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Abstract

We introduce a one-parameter generalized oscillator edgdp (that covers the case
of the harmonic oscillator algebra) and discuss its finited @finite-dimensional repre-
sentations according to the sign of the parametéf/e define an (Hamiltonian) operator
associated with4,, and examine the degeneracies of its spectrum. For the fimiter(

r < 0) and the infinite (whem > 0) representations ofl,., we construct the associated
phase operators and build temporally stable phase statégeastates of the phase opera-
tors. To overcome the difficulties related to the phase dpenathe infinite-dimensional
case and to avoid the degeneracy problem for the finite-d8ropal case, we introduce
a truncation procedure which generalizes the one used by &watjBarnett for the har-
monic oscillator. This yields a truncated generalized ltzgor algebraA, ;, wheres
denotes the truncation order. We construct two types of teatly stable states fa#,,
(as eigenstates of a phase operator and as eigenstates lghampial in the generators
of A, ;). Two applications are considered in this article. The fimtcerns physical re-
alizations of A, and.A,  in the context of one-dimensional quantum systems withefinit
(Morse system) or infinite (Poschl-Teller system) disesgiectra. The second deals with
mutually unbiased bases used in quantum information.



1 Introduction

It is well known that the usual model for the quantized singledes of the electromag-
netic field is the harmonic oscillator with an infinity of stat The infinite-dimensional
character of the representation space of the correspomndiciiator algebra constitutes
a drawback to define a phase operator in a consistent fa@I1]H order to get rid
of this difficulty, Pegg and Barnett suggested to truncatsamme finite (but arbitrarily
large) order the infinite-dimensional representation epaicthe oscillator algebrg][4].
Their approach also provided a valid way for calculatinggbecalled phase states (the
eigenvectors of the phase operator). In the same vein, ¥systbposed a definition of
a phase operator for(2) and calculated its eigenstates without a truncation praeed
sincesu(2) admits finite-dimensional unitary irreducible represéotes [B]. He also con-
structed a phase operator and its eigenstates.fdr, 1), without a truncation procedure
althoughsu(1, 1) admits infinite-dimensional unitary irreducible represgions [b].

The main aim of the present work is to develop a method to hunithry phase op-
erator§ and temporally stable phase states for some exactly selakintum systems.
Various algebraic structures were used to construct (teahpstable or not) coherent
states in connection with some quantum systéig[6]-[10& ddnstruction of temporally
stable phase states to be developed in this work is based emesadized oscillator alge-
bra which takes its root if [1,12]. This algebra was intrmetlto construct isospectral
shape invariant potentials in the framework of fractiongdersymmetry.

A second facet of this work is to show that the obtained te@lpostable phase states
can be used to generate mutually unbiased bases (MUBSs).lfasel are of considerable
interest in quantum information and were recently inveggd from an angular momen-
tum approach[[19, 14]. Itis not the purpose of this paper & déth unsolved problems
concerning MUBs but to give a way to construct MUBs from tenaly stable states
associated with some exactly solvable systems.

The paper is organized as follows. Section 2 is devoted tgémeralized oscillator
algebraA,. Temporally stable phase states associated wijthare studied in section
3. Section 4 deals with the truncated oscillator alge#ita and the correponding phase
states. As a first application, the derivation of MUBs fromagéh states is developed in
section 5. A second application is made in section 6 to soraetgxsolvable quantum
systems.

We deal here withinitaryrather tharHermitianphase operators. The two kinds of operators are related
via an exponentiation trick.



The notations are standard. Let us simply mention thatstands for the Kronecker
symbol ofa andb, I for the identity operatorA’ for the adjoint of the operatod, and
[A, B] and{ A, B} for respectively the commutator and the anticommutatonefdapera-
tors A andB. We use a notation of tyge) for a vector in an Hilbert space and we denote
(p|v) and|) (1| respectively the inner and outer products of the vedtprand|¢).

2 Generalized oscillator algebra

2.1 The algebraA,.

Let A, be the algebra spanned by the three linear operatarg™ and V satisfying the
following relations

l[a”,at] =1+ 2N [N,a*] = +a* (a_)T =a" Nt =N, (1)

wherek is a real parameter. Note that, fer= 0, the algebrad, is nothing but the
usual harmonic oscillator algebra. The operators a™ and N in () generalize the
annihilation, creation and number operators used for tinebdaic oscillator. Therefore,
the algebrad, shall be called generalized oscillator algebra. This algélrns out to be
a particular case of the generalized Weyl-Heisenberg edgéh introduced in [1jL[ 12]
and not to be confused with the Lie algebra of the Heisenléaygl groupH W (R) used
in quantum information[[14]. In fact4,, is identical tolV, with

k=1 fo(N)=aN +b \%Xi:ai m:%%,
where the operatorf (N) and X, and the parametefs a andb are defined in[[12]. It
should be noted that th&,-extended oscillator algebra worked out|in][15] is a patécu
case ofiV, (for A = k).

