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Abstract

Constraints on spin observables coming from discrete symmetries such as P, C,
T and identical particles may be divided in two types: 1) classical ones, which insure
the invariance of the cross sections under the symmetry operation; 2) non-classical
ones, which can only be obtained at the level of amplitudes. Similarly, positivity
constraints can be divided into classical and non-classical constraints. The former
insure the positivity of the cross section for arbitrary individual polarisations of
the external particles, the latter extend this requirement to the case of entangled
external spins. The domain of classical positivity is shown to be dual to the domain
of separability.

1 The spin observables

We consider the polarised 2 × 2 reaction

A + B → C + D , (1.1)

where A, B, C and D are spin one-half particles. Let us recall some of the formalism
presented in [1, 2]. The fully polarised differential cross section of (1.1) reads

dσ

dΩ
= I0 F

(

SA, SB, ŠC , ŠD

)

, (1.2)

where F contains the spin dependence. SA and SB are the polarisation vectors of the
initial particles (|S| ≤ 1). ŠC and ŠD are pure polarisations (|Š| = 1) accepted by an
ideal spin-filtering detector. They must be distinguished from the emitted polarisations
SC and SD of the final particles. These ones depend on the polarisations of the incoming
particles, e.g.,

SC = ∇
ŠC

F (SA, SB, ŠC , ŠD = 0) / F (SA, SB, ŠC = 0, ŠD = 0) (1.3)

F is given in terms of the Cartesian reaction parameters [3] by

F
(

SA, SB, ŠC , ŠD

)

= Cλµντ Sλ
A Sµ

B Šν
C Šτ

D . (1.4)

In the right-hand side the S ’s are promoted to four-vectors with S0 = 1. The indices
λ, µ, ν, τ , run from 0 to 3, whereas latin indices i, j, k, l, take the values 1, 2, 3, or
x, y, z. A summation is understood over each repeated index. Sx, Sy, Sz are measured



in a triad of unit vectors {x̂, ŷ, ẑ} which may differ from one particle to the other. A
standard choice is to take ẑ along the particle momentum and ŷ common to all particles
and normal to the scattering plane. Conversely we have

Cλµντ = Tr{M [σλ(A) ⊗ σµ(B)] M† [σν(C) ⊗ στ (D)] } / Tr{MM† } , (1.5)

which will be symbolically abbreviated as a sort of expectation value:

(λµ|ντ) ≡ Cλµντ = 〈σλ(A) σµ(B) σν(C) στ (D)〉 , (1.6)

with σ0 = 1 ≡

(

1 0
0 1

)

.

3. Classical and quantum constraints for parity

The scattering plane is a symmetry plane for the reaction (1.1), which is therefore
symmetric under under the mirror reflection

Π = P exp(−iπJ y) . (1.7)

If parity is conserved the matrix amplitude M of A + B → C + D fulfils:

M = (ΠC ⊗ ΠD)−1 M (ΠA ⊗ ΠB) . (1.8)

For one fermion, Π = −iη σy, where η is the intrinsic parity of the fermion. Applying this
equation to both M and M† in (1.5) one obtains the classical parity rule

〈σλ(A) σµ(B) σν(C)στ (D) 〉 =
〈

σΠ

λ (A) σΠ

µ (B) σΠ

ν (C) σΠ

τ (D)
〉

, (1.9)

where OΠ denotes the reflected operator Π O Π−1. For the Pauli matrices, the reflection
reads

(σ0, σx, σy, σz) → (σ0, −σx, σu, σz) . (1.10)

The multi-spin observable Oλµντ = Oλ(A)⊗Oµ(B)⊗Oν(C)⊗Oτ(D) is Π-odd if it contains
an odd number of Π-odd Pauli matrices, otherwise it is Π-even. The “classical” rule reads:

If parity is conserved, all Π-odd observables vanish.

