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Abstract. A semi-classical method that incorporates the quantum effects of the low-lying vibrational modes
is applied to fusion reactions. The quantum effect is simulated by stochastic sampling of initial zero-point fluc-
tuations of the surface modes. In this model, dissipation of the relative energy into non-collective excitations of
nuclei can be included straightforwardly. The inclusion of dissipation is shown to increase the agreement with
the fusion cross section data of Ni isotopes.

1 Introduction

Sub-barrier fusion reactions are investigated by classical or
semi-classical approaches known as barrier passing mod-
els [1] or fully quantum mechanical approaches such as
coupled-channels model [2–4]. In fully quantal models, in-
clusion of the dissipation of the collective energy into in-
trinsic degrees of freedom and the associated fluctuations
is very difficult [5–7]. However, the dissipation of relative
motion can be easily incorporated in a semi-classical ap-
proximation. Recently, a stochastic semi-classical model
was applied to fusion reactions of Ni isotopes at near-barrier
energies by considering the quadrupole and octupole sur-
face modes of both nuclei [8]. A good agreement with ex-
perimental data for fusion cross sections was obtained. The
model includes coupling between the relative motion and
low-lying collective surface modes of colliding nuclei. The
quantum effects are included through stochastic sampling
of initial zero-point fluctuations of surface vibrations. The
zero-point fluctuations lead to barrier fluctuations that en-
hance the fusion cross-section at near and sub-barrier ener-
gies. The idea that important quantum effects can be simu-
lated by stochastic sampling of the initial zero-point fluctu-
ations was proposed in ref. [9]. However, only a few appli-
cations of the approach has been carried out so far [10–12].

In this contribution, we study the effect of energy dis-
sipation due to non-collective excitations of the nuclei by
using the stochastic model. The position dependent friction
coefficient for the relative motion can be extracted from
the linear response theory [13] and directly plugged into
the equations of motion obtained by the stochastic semi-
classical model. The associated fluctuations, according to
the fluctuation-dissipation theorem, depend on the friction
coefficient as well as on the nuclear temperature. We de-
fine the nuclear temperature via excitation energies of the
surface modes. The effect of dissipation and fluctuation on
the fusion cross sections is investigated. In section two, we
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briefly introduce the model. The application of the model
to fusion reactions of Ni isotopes is discussed in section
three. The conclusion is given in section four.

2 The Stochastic Model

In the stochastic model, treating the surface vibrations in
harmonic approximation, fusion reactions of heavy ions
are described by a Hamiltonian given by

H =
P2

2µ
+

l(l + 1)~2

2µR2 + VC(R) + VN(R, Ω, αiλ)

+

2∑
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 Π2
iλ

2Diλ
+

1
2

Ciλα
2
iλ

 , (1)

where the phase space variables (R, P) of the relative mo-
tion are coupled to 2N vibrational modes (λ = 0, ...,N − 1)
of the fragments (i = 1, 2) [8]. The spring constants and
inertia parameters are given in terms of the deformation
parameters βiλ and excitation energies E?iλ of the modes by
Ciλ = E?iλ/2β

2
iλ and Diλ = ~

2/2E?iλβ
2
iλ, respectively [12,

14]. The first two terms of the Hamiltonian are the radial
and rotational kinetic energies. VC is the Coulomb poten-
tial approximated as,
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)
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, (2)

where RC = R1+R2 is the sum of the equivalent sharp radii
[15,16]. The nuclear part of the interaction is computed
using the double-folding potential as,

VN(R, Ω, αiλ) =
∫
ρ1(r1, Ω1, α1λ)ρ2(r2, Ω2, α2λ)

×VNN(R − r1 + r2)d3r1d3r2. (3)
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The parameters set Ω = {Ω1, Ω2, Ω3} in the nuclear poten-
tial describes rotation angles of the vibration axes of the
nuclei and allows to take into account all possible vibration
orientations of surface modes (see ref. [8] for details). The
nuclear densities ρ1,2 are defined by two-parameter Fermi
functions as

ρi(r, αiλ) =
ρ0i

1 + exp [(r − Ri)/ai]
, (4)

where ρ0i is a normalization constant, ai is the diffuseness
parameter and Ri denotes the deformed nuclear radius of
each nucleus. A global description of the nucleus-nucleus
interaction is achieved by a zero-range nucleon-nucleon in-
teraction of the form,

VNN(r) = V0δ(r), (5)

which is equivalent to a finite-range nucleon-nucleon in-
teraction [17–20]. All the global potential and density pa-
rameters are taken from ref. [17].

The relative motion has a short de Broglie wavelength
therefore the classical approximation works well for the
relative motion at near and over-barrier energies where the
effect of quantum tunneling is small compared to that of
surface excitations. However, the dynamics of surface vi-
brations is far from the classical limit. In the stochastic
model, the quantum effects of the surface modes are in-
cluded by the initial zero-point fluctuations of the modes.
A phase space distribution of the zero-point fluctuations
of the surface modes can be introduced by considering the
Wigner transform of the ground state which is an uncorre-
lated double Gaussian distribution given by

F(α,Π) =
1

2πσασΠ
exp

− α2

2σ2
α

− Π
2

2σ2
Π

 , (6)

where α = αiλ and Π = Πiλ. The quantal effects can be
taken into account by solving the classical equations of
motion given by

dR
dt
=

P
µ
, (7)

dP
dt
= −dVC(R)

dR
− ∂VN(R, αiλ)