(@)

2.2 Hilbertian representation of A,

We denote byF, the finite- or infinite-dimensional Hilbert space on whicle thperators
a”,at andN are defined. Let

{In) :n=0,1,...,d(K)} (3)

(with d(x) finite or infinite) be an orthonormal basis, with respect te itner product
(n|n') = 0,,,, Of the spaceF,. Itis easy to check that the actions

a+|n> — /F(n + 1)67i[F(n+1)fF(n)]go|n + 1>’
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a”[n) = /F(n)etF =002, — 1), (@)
a |0) =0 N|n) =n|n)

provide an Hilbertian representation of the algedradefined by [(lL). In equatiof](4), the
real parametep is arbitrary and the positively-valued functiéh: N — R, satisfies the
recurrence relation

F(n+1)—F(n) =1+ 2kn F(0)=0. (5)
The iteration of [p) yields
F(n) =n[l+ k(n —1)], (6)

which is linear inn only for k = 0. SinceF(n) € R, we must have the following
condition

1+ k(n—1)>0 (7)

for n > 0. The condition[{7) determines the valuedgf) and then the dimension .
The finiteness or infiniteness &f. depends on the sign of the parameteForx > 0, the
spaceF, is infinite-dimensional. In fact, fox = 0, the spacer;, coincides with the usual
Hilbert-Foch space for the harmonic oscillator. ko 0, there exists a finite number of
states satisfying the conditiof] (7). As a matter of factfer 0, n can take the values

1

n=0,1,....,E(——)=d—1, (8)

K

where E(x) stands for the integer part of The finiteness of the spacg, induces
properties of the operatosis anda™ which differ from those corresponding to an infinite-
dimensional space. In particular, the trace of any comroutatthe finite-dimensional
space must be zero. This implies that the parameterelated to the dimensiahof the

spacefr, by

i=1-1% 9)

K

Equation [P) requires thatl/x be a positive integer. In the following, we shall assume
that—1/x € N* whenx < 0.



2.3 A generalized oscillator Hamiltonian

We are now in a position to define an operator which genesa(ize to an additive con-
stant) the Hamiltonian*a~ + 1/2 for the one-dimensional harmonic oscillator. Starting
from

ata”|n) =F(n)ln) = F(N)=a"a", (10)

we refer F'(N) to as an Hamiltonian associated with the generalized aswillalgebra
A,.. The eigenvalue equation

F(N)|n) =n[l 4+ k(n — 1)]|n) (11)

gives the energie§](6) of a quantum dynamical system desthip the Hamiltonian op-
eratorF'(INV). Let us discuss the degeneracies of the le¥&ls) given by ().

(i) In the case: > 0, the spectrum of’(N) is nondegenerate.

(i) In the casex < 0, the eigenvalues af'(N) can be rewritten as

d—n
Fn)=nS—, (12)
so that
F(n)=F(d—n) n=12,...,d—1. (13)

Thus, ford even the levels are doublets except the fundamental teveD and the level
n = d/2 which are nondegenerate. Réodd the levels are two-fold degenerate except
the fundamental level = 0 which is a singlet.

In both cases{ > 0 andx < 0), we note that the Perron-Frobenius theorgm [16] is
satisfied, namely, the fundamental level is nondegenerate.

It is known that one-dimensional quantum dynamical syst@mshe real line) corre-
spond to nondegenerate spectra. Therefore, the reprégemiatained ford, with x < 0
cannot be used to describe a particle evolving in some rativiskic potential on the real
line. However, a modification of the generalized oscillatyebra A, can be achieved
in orded to avoid the degeneracies/ofN). This will be done in section 4 by means
of a truncation procedure which will prove also useful in tasex > 0 to define in a
consistent way the phase operator for some exactly solggtems.

3 Temporally stable phase states fo.,.

We shall treat separately the cases 0 andx < 0 associated with the infinite- and the
finite-dimensional representation of the generalizedlasor algebra4,, respectively.
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3.1 The infinite-dimensional case

In the case: > 0, we decompose™ anda™ as

0~ = E.\/F(N) a"=\/F(N)(Eyx), (14)

where

By =Y _ el n) (n 4 1], (15)

n=0

It is important to emphasize that

Ex(Bx)' =) In)nl=1  (Ex) Ex=)_In)(n|=1-0)(0], (16)

a result which means th&t., is not a unitary operator.
To find the phase states corresponding to 0, let us consider the eigenvalue equa-
tion

E|z) = z|2) z e C. (17)

By expanding the vectdr) of F, as

|2) = ian"m}, (18)
n=0
it is easy to see that the complex coefficiefifssatisfy the relation
Chyq = e WHFD=FWlec e N, (19)
It follows that
C, =e FMec,  peN, (20)

where the coefficient|, can be determined from the normalization condition of tlaéest
|z). As aresult, we can take (up to a phase factor)

) = VIR S 2%y (21)
n=0

on the domaifz € C, |z| < 1}.