For instance, (z0|y0) = 0, but (00|y0) 6= 0. This rule roughly reduces by a factor 2 the
number of observables. It does not depend on the intrinsic parity of the particles. It just
expresses a classical requirement of reflection symmetry at the level of polarised cross

sections.
Applying (1.8) only to M or to M† in (1.5) one obtains the non-classical parity

constraint

〈

σλ
A σµ

B σν
C στ

D

〉

=
〈(

ΠA σλ
A

)

(ΠB σµ
B)

(

σν
C Π−1

C

) (

στ
D Π−1

D

)〉

, (1.11)

with Π = −iη σy. For the 1

2

+
baryons one can choose η = i so that Π = Π−1 = σy and

Π ( σ0, σx, σy, σz ) = (σy, −iσz , σ0, i σx ) . (1.12)

For a pseudoscalar meson, Π = −1. For example in π + N → K + Λ on gets

(y|y) = (0|0) , (0|y) = (y|0) . (1.13)



Clearly the first of these constraints, which relates a polarised cross section to an unpo-
larised one, cannot be obtained by classical parity arguments. The non-classical parity
constraints in the case of spin one-half particles are known as the Bohr identities [4].
Non-classical parity rules depend on the intrinsic parities. They yield linear identities
between the Π-even observables and reduce the number of independent correlation pa-
rameters roughly by another factor 2. For instance, in π0 decay, the classical parity rule
tells that the linear polarisations of the two gamma’s are either parallel or orthogonal
(not, e.g. at π/4). The analogue of (1.11) for photons selects the orthogonal solution.

The subdivision in constraints of the (1.9) and (1.11) types, both for parity and time-
reversal, has already been made in literature (see Appendix 3.D. of [3]). Here we point
out the “classical” versus “non-classical” or “quantum” characters of these two types.
Inclusive reactions have only “classical” parity constraints, since the intrinsic parity of
the undetected particles can take both signatures.

Similar divisions in classical versus non-classical constraints can be made for other
symmetries like charge conjugation, time reversal and permutation of identical particles.

4. Classical positivity constraints

The cross section (1.2) has to be positive for arbitrary independent polarisations of
the external particles, that is to say

F
(

SA, SB, ŠC , ŠD

)

≤ 1 for SA, SB, ŠC , ŠD ∈ unit ball |S| ≤ 1 . (1.14)

An equivalent condition is that the polarisation of, for instance, outgoing particle C for
given SA, SB, and imposed ŠD,

SC(SA, SB, ŠD) = ∇
ŠC

F (SA, SB, ŠC , ŠD) / F (SA, SB, ŠC = 0, ŠD) (1.15)

lies in the unit ball |SC | ≤ 1 for any SA, SB and ŠD. For instance in π + N → K + Λ
the inequalities

(C0x ± Czx)
2 + (C0y ± Czy)

2 + (C0z ± Czz)
2 ≤ (C00 ± Cz0)

2 (1.16)

insure that the Λ polarisation does not exceed 1 when the nucleon polarisation is longi-
tudinal.

The condition (1.14) defines a convex classical positivity domain C in the space of
the Cartesian reaction parameters. As we shall see, it is a necessary but not sufficient

positivity condition.

5. Quantum positivity constraints

All spin observables of reaction (1.1) can be encoded in the cross section matrix R, or
its partial transpose R̃, defined by

〈c, d|M|a, b〉 〈a′, b′|M†|c′, d′〉 = 〈a′, b′; c′, d′|R|a, b ; c, d〉

= 〈a′, b′; c, d|R̃|a, b ; c′, d′〉 .
(1.17)

The transposition linking R̃ to R bears on the final particles. The diagonal elements
of R or R̃ are the fully polarised cross sections when the particles are in the basic spin



states. By construction, R (but not necessarily R̃) is semi-positive definite, that is to say
〈Ψ|R|Ψ〉 ≥ 0 for any Ψ.