∂R
+
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−β(R)P + F(t) (8)
dαiλ
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=
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Diλ
, (9)

dΠiλ

dt
= −∂VN(R, αiλ)

∂αiλ
− Diλ

(
E?iλ
~

)2

αiλ. (10)

for the initial values α(0)
iλ and Π (0)

iλ which are randomly se-
lected according to the Wigner distribution F(α,Π). By av-
eraging over the resulting ensemble of events, the quantum
effect of the surface vibrations is recovered. The last two
terms in the right hand side of Eq.(8) are related to the
energy dissipation due to coupling to intrinsic degrees of
freedom. β(R)P is the dissipation term and F(t) represents

the associated fluctuations. β is the position dependent re-
duced friction coefficient which is calculated from the lin-
ear response theory [13] and F(t), according to fluctuation-
dissipation theorem, is a Markovian Gaussian random num-
ber with the following correlation properties,

〈F(t)〉 = 0, (11)
〈F(t)F(t′)〉 = 2µβkTδ(t − t′), (12)

where µ, k, and T are the reduced mass of the nuclei, Boltz-
mann constant, and nuclear temperature, respectively. Other
than sampling of the initial values of the surface modes,
〈...〉 represents an additional sampling over different val-
ues of F(t).

3 Applications

Coupled-channels calculations are often employed for de-
scribing fusion cross-sections at sub-barrier energies. These
investigations indicate that low-lying surface modes such
as 2+ and 3− make the dominant contribution to sub-barrier
cross-sections [21–23]. Retaining only these two modes,
we carry out stochastic simulations to describe the fusion
process of Nickel isotopes. In order to compare our results
with that of coupled-channels calculations of Nobre et al.
[24], we adopt the same parameters as in that reference.
It is important to note that none of these parameters are
adjustable. The quadrupole (λ = 2) and octupole (λ = 3)
deformation parameters are β2 = 0.215, β3 = 0.263 for
64Ni, and β2 = 0.205, β3 = 0.235 for 58Ni. The excitation
energies are E?2 = 1.35 MeV, E?3 = 3.56 MeV for 64Ni,
and E?2 = 1.45 MeV, E?3 = 4.48 MeV for 58Ni. The zero-
range potential strength and the diffuseness parameter are
V0 = −456 MeVfm3 and a = 0.56, respectively [17].

The nuclear temperature is defined via total excitation
energy of non-collective modes. The following method is
used to obtain the temperature. First, the equations of mo-
tion given by Eqs. (7-10) are solved by setting F(t) = 0.
The dissipation of total energy is introduced by the non-
collective friction force −β(R)P. Then, the total excitation
energy of non-collective degrees of freedom is found as a
function of time by using the formula,

E?non−coll = Einc − H, (13)

where H is the total Hamiltonian given by Eq. (1). Then,

the temperature is found from T =
√

E?non−coll/a where a
is the level density parameter approximated as a = A/10
with A being the total mass number. The code is rerun by
using the full dissipation and fluctuation terms β and F(t).
Fig. 1 shows the total excitation energy of intrinsic degrees
of freedom as a function of time for 64Ni + 64Ni system at
two different center of mass energies.

The fusion cross sections are calculated by using the
standard equation,

σ f us(E) =
π~2

2µE

lmax∑
l=0

(2l + 1)Pl(E), (14)
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Fig. 1. The total excitation energy of the non-collective modes
are plotted versus time for 64Ni + 64Ni system at two different
center of mass energies. The fusion barrier is VB = 96.5 MeV.

where E and Pl(E) represent the initial center of mass en-
ergy and the partial transmission probabilities, respectively.
The result for the fusion cross section of 64Ni + 64Ni sys-
tem is indicated in Fig. 2. It is seen that a good agreement
with the data is obtained around the barrier where the bar-
rier fluctuations are dominant. When the dissipation and
associated fluctuation is included the agreement with the
data becomes better at sub-barrier energies compared to
the case without dissipation.
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Fig. 2. The fusion cross section of 64Ni + 64Ni system calculated
with the stochastic zero-point model is compared with the data
of ref. [25–27]. The effect of dissipation is shown. The barrier
height is indicated in the figure.

In the previous work [8], some interesting observables
that cannot be accessed easily by fully quantal approaches
like fusion time distributions and final energy distribution
of inelastic collisions were computed. The fusion time was
defined as the time it takes for the relative distance to reach
5 fm starting from 20 fm. Here, we also calculate the bar-
rier distribution. Fig. 3 indicates the barrier distribution of
64Ni + 64Ni system. Two peaks are seen in the figure which
appear due to couplings to quadrupole and octupole sur-
face modes.
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Fig. 3. The barrier distribution for 64Ni + 64Ni system calculated
with the stochastic zero-point model is shown.

4 Conclusion

Fusion reaction of 64Ni ions is investigated by employing a
stochastic semi-classical model which couples the relative
motion to the low-frequency collective surface modes of
the nuclei. The quantal effects of surface vibrations are in-
corporated by forming an ensemble of events of randomly
selected initial values of surface modes that satisfy the cor-
responding Wigner distributions of the ground states. The
approach is quite simple yet it can reproduce the fusion
cross section data for Ni isotopes quite well. In the model,
dissipation due to coupling to non-collective modes can be
included straightforwardly. The inclusion of dissipation in-
creases the agreement with the data. The stochastic model
can also be used to obtain barrier distributions.
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