Following the method developed if J17] for the Lie algebte1, 1), we define the
stateq6, ¢) by

|0, ) := lim 7|2|z>, (22)

wheref € [, +| (see also[[18] where a limit of type— ¢ = |2| — lisusedina
similar way). We thus get the states

10,0) =) e ). (23)
n=0
These states, defined on the unit cirgfe turn out to be phase states. Indeed, we have
Exlf,¢) = €10, ). (24)

Hence, the operatdr,, is a (nonunitary) phase operator.
The main properties of the statiés ) are the following.
(i) They are temporally stable in the sense that the relation

e FNNG ) =16, + 1) (25)

is satisfied for any value of the real parametef his property is due to the presence of
the parametep in the phase operatdy,,.

(i) They are not normalized and not orthogonal. However fifced ¢, they satisfy
the closure relation

|
— de|o 0,p|=1. 26
5 a0 (26)

Finally, observe that fop = 0 the state$d, 0) have the same form than those derived

in [[[7] for su(1,1).

3.2 The finite-dimensional case

Forx < 0with —1/x € N*, the Hilbert spacer, is d-dimensional withi = 1 —1/x. The
action ofa— anda™ on F, is given by [#) supplemented by

at|d—1) =0, (27)

which easily follows from the calculation @fl — 1|a"a™|d — 1).



Let us look for a decomposition of the creatiafi and annihilations~ operators
similar to (I4) for the case > 0. Thus, let us put

o~ = E;\/F(N) & a* = \/F(N)(E,)". (28)

The operatoi,; can be seen to satisfy

Eqln) = ei[F(n)—F(n—l)}som —1) (29)
forn=1,2,...,d — 1. Forn = 0, we shall assume that
E,|0) = ei[F(O)*F(dfl)]w‘d -1 (30)

so that [2P) is valid moduld. (Note that, in view of[(28)¢~|0) = 0 does not imply that
E;]0) = 0.) It follows that we have

(BT |n) = e~ 1FmHD=F0le), 4 1), (31)

wheren + 1 should be understood modudo As an important result (to be contrasted
with the situtation where: > 0), the operatorF,; is unitary. Therefore, equatiop (28)
constitutes a polar decompositionaof anda™.

We are now ready to derive the eigenstates of the opefatori_et us consider the
eigenvalue equation

d—1
Eglz) =2]2)  |2) =) Cuz"|n) (32)
n=0

with z € C. Here again (as in the cage> 0), we obtain a recurrence relation for the
coefficientsC,,, viz.,

C, = e WF=Fo=Dlec  p =12 ....d—1 (33)
with the cyclic condition
Cp = 20e FO-Fld-Dlecr, (34)
Therefore, we get
C,=eFWecy  n=0,1,...,d—1, (35)
with the discretization condition

24 =1. (36)



As a consequence, the complex variable a root of unity given by
z=q" m=20,1,...,d—1, (37)
where
q = e*mid (38)

is reminiscent of the parameter used in the theory of quamftoups. The constardt,
can be calculated from the normalization conditjefx) = 1 to be

Ch = — 39
=7 (39)
up to a phase factor. Finally, we arrive at the following eigfategz) = |m, ¢) of E,
1 d—1
[m, ) = —= e Mg ). (40)

S
Il
o

The state$m, ), labeled by the parameters € Z/dZ andy € R, satisfy

. 2
Edm, @) = el @) O =T, @1)

which shows that’, is indeed a phase operator. In the particular gase 0, the states
|m, 0) are similar to those derived ifi J17] for the Lie algebra2). In this case, the
stategm, 0) correspond to an ordinary discrete Fourier transform obtgs{|n) : n =
0,1,...,d — 1} of thed-dimensional spacé,.

The phase statés:, ¢) have remarkable properties (to be compared to those for the
stateq0, ) of the case: > 0).

(i) They are temporally stable under “time evolution”. Ihet words, they satisfy

e ™M, ) = [m, ¢ +1). (42)

for any value of the real parameterWe note here the major role of the parametan
ensuing the temporal stability of the states ).
(ii) For fixed ¢, they satisfy the equiprobability relation
1
nlm, = — n,m € 7./dZ. 43
[ (n]m, )| 7 / (43)

(iii) For fixed ¢, they satisfy the orthonormality relation

<m7 (p‘mlu ()0> = 5m,m’ m, m' € Z/dZ (44)



and the closure property

d—1
> Im,e)(m, ¢ = 1. (45)
m=0

(iv) The overlap between two phase stdte$ ') and|m, ) reads

d—1
1 ! !
A — plm—m/ o—¢',n) 46
(m, lm’, ¢) d;q , (46)
where
d
pim—m/, o —¢',n) = —(m—m')n+ 5 (P~ ¢')F(n) (47)

andg is defined in[(38). Therefore, the temporally stable pheatestare not all orthogo-
nal.