Equations (1.2), (1.4) and (1.5) can be rewritten as:

dσ

dΩ
(ρA, ρB, ρ̌C , ρ̌D) = Tr{R̃ [ρA ⊗ ρB ⊗ ρ̌C ⊗ ρ̌D] } ,

Cλµντ = Tr{R̃ [σλ(A) ⊗ σµ(B) ⊗ σν(C) ⊗ στ (D)]} / Tr R̃ ,

(1.18)

with ρ = 1

2
(1+ S · σ), ρ̌ = 1

2
(1 + Š · σ). The last equation of (1.18) can be inverted as

R̃1 ≡ (24/ Tr R̃) R̃ = Cλµντ σλ(A) ⊗ σµ(B) ⊗ σν(C) ⊗ στ (D) ,

or R1 ≡ (24/(Tr R) R = Cλµντ σλ(A) ⊗ σµ(B) ⊗ σt
ν(C) ⊗ σt

τ (D) .
(1.19)

The matrix R̃1 is normalised to have the same trace as the unit matrix and is directly
obtained from F replacing the Sµ’s by σµ’s. It allows to calculate the cross section for
entangled initial states, replacing ρA ⊗ ρB by ρA+B in (1.18), as well as the joint density
matrix of C and D:

ρC+D = TrA,B{ R̃ [ρA ⊗ ρB] }/ Tr{R̃ [ρA ⊗ ρB] } . (1.20)

The single polarisation of particle C can then be obtained by ρC = TrD{ρC+D}, in place
of (1.3).

The semi-positivity of R leads to quantum positivity constraints on the Cartesian
reaction parameters which are stronger than the classical ones. Suppose, for instance,
that

F (SA, SB, 0, 0) ∝ 1 + c SA · SB . (1.21)

Then R ∝ 1+ c σA ·σB, where σA ·σB ≡
∑3

i=1
σi

A ⊗ σi
B, and the initially polarised cross

section is

dσ

dΩ
(ρA+B) = Tr{R̃ [ρA+B ⊗ 1C+D] } ∝ Tr{(1+ c σA · σB) ρA+B } . (1.22)

For uncorrelated SA and SB one has dσ/dΩ ∝ 1 + c SA · SB ≥ 0, therefore classical
positivity is fulfilled for c ∈ [−1, +1]. However, if A and B form a singlet spin state, of
density matrix ρA+B = 1

4
(1− σA · σB), then dσ/dΩ is positive only for c ∈ [−1, +1/3].

The occurrence of a negative cross section comes from the non-positivity of 1+c σA·σB

for c > 1/3. This non-positivity was revealed by an entangled initial state (the spin singlet
state). This example shows that positivity has to be tested not only with factorised (or
separable states), but also with entangled ones.

Similarly, a final spin correlation of the form F (0, 0, ŠC , ŠD) = 1 + c ŠC · ŠD is
classically allowed for c ∈ [−1, +1], but quantum-mechanically for c ∈ [−1, +1/3] only.
As a check rule, “quantum mechanics does not allow fully parallel spins”. These examples
have a crossed symmetric counterpart: a spin transmission between A and C of the form

F (SA, 0, ŠC , 0) = 1 + c SA · ŠC (1.23)

is classically allowed for c ∈ [−1, +1], but quantum-mechanically for c ∈ [−1/3, +1] only.
For c < −1/3 the cross section matrix is non-positive and this can be revealed by an



“entangled state in the t-channel”. The corresponding check rule is “quantum mechanics
does not allow full spin reversal”. The lesson of these examples is that positivity has to
be tested with classical and entangled states in the direct and crossed channels.

An example of non-classical positivity constraint is the the Soffer inequality [6]:

2δq(x) ≤ q(x) + ∆q(x)

between the quark helicity- and transversity distributions ∆q(x) and δq(x).

6. Domains of quantum positivity, classical positivity and separability

As we have seen one can distinguish a classical positivity domain which is larger than
the true or quantum positivity domain. To have a more precise idea about the differences
between these two domains, let us study the constraints on the initial spin observables
only. For this purpose we introduce the matrix

ηA+B = TrC,D [R/(Tr R)] (1.24)

obtained by taking the partial trace over the final particles and renormalising to unit
trace. Like R, ηA+B has to be (semi-)positive. The initially polarised cross section reads

dσ

dΩ
(ρA+B) = Tr{ηA+B ρA+B} , (1.25)

