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Abstract

We have improved by two orders of magnitude the limit currently available for the CPT violation
parameterRe(�). To this purpose we have analyzed the full sample of neutral-kaon decays toe��

recorded in the CPLEAR experiment, where the strangeness of the neutral kaons was tagged at
production and decay time. An appropriate function of the measured decay rates, including in-
formation from the analysis of�+�� decay channel, gives directlyRe(�). The resultRe(�) =

(3:0� 3:3stat � 0:6syst)� 10
�4 is compatible with zero. Values for the parametersIm(�), Re(x

�

)

andIm(x+) were also obtained.
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1 Introduction
Within the framework of a local field theory, of Lorentz invariance and of the usual spin-statistics

requirement, any order of the triple product of the discrete symmetries C, P and T represents an exact
symmetry expressed by the CPT theorem [1]. However non-local interactions, postulated in modern
Grand Unified Theories, may entail a violation of CPT at very short distances. The evolution in time of
aK0 (or K0) and the corresponding change in semileptonic decay rates are a good tool for the study of
CPT symmetry. The lack of CPT invariance would appear as an asymmetry when comparingK0 andK0

semileptonic rates.
In this paper we report the results of an analysis performed with1:3 � 106 semileptonic decays

collected in the CPLEAR experiment, to determine the real part of�, the CPT parameter in the neutral-
kaon mixing. Our measurement ofRe(�), with an accuracy of a few10�4, is two orders of magnitude
more precise than the current value. This level of accuracy is of great importance in the analysis of CPT
invariance in the neutral-kaon system, since it allows cancellations between possible CPT violations in
the kaon mixing and in the decay amplitude for�+�� decays to be ruled out [2].

This measurement takes advantage of the strangeness tagging facilities of the CPLEAR experi-
ment. ThereK0 andK0 states were produced inpp annihilations via the reactions

pp !
K��+K0

K+��K0 ; (1)

each with a branching ratio of� 2� 10�3, enabling the neutral-kaon strangeness at the production to be
tagged by the charge of the accompanying charged kaon. The strangeness of the kaon at the decay time
t = � was tagged by the lepton charge, a positive (negative) lepton charge being associated to a positive
(negative) strangeness of the kaon.

2 Phenomenology
In the semileptonic decays of the neutral kaons there are four independent decay rates, depending

on the strangeness of the kaon (K0 or K0) at the production time,t = 0, and on the charge of the decay
lepton (e+ or e�),

R+(�) � R
�
K0

t=0 ! e+���t=�

�
; R�(�) � R

�
K0

t=0 ! e��+�t=�

�
;

R�(�) � R
�
K0

t=0 ! e��+�t=�

�
; R+(�) � R

�
K0

t=0 ! e+���t=�

�
:

The above four rates can be parametrized as a function of the mixing parameters� (T-violation parameter)
and� (CPT-violation parameter):

� =
�K0;K0 � �K0;K0

2(�L � �S)
and � =

�K0;K0 � �K0;K0

2(�L � �S)
:

Here,�ij are the elements of the effective Hamiltonian� and�L;S = mL;S�
i
2�L;S its eigenvalues;mL;S

and�L;S are the masses and decay widths for theKL andKS states,�m = mL�mS and�� = �S��L.
TheKL mixing parameter is defined as�L = �� �.

The decay amplitudes corresponding to the four rates can be written as [2, 3]

he+���j�jK0i = a+ b ; he��+�j�jK0i = a� � b� ;

he��+�j�jK0i = c+ d ; he+���j�jK0i = c� � d� :

The amplitudesb andd are CPT-violating,c andd describe possible violations of the�S = �Q rule,
and the imaginary parts are all T-violating. The quantities

x =
c� � d�

a+ b
and x =

c� + d�

a� b

describe the violation of the�S = �Q rule in decays into positive and negative leptons, respectively,
while y = �b=a describes CPT violation in semileptonic decays in the case where the�S = �Q
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rule holds. The parametersx+ = (x + x)=2 andx� = (x � x)=2 describe therefore violation of the
�S = �Q rule in CPT conserving and CPT violating amplitudes, respectively. We assumex, x and
y � 1.