4 Truncated generalized oscillator algebra and phase stase

As discussed in section 2, in the case> 0 the Hilbert spaceF,. associated with4,.

is infinite-dimensional. It is then impossible to define atary phase operator (see sec-
tion 3). On the other hand, in the case< 0 with —1/x € N* the spaceF, is finite-
dimensional and there is no problem to define a unitary phaesetor. However, the spec-
trum of the Hamiltoniar¥' (V') associated withd,, for —1/x € N* exhibits degeneracies.
Therefore, it is appropriate to truncate the spagdor bothx > 0 andx < 0 in order to
get a subspacg, ; of dimensions with the basig{|n) : n =0,1,...,s — 1}. Forx > 0,
the truncation is done at sufficiently large (note that the differend&n + 1) — F(n)
between two consecutive states increases witar « > 0 so that we can ignore, in a
perturbative scheme, the states witlharge). Forkx < 0, the truncation can be done at
s = (d+2)/2fordevenandat = (d + 1)/2 for d odd (withd given by (9)) in order to
avoid the degeneracies 61 V).

4.1 The truncated algebraA, ;

Inspired by the work of Pegg and Barnéit [4], we define thedated generalized oscilla-
tor algebraA, ; through the three linear operatdrs, b* and N satisfying the following
relations

b~ bt = T+ 26N — F(s)]s — )(s — 1] [N, b*]=+6= (b7)' =p* N' = N.(48)

10



The algebra4, ; generalizes the one introduced by Pegg and Barnett for timadmic
oscillator in their discussion of the phase operator forsihgle modes of the electromag-
netic field [4]. Indeed, the algebrd, ;, for x = 0, is identical to the truncated oscillator
algebra considered if][4].

Following the same approach as in subsection 2.2, we defirdimensional repre-
sentation ofA4,, ; (whatever the sign of is) via the actions

b+|n> —_ /F(’I’L + l)e—i[F(n+1)—F(n)}<p|n + 1>’
b~ |n) = \/F(n)ei[F(")_F(”_l)mn — 1), (49)
b 10)=0 bFls—1)=0  N|n) =n|n)

forn=0,1,...,s— 1. Note that a further condition is necessary here, namedyyiper
limit conditionb™|s — 1) = 0. It can be checked that the recurrence relaffpn (5) is eguall
valid for A, ;. Therefore, equation§](6) and]12) can be applied with0,1,...,s — 1.

It is interesting to note that the creation and annihilatiperatorsy~ andb™t satisfy
(in the representation under consideration) the nilpoteekations

(b7)" = (") =0, (50)

which are similar (fors = k£ € N'\ 0, 1) to those describing the so-calléeermions that
are objects interpolating between fermions (o« 2) and bosons (fok — oo) [L9].

4.2 Phase states for, ,

For the truncated algebrd,, ; (corresponding td(x) finite or infinite), the analog of the
phase operataF, is the unitary operator

s—1
E, := FO-FEle s — 1) (0] + ) " W m=Fn=lejn — 1) (n]. (51)
n=1

By using the same reasoning as in subsection 3.2, we obtain

A 2
Bm, @) =™ lm, ) =m 52)
where
1 s—1
m, @) = —= > e M (q) ™" ), (53)
\/g n=0

11



with m € Z/sZ, ¢ € R andq, given by
g i= €™/, (54)

We are thus left with phase states, ) associated with the phase operatr These
states satisfy the same properties as thos& fdsee section 3.2) except thais replaced
by s in some places.

4.3 A new type of discrete phase states

It is well known that, for guantum systems with a finite spewtr(like the Morse system)
or for Lie algebras with finite-dimensional unitary repnetsgions (as for instance.(2)),
the construction of coherent states cannot be achievedBinig for the eigenstates of an
annihilation operatof[8] or of a compact shift operafgr. [6]

For the algebrad, , the difficulty inherent to the finiteness of the representatian
be overcome as follows. We define the operator

(b-l—)s—l

=b + - 55
Vs T EG-1) (55)
where the functior¥ is defined via
E0):=1 E(n):=F(1)F(2)...F(n) n=12...,5s—1. (56)
The operatol/; is an idempotent operator of ordesince
(Vo) =1. (57)
Let us consider the eigenvalue equation
s—1
Viz) =zlz)  |z) =) Cu"ln)  z€C. (58)
n=0
By using (5¥), we obtain thatis discretized as
z=(¢.)" peZ/sL (59)

with ¢, defined by [(54). Then, it is a simple matter to calculate theffaentsC,, and to
normalize the.- andp-dependent states) = |u, ). This leads to

s—1

1 .
1) = C (gs)" e~ P2 |y, (60)
’ Z E(n)

12



where the normalization facta, is such that (up to a phase factor)