Classical positivity requires Tr{ηA+B (ρA ⊗ ρB)} ≥ 0 for any individual density matrices
ρA and ρB. More generally

Tr{ηA+B ρA+B} ≥ 0 for any separable ρA+B , (1.26)

whereas quantum positivity requires

Tr{ηA+B ρA+B} ≥ 0 for any separable or entangled ρA+B . (1.27)

One can say that the classical positivity domain C is dual to the separability domain S
in the sense that Tr{η ρ} ≥ 0 for any pair {η ∈ C , ρ ∈ S}. As for the quantum positivity
domain D, it is dual to itself. We have

S ⊂ D ⊂ C , (1.28)

these three domains being convex.
Let us take the traceless part ρ⊥ = ρ − 1/N of ρ, where N = Tr(1) is the dimension

of the A + B spin space, and introduce the Euclidian scalar product η⊥ · ρ⊥ = Tr(η⊥ρ⊥)
where ρ⊥ is considered as a N2 −1 dimensional vector. The duality between C and S can
be expressed as

ρ⊥ · η⊥ ≥ −1/N , ρ ∈ C , η ∈ S . (1.29)

Figure 1 schematises the properties (1.28) and (1.29) in the ρ⊥ space. Equation (1.29)
means that the boundaries ∂C and ∂S of the two domains are polar reciprocal of each
other: when η⊥ moves on ∂S, the reciprocal plane in ρ⊥ space defined by ρ⊥.η⊥ = −1/N
envelops ∂C, as shown in Fig. 1. Also shown in this figure is the symmetry between D and
the domain Dpt where the partial transform ρpt

A+B of ρA+B is positive, the transposition



Figure 1: Schematic shapes of the
classical positivity domain in the
ρ⊥ space. (C ≡ Class.), the sep-
arability domain (S ≡ Sep.) and
the true positivity domain D. The
dashed contour indicates the do-
main Dpt where the partial trans-
form is positive. A matrix η of
the boundary ∂S is represented to-
gether with its reciprocal polar line
ρ⊥ ·η⊥ = 1/N , which is tangent to
∂C.

concerning either A or B. Indeed separability [7, 8] and classical positivity are preserved
under partial transposition and we have

S ⊂ Dpt ⊂ C . (1.30)

The duality between C and S may still be visible with a subset of observables. For
instance, for a two-fermion system of density matrix ρA+B = 1

4
Cµν σµ(A) ⊗ σν(B), the

classical positivity domain of the triple {Cxx , Cyy , Czz} is the whole cube [−1, +1]3, the
quantum positivity domain is the tetrahedron defined by

Cxx − Cyy − Czz ≤ 1 and circular permutations, Cxx + Cyy + Czz ≤ 1 , (1.31)

and the separability domain, an octahedron, is the intersection of the tetrahedron with
its mirror figure. One can see on Fig. 2 the polar reciprocity (edge ↔ edge) and (summit
↔ face) between the cube and the octahedron. Related results are found in [9].

7. Outlook

We have qualified as classical the symmetry and positivity constraints which can
be derived by classical arguments concerning the polarised cross sections for separate
polarisations of the external particles. Working at the level of amplitudes, or of the cross
section matrix, one obtains quantum constraints which in many cases are stronger than
the classical ones, therefore called non-classical. The number of non-classical constraints is
expected to decrease when only part of the external particles are polarised or analysed, and
in fact, there is no non-classical parity constraint for inclusive reactions. The weakening
of non-classical constraints when part of the information is lost or discarded has some
similarity with decoherence. Nevertheless some non-classical positivity constraints, for
instance the Soffer inequality, still remain in the inclusive case.

A duality has been established between the domains of separability S and classical
positivity C . In the space of the traceless components ρ⊥, the boundary ∂S and ∂C of
these domains are polar reciprocal of each other. The boundary of C can be determined by
algebraic equations using (1.14). This may offer a method for the long-standing problem
of determining S.



Figure 2: Classical positivity do-
main (cube), true positivity do-
main (tetrahedron) and separabil-
ity domain (octahedron) for the
triple {Cxx , Cyy , Czz} of observ-
ables.
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