correlations in 6He.

The schematic Hamiltonian (31) is modified in COSM and acquires the form

Ĥ ′ =
2
∑

i=1

(

1

2µ
p2

i +
1

2
µω2r2

i

)

− gδ(r̄1 − r̄2) +
1

(f + 1)µ
p̄1 · p̄2, (32)

where f is the number of nucleons in the core (f = 4 for 6He) and µ is
the reduced mass, µ = mf/(f + 1). The correlation functions in the various
valence spaces are to be re-evaluated with the Hamiltonian (32). In addition,
an estimate of ξ = gb−3/~ω (see Subsect. 4.3) is needed in the case of 6He.
This parameter depends on the oscillator length b and the strength of the
delta interaction g. The spacing between two consecutive harmonic-oscillator
levels, ~ω, can be deduced from b through ~ω = ~

2/µb2.

An estimate of the oscillator length b can be given as follows. Within the
framework of COSM, the following relation is valid between the matter radii
of 4He and 6He:

6R2
m(6He) =

5

6
〈x2

1 + x2
2〉 −

1

3
〈x̄1 · x̄2〉 + 4R2

m(4He), (33)

where x̄i (i = 1, 2) are the position vectors of the valence nucleons with respect
to the center of mass of the core with its position vector R̄c,

x̄i = r̄i −
√

1

f
R̄c. (34)

The expectation values 〈x2
i 〉 and 〈x̄1 ·x̄2〉 are directly related to b which appears

in the wave function. An estimate of b is obtained by assuming both neutrons
to occupy the 0p shell, coupled to orbital angular momentum L = 0. It then
follows that 〈x2

1〉 = 〈x2
2〉 = 5

2
b2 and 〈x̄1 · x̄2〉 = 0, and therefore

b2 =
36

25
R2

m(6He) − 24

25
R2

m(4He). (35)
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Fig. 16. The values of g that reproduce the observed 0+–2+ energy splitting in 6He
as a function of the number of shells in the valence space.

The nuclear matter radius of 6He was determined by proton elastic scattering
in inverse kinematics [21,22]. The values thus obtained are somewhat smaller
than those of Ref. [23] which are based on an analysis of the interaction and
fragmentation cross sections combined with a Glauber-model calculation. For
consistency, it is better to use in Eq. (35) matter radii obtained with the same
method and therefore the values of Ozawa et al. [23] are taken, Rm(4He) =
1.57 (4) fm and Rm(6He) = 2.48 (3) fm. One finds b = 2.55 fm, which is the
oscillator length adopted in the following.

Next, an estimate of the strength of the delta interaction is needed. From the
schematic calculations presented in Subsect. 4.3, a dependence of g on the size
of the valence space is expected. In fact, it has been shown that the three-
dimensional delta interaction only has physical meaning in a truncated space
and that for free neutrons, asymptotically, the magnitude of g varies inversely
with the cutoff in momentum space [24]. In the present application the strength
of the delta interaction is obtained from the excitation energy of the first 2+

state which is observed in 6He as a resonance at 1.797 (25) MeV [25]. For a
given valence-space truncation in the principal oscillator quantum number N ,
a value of g is adopted which reproduces this 0+–2+ energy splitting. This
procedure, for a given valence space, completely fixes the parameter ξ, and
hence the structure of the ground state of 6He and the two-particle correlations
in the ground state. The values of g that reproduce the observed 0+–2+ energy
splitting are plotted in Fig. 16 as a function of the valence space defined by
1 ≤ N ≤ Nmax with Nmax varying from 2 to 19. As expected, g decreases as
the valence space expands.

As a consistency check on the values thus obtained for the interaction strength
g, an estimate can be made of the two-neutron separation energy S2n. The
single-particle energy of the 0p shell relative to the 4He core can be defined
phenomenologically and should be equal to −Sn, where Sn = −0.89 (5) MeV is
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(a) 1 ≤ N ≤ 3 (b) 1 ≤ N ≤ 4

Fig. 17. The correlation function C0+
gs

(r, R) as obtained in two different valence

spaces with Nmax = 3 and 4, respectively, and with the strength g adjusted to the
observed 0+–2+ energy splitting in 6He.

the neutron separation energy in 5He [26]. Once the valence-space truncation
is fixed, so is S2n in 6He. For Nmax = 2 and 3, one finds S2n = 0.91 MeV and
S2n = 0.81 MeV, respectively. These results are in reasonable agreement with
the measured value of S2n = 0.972 (1) MeV for the ground state of 6He [26].

The wave functions of the 0+ ground state in the various valence spaces are
stable, with ∼ 92% probability of being in the state |(0p)2; 00〉 followed by
∼ 4% probability of being in |(0d)2; 00〉. Other components are negligibly
small. In consequence, the correlation function C0+

gs
(r, R) is determined by

the two major components arising from the 0p and 0d shells, and is very
insensitive to the size of the valence space as long as the latter contains the
N = 2 major shell (to include the 0d shell). This is illustrated in Fig. 17 for
the valence spaces 1 ≤ N ≤ 3 with g = 302 MeV fm3 and 1 ≤ N ≤ 4 with
g = 272 MeV fm3. The probability of the di-neutron configuration amounts
to 60% with the first truncation and 61% with the second. The ground-state
wave function has as principal component |(0p)2; 00〉 with |(0d)2; 00〉 being a
much smaller one. This result is not influenced appreciably by the size of the
valence space as long as it contains the 0d shell (Nmax ≥ 2). This finding is
consistent with 6He being a halo nucleus because of the argument that halo
nucleons can only exist in s and p waves [2].

5 Conclusion

The main result of this paper can be summarized as follows. The existence
of the two well-known geometric configurations of 6He, commonly referred
to as di-neutron and cigar-like, is shown to be an inescapable consequence
of the geometry of the 0p shell. The simple fact of placing the two outer
neutrons in the 0p shell and of imposing antisymmetry, determines many of
the properties of the spatial correlations of 6He and, in particular, it leads
to the equiprobability of the di-neutron and cigar-like configurations in the
ground state of 6He. Only if the neutrons are scattered into higher shells can
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the reflection-like symmetry with respect to the r = 2R plane be broken
and this equiprobability of the two configurations be lifted. Furthermore, any
reasonable choice of residual interaction suppresses the cigar-like and enhances
the di-neutron configuration which therefore becomes dominant in the ground
state.

To a large extent, the validity of these results has been acknowledged in a vari-
ety of ways by the nuclear physics community interested in halo phenomena [4].
The results presented in this paper show that no complicated calculations in
large model spaces are needed to arrive at these conclusions but that they
can be obtained in an elementary version of the shell model. In fact, much
of the information on spatial two-particle correlations is contained in the an-
gular correlation function for which an analytic expression is available as a
sum of Legendre polynomials in the cosine of the angle between the position
vectors of the particles. It will transpire that angular correlation functions are
well adapted for the purpose of establishing a geometry of systems with four
particles, which is the topic of part II of this series.
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