Ly 1
Co? =) o) (61)

The statesyu, p) are temporally stable and are similar to the coherent statexiuced
by Gazeau and Klauddl [8] except that their labeling incuale integer and they corre-
spond to the eigenvectors of a polynomial in terms of germ@lcreation and annhilation
operators. They satisfy

—

S—

ro 1 n(p — —iF(n)(¢ —
(, olpt, ') = C2 5650k)w We—tF (e’ =e) (62)
n=0
and
1 s—1 s—1 1
- — 2N . 63
Sg;mwﬂmﬂ c%Z;Emﬂmm| (63)

Consequently, they are not orthogonal.
We close this subsection with a remark concerning the ynitperator

Us = (qs)N (64)

that is a companion oV, in the following sense. This operator satisfies the cyglicit
relation

(Us)* = I. (65)
Furthermore, we have thecommutation relation
VsUs — qsUsVs = 0. (66)
Equations [(57),[(85) andl (66) are necessary conditionsh®pair (/;, V;) be a pair of
Weyl (see [I4]). However, this is not the case becdddgs not unitary.

5 Application to mutually unbiased bases

As ana priori unexpected connection, the approach in subsection 3.2 @nfbdthe
finite-dimensional cases (fot,, and.A, ;) can be further developed for deriving MUBS.
Let us recall that two orthonormal basflaa) : a = 0,1,...,d — 1} and{|b8) : § =

13



0,1,...,d — 1} in ad-dimensional Hilbert space (with an inner prody¢t) are said to
be mutually unbiased iff

(aabB)] = basbm s + %(1  6u). (67)

For fixedd, it is known that the numbeX” of MUBSs is such that\" < d + 1 and that the
limit V" = d + 1 is reached wheti is the power of a prime numbdr 20, 21].

5.1 MUBs from phase states fotA,.

In order to generate MUBs along the line of the developmehtsibsection 3.2, let us
further examine some properties of the phase oper@fofor A, with k < 0. This
operator can be written in a compact form as

d—1
E; = Z ) =Fn=1le | _ 1) (n] (68)

n=0

(in this section, the summations arare understood modulf). It is easy to check that
(Ea)' =1, (69)
so thatFt,; is idempotent. The operatdf; can be decomposed as
E,=U,V, (70)

where the operator$, andV” are defined by

d—1
U, = dFOHFNle = S 1y, (71)

n=0

The operatoré/,, andV" are unitary and satisfy the pseudo-commutation relation
U,V =eXe/d=hyy, (72)
In addition, the operator” satisfies the idempotency relation
vi=T (73)
and, when the parameteris quantized as

d—1
p=-7 y P p € Z/dZ, (74)

14



we have
(U,)" = eimd=bry, (75)
In view of (74), equation[(12) can be rewritten as
VU, = ¢"U,V (76)
(see [3B) for the definition af). For the discrete values gf afforded by [7}4), equation

(AQ) yields the phase states, ¢) = |m, p) given by

m, p) v ZW WPRE ) p,m € Z)dZ, (77)

which coincides with the vectdra), with ¢ = p anda = m, obtained in [IB] in an
SU(2) approach to MUBs. Alternatively, by putting

k:=d—n-—1 n)y =|d—k—1)=|k), (78)

equation[(7]7) becomes

\/_

which coincides with the vectdua), with a = p anda = m, derived in [1] in an
angular momentum approach to MUBs. It is to be observed ftand [7P) correspond
to quadratic discrete Fourier transforms.

To make a further contact with [[13,]14], let us note that whes discretized accord-
ing to (74), the inner produgim, p|m’, ¢') = (m,p|m’,p’) (see equation[(46)) can be
rewritten as

d—
m, p) = —— Z (k4 1)(d=k=1)p/2=(k+1)m oy p,m € ZL/dZ, (79)
k=0

/ / 1
<m7p|m 7p> = gS(U,U,U}) (80)
with
u=p—p  vi=—(p-p)d+2(m' —m) w:=d. (81)

In equation [[80), the factdf (u, v, w) denotes a generalized quadratic Gauss sum defined
by 23]

lw|—1

S(u,v,w) Z eim(uk? k) fw (82)

15



whereu, v andw are integers (the nonvanishing 8fu, v, w) requiresuw + v even). In
the special case whetkis a prime integer ang’ # p, the calculation ofS(u, v, w) in
(B0) through the methods developed[in|[£3, 23] (see &I99 [@8{ls to

1
m,plm’, p)| = —=. 83
[(m, p|m’, p')| 7 (83)
This result shows that thébases
B, :={|m,p) :m=0,1,...,d—1} p=0,1,...,d—1 (84)

of the d-dimensional spacé,,, with d given by (9), are mutualy unbiased. On the other
hand, in view of [4B), it is clear that any bad#s and the basis

By:={[n):n=0,1,...,d—1}, (85)

known as the computational basis in quantum informationcarahtum computation, are
mutually unbiased. As a conclusion, féprime, thed basesB, withp =0,1,...,d — 1
and the computational basi; constitute a complete set df+ 1 MUBs. This result, in
agreement with the one derived [n]13] 14], is the startingtfor constructing MUBs in
power prime dimension.

5.2 MUBs from phase states fot4, ,

By applying a discretization procedure similar to the onteoduced in subsection 5.1, we
can construct MUBs from the phase stafe$ (53) for the tredcagebrad,, ; with x # 0.
Let us quantize the parametetby putting

2
po=T—Dp p € Z/sZ. (86)
SK
Then, equation($3) leads to the statesy) = |m, p) given by
s—1
1
m,p) = —= > (a.)"°"" " 0y p,m € Z/sZ, (87)
S
n=0
where
jm1-1 (88)
K

In this subsection, we shall assume that € Z so thaty € Z (note that) = d for x < 0).
The overlap(m, p|m/, p’) can be written in terms of the generalized quadratic Gauss su
(B2). Indeed, we have

s—1
1 —n)(p'— n(m’'—m 1
(m. plm!, ) = = (go)" 070 = 28w, 0,w), (89)
n=0
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where
w:=2p—p) v:=200p"—p)+2(m' —m) w:=s. (90)

We can proceed as in subsection 5.1 in order to show that timigastate$m, p) gener-
ate, together with the-dimensional basi§|n) : n =0,1,...,s — 1}, s + 1 MUBs when
s Is a prime integer.

6 Application to exactly solvable potentials

The main goal of this section is to show how the generalizaillasr algebraA, is
relevant for the study of one-dimensional exactly solvgiéentials in the context of
supersymmetric quantum mechanics and how MUBs can be ddriva the temporally
stable phase states for some quantum mechanical systems.

6.1 Creation, annihilation and transfer operators

Ordinary supersymmetric quantum mechanics can be presentigfernt ways (e.g., see
[B4]-[BQ]). We adopt here the approach according to whichgessymmetric dynamical
system is defined by a triplét, )., )_), of linear operators acting on 4,-graded
Hilbert spaceH and satisfying the following relations

H=H'" Q =Q, @i=0 {Q,Q}=H [HQs]=0 (91

(In this approach, ordinary supersymmetric quantum mechas a particular case, cor-
responding té = 2, of fractional supersymmetric quantum mechanics of okdidzaling
with triplets (H, Q. ,Q_)r which satisfy relations generalizing {91) and which corre-
spond to aZ, grading [IR].) The operator®, and ()_ are the supercharges of the
one-dimensional system. We suppose that the spectrum @kthadjoint operator,

the supersymmetric Hamiltonian of the system, is discrétee HamiltonianH can be
written

H = Hy+ Hy, (92)

where H, and H; act on the stategl,,, 0) and|V,,, 1) of even and odd grading, respec-
tively. In other words, the Hilbert spaéé is decomposed as

H =Ho D Ha Ho = {|¥,,0) : nranging} Hq = {|¥,, 1) : nranging}, (93)
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which reflects th&., grading. We shall assume that there is no supersymmetriihgea
In this case, the Hamiltoniand, and H, are isospectral except that the ground state of
H, has no supersymmetric partner in the spectrurfi of

By combining the above-mentioned considerations on syperetry with the Infeld
and Hull factorization method J28], we can construct ci@atiannihilation and transfer
operators for an exactly solvable Hamiltonian in one dinem{4]-[B3]. For this pur-
pose, let us consider a one-dimensional quantum systemdelathen a real potential
vo : ¢ — vp(x). The corresponding Hamiltonian is

HO = —5@ + vg. (94)

Let us suppose that the Hamiltoniafy is exactly solvable and admits the discrete spec-
trum

ep=0<e;<e<...<ep<eépi1 <..., (95)

with a finite or infinite number of levels. We know that the H#omian H,, of this system

can be factorized a$§ [PF,]46] 28] 29, 30]

1 d 1 /d
Hy=a2"2" ti=— | —— = — . 96
o=1x"x x \/§<da:+w) x \/§<d:v+w) (96)
The superpotential : x — w(x) satisfies the Ricatti equation
1/ 5 dw
“O—a(w ‘@)- (07)

Since the ground state energy is assumed to be zero, it id@asyg that the potentiaj
and the superpotential can be expressed in terms of the ground state wavefunction.

It is important to stress that the operatersandz~ are not in general creation and
annihilation operators fof, [P35, [26,[ZP,[3P[35]. They are indeed transfer operators
from the spectrum of{, to the one ofH; and vice-versa. To identify them, we start
by representing the supercharge operators and the supaetyicHamiltonian by2 x 2

matrices [2b[ 26 27, 80]

(0 (0 0 _(H, 0
Q__<0 0) Q+_<x+ 0) H‘(o HO)’ (%8)
where the operator

H=x2"=—-—>—<+u (99)



is the supersymmetric partner &f and corresponds to a new potential: x — v (x).
The potential

1/ 5, dw
= — _— 1
u=g <w + daz) (100)

is the supersymmetric partner of the potential The HamiltonianH; is also exactly
solvable and isospectral 1d, (except for the ground state). Indeed,

Ho|W,,,0) =€l |¥,,0) = Hi(z|¥,,0)) = e (z|¥,,0)), (101)
wheree? := e,,. Similarly,
Hi|W,, 1) = e | Wy, 1) = Ho(z 7]y, 1)) = e, (aF] 0y, 1)). (102)

(For more details se¢ [R5,]26,]29] and the recent topicabve\fB0].) From equations
(L01) and[(102), it is clear that we can take

27| Wi, 0) = \/Eppre! e, 1) (103)
et |, 1) = \/fenqe entimen? | 0), (104)

whereyp is a real number, and that the energies of the supersymrpatticersH, and H,
are related by

Note that the operatar— (respectivelyr™) converts an eigenfunction éf, (respectively
H;) into an eigenfunction off; (respectivelyH,) with the same energy. Thus, the opera-
torsz~ andx™ transfer the states from one spectrum to its partner specffa introduce
the ladder operators inside a given spectrum, we first censiee unitary operatol/
relating the statelsl,,, 0) and|¥,,, 1) through (cf [31]-[3B])

U= [0, 1)(T,,0 = [¥,,1) = U|T,,0). (106)

Operators similar té/ were already considered for continuous spedtrh [3]1, 33Jfand
discrete spectrd [B2,[134]. Then, we define the operdtors[ER]

at=2tU o =U'z". (107)
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By using equationd (IP3) €t (J04), we obtain

a”|W,,0) = \/e,elCrmen=1? |, | 0) (108)
at|W,,0) = \/ensie 1 =e)? |, L 0). (109)

Consequently;™ anda™ are creation and annihilation operators for the Hamiltotia.
Furthermore, it is easily seen that

ata” =atz” = H,. (110)

Ladder operators for the Hamiltonidh, can be introduced in a similar way.

6.2 Physical realizations of the generalized oscillator gebra
To simplify the notation, we set,,) := |¥,,, 0). From equationd (ID8) €f (709), we get
[0, a™][ W) = (ent1 — €n)[Tn). (111)
The number operata¥ defined by
N[, = n|¥,) (112)

is in general (for an arbitrary quantum system) differentfrthe productita~. Let us
consider the situation where the creation and annihilaierators satisfy the commuta-
tion relation

la”,at] =aN +0, (113)

a relation used in the study of the so-called polynomial el@ierg algebra introduced in
[B4]. In other words, we assume that the energy gap — e, between two succussive
levels is linear im, i.e.

€ni1 — € = an + b, (114)

wherea andb are two real parameters. We also assume that the eigenedlbesoperator
aN + b are positive. With these choices, the algebra generatetebgperatora™, o~
andN is identical to the generalized oscillator algebtamodulo the replacements
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in equation (L). Thus, from equatiorjs (084110), we have
Hy=a"a" = %aN(N — 1) +bN. (116)
Fora # 0, the spectrum of{, is non-linear and is given by
Hol W) = W) e = %an(n 1)+ bn. (117)

Particular realizations of (1]L7) in terms of one-dimenal@olvable potentials were pre-
viously considered inf]9, 10, [LP,13[7,]38]. Following the depenents in [1P], we consider
the following remarkable cases.

() For (@ = 0, b > 0), the spectrum oH is infinite-dimensional{ € N) and does
not present degeneracies.

(i) For (a > 0, b > 0), the spectrum of{; is infinite-dimensional{ € N) and does
not present degeneracies.

(i) For (a < 0,b > 0), the spectrum off, is finite-dimensional witm = 0, 1, ..., s—
1 where

s = b + 3 for — 2é odd (118)
a 2 a
b b

s = ——+1for —2— even, (119)
a a

and all the states are nondegenerate.

It is possible to find a realization of each of the three cabesain terms of exactly
solvable dynamical systems in one dimension. We give bdleveorresponding potential
vp and transfer operators.

(i) The caseq = 0, b = 1) corresponds to the harmonic oscillator (for whiclke N)
with

wlr) = 3%~ 1) (120)

and
d

rt=a* = % ($% + x) . (121)

(For the harmonic oscillato#] reduces to the identity operator.)
(i) Thecase¢ = 1,20 = u+ v+ 1), withu > 1 andv > 1, corresponds to the
Poschl-Teller potential (for which € N) with

1 [u(u —-1) w(v—1)

vo(x) = = -
sin? Z cos? 5

— %(u +v)? (122)
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and

1 d 1 x x
+_ L e 1 r r
x =7 l$dx+2(ucot2 vtan2>}. (123)

(i) The case ¢ = —1, 2b = 2] — 1), with [ € N*, corresponds to the Morse potential
(for whichn = 0,1, ...,1) with

vo(x) = % e — (2 + 1)e + 1], (124)
and
+ _ L i o
x =75 :':dx+l e . (125)

6.3 Phase states and MUB for exactly solvable systems

From equation[(83), we can obtain the phase states for a @emmgsintum system de-
scribed by a truncated generalized oscillator algebra We get

s—1
1 .
Im,p) = —= > e "“"?(qs)""|¥,), (126)

with s sufficiently large for the harmonic oscillator and the Riskeller systems and
s = | + 1 for the Morse system. Furthermore, equatiprj (87) providiéis & mean to
generate MUBSs associated with the cases (i), (ii) and (figubsection 6.2.

On the other hand, the discrete phase sfafe (60) reads here

—

— 1

e ten? (g )| W,,), 127
Toge a1 (127)

1, ) = Co

n

Il
o

where the facto(n) can be calculated in the different cases (i), (i) and (#)simple
calculation gives the following results in term of thdunction.
(i) For the harmonic oscillator potential:

E(n)=T(n+1). (128)

(ii) For the Poschl-Teller potential:
Fn+ DI (n+u+v+1)

E(n) = 2T (u+ v+ 1) (129)
(i) For the Morse potential:
_ I(n+1)I'(20)
E(n) = T —n) (130)
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It should be mentioned that the discrete phase states giwébhZj) differ from the
coherent states for exactly sovable potentials derive{in[$4,[36[ 38 39] from super-
symmetric quantum mechanics techniques. The noticealfdeatice comes from the fact
that the stateg (1R7) are temporally stable and are labglad imteger instead of a contin-
uous complex variable as in the coherent states derivddifSd, [36[ 38 39]. The states
(A27) are eigenstates of the operafof (55) whereas theamtrstates inf[1d, 34, B6,138]39]
are obtained from the three standard definitions (involaimgihilation operator, displace-
ment operator, and uncertainty relation).

7 Concluding remarks

The starting point of this article is based on the definitidraayeneralized oscillator
algebraA,. This algebra is interesting in two respects. First, it dégs in an unified
way some exactly solvable one-dimensional systems havimgnéinear spectrum (for

k # 0) or a linear spectrum (fox = 0). As typical examples, these quantum systems
correspond to the Poschl-Teller potential (for> 0), the Morse potential (for < 0)
and the infinite square well potential (fer= 1/3) in addition to the harmonic oscillator
potential (forx = 0). Second, the algebrd, can take into account some nonlinear effects
that may occur in the quantum description of quantized motige electromagnetic field
(cf. [AQ)).

In connection with the algebral,, the present work adresses three problems: the
construction of a phase operator, the determination cétgobrally stable eigenstates (the
so-called phase states) and the derivation of MUBs from Htailmed phase states. This
is the first time that a connection between MUBs and dynansigstiems is established.
In this regard, the character "temporally stable” of theeegtates of the phase operator is
essential for the derivation of MUBs. The main results of treper are as follows.

For the case > 0 (which corresponds to an infinite representatiotdQj, the phase
operator is not unitary. We note in passing that the corneding phase states are similar
to those derived in[[17] except that our states are tempostdble. However for > 0,
by making a & laPegg and Barnett) truncation, which gives rise to a trumtbgemeralized
oscillator algebrad, s, we can define a unitary phase operator whose eigenstate®lea
MUBs.

For the case < 0 (which corresponds to a finite representationdqj, it is possible to
construct a unitary phase operator whose eigenstatesapetally stable. MUBs can be
derived as a subset of these states.Aar0, the consideration of a truncated generalized

23



oscillator algebraA,, ; is nevertheless necessary in order to establish a connestib
the Morse system and to derive associated MUBs.

As a conclusion, in both cases & 0 andx < 0), the truncation procedure makes it
possible to define a unitary phase operator for exactly btdvsystems and to generate
temporally stable phase states from which MUBs can be derive

Another result of this paper concerns a new type of phasesstathese temporally
stable phase states, namely the stdtds (60), are assawitit¢de truncated algebrd, ;.
They are eigenstates of an operator defined in the envel@byedpra of A, ; and con-
stitute discrete analogs of the coherent states derive]inMore generally, this result
shows that it is possible, for a finite spectrum, to derive pé&ase states similar to the
coherent states of][8] constructed, for an infinite spectrasreigenstates of an annihila-
tion operator. The key of the derivation of the new statesdfbnite spectrum) is to add
a power of the creation operator to the annihilation operato

To close this paper, let us mention that the concept of MUBS neaently extended
to infinite-dimensional Hilbert spacels [41]. In this veihjs hoped that the temporally
stable phase states derived in this work for the infiniteeisional case could serve as a
hint for deriving MUBs for continuous variables, a difficatiallenge.
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