By consideringRe(a) to be of the order of unity and keeping first order terms in all other quantities,
the four independent decay rates can be written as:

R+(�) =
jaj2

4

�
[1 + 2Re(x) + 4Re(�) � 2Re(y)] e��S� + [1� 2Re(x)� 4Re(�) � 2Re(y)] e��L�

+ f2[1� 2Re(y)]cos(�m�)� [8Im(�) + 4Im(x)]sin(�m�)g e�
1
2
(�S+�L)�

�
; (2a)

R�(�) =
jaj2

4

�
[1 + 2Re(x)� 4Re(�) + 2Re(y)] e��S� + [1� 2Re(x) + 4Re(�) + 2Re(y)] e��L�

+ f2[1 + 2Re(y)]cos(�m�) + [8Im(�) + 4Im(x)]sin(�m�)g e�
1
2
(�S+�L)�

�
; (2b)

R�(�) =
jaj2

4

�
[1 + 2Re(x)� 4Re(�) + 2Re(y)] e��S� + [1� 2Re(x)� 4Re(�) + 2Re(y)] e��L�

� f2[1� 4Re(�) + 2Re(y)]cos(�m�) + 4Im(x)sin(�m�)g e�
1
2
(�S+�L)�

�
; (2c)

R+(�) =
jaj2

4

�
[1 + 2Re(x) + 4Re(�)� 2Re(y)] e��S� + [1� 2Re(x) + 4Re(�)� 2Re(y)] e��L�

� f2[1 + 4Re(�)� 2Re(y)]cos(�m�)� 4Im(x)sin(�m�)g e�
1
2
(�S+�L)�

�
; (2d)

where� is the decay eigentime of the neutral kaon.
To extract the CPT violation parameterRe(�) in an optimal way we build the time-dependent

decay-rate asymmetryA�, defined as

A�(�) �
R+ �R�(1 + 4Re(�L))

R+ +R�(1 + 4Re(�L))
+

R� �R+(1 + 4Re(�L))

R� +R+(1 + 4Re(�L))
: (3)

SinceRe(�L) = Re(�)�Re(�), Eq. (3) can be written, to first order in the small parameters, as

A�(�) = 2
Im(x+)e

�
1
2
(�S+�L)� sin(�m�) + Re(x�)E�(�)

E+(�)� e�
1
2
(�S+�L)�cos(�m�)

+
�4Re(�)E�(�)� 2Re(x�)E�(�) + [2Im(x+) + 4Im(�)]e�

1
2
(�S+�L)� sin(�m�)

E+(�) + e�
1
2
(�S+�L)� cos(�m�)

+ 4Re(�); (4)

with

E�(�) =
(e��S� � e��L� )

2
: (5)

We note that the asymmetryA�(�) does not depend on the parametery. For lifetimes comparable
with 1/�S, A� is sensitive toIm(�), Im(x+) andRe(x�), while for long lifetimes it depends only on
Re(�), becoming simply

A�(�) = 8Re(�) ; (6)

thus allowingRe(�) to be measured without any assumption on the�S = �Q rule.
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3 The detector
The CPLEAR detector is described elsewhere [4] and only a brief outline is presented here. It had

a cylindrical geometry and was mounted inside a solenoid of length 3.6 m and internal radius 1 m, which
produced a magnetic field of 0.44 T parallel to thep beam. The experiment used an intense200 MeV=c
antiproton beam (� 106 p=s) from the Low Energy Antiproton Ring (LEAR) at CERN, which stopped in
the target at the centre of the detector. The target, consisting of a 7-cm radius sphere filled with gaseous
hydrogen at 16-bar pressure, was replaced in mid 1994 by a 1.1-cm radius, 27-bar, cylindrical target
surrounded by a 1.5-cm radius, cylindrical, proportional chamber (PC0).

The tracking of the annihilation products was performed by two layers of proportional chambers,
six layers of drift chambers and two layers of streamer tubes. A scintillator-Cherenkov-scintillator (S1-C-
S2) sandwich (PID) provided input to a fast trigger system to identify the charged kaon, based on energy
loss, time of flight and Cherenkov light measurements. An 18-layer, lead/gas-sampling electromagnetic
calorimeter completed the detector.

Because of the small branching ratio of the desired annihilation channels, Eq. (1), and the high
beam intensity, a multi-level trigger system [4], based on custom-made hardwired processors, was used
to provide fast and efficient background rejection. The PC0 information was incorporated into the trigger
for all data taken during 1995 and 1996. There was a requirement of not more than two hits in this
chamber, thus ensuring that the neutral kaon decayed outside PC0.

4 Event selection
The desiredpp annihilations followed by the decay of a neutral kaon intoe�� are selected by

demanding events with four tracks and zero total charge. A good reconstruction quality is required for
each track and vertex. The transverse momentum of the charged kaon has to be greater than350 MeV=c.
The distance between the primary and secondary vertices in the transverse plane must be greater than
1 cm, thus removing ambiguities on the track assignment to either vertex and reducing the background
from otherpp annihilation channels. The selection of thee�� channel is done by identifying one of
the secondary tracks as an electron or a positron, using a Neural Network (NN) algorithm [5]. This
algorithm uses the momentum of the particle, the energy loss in the two scintillators (S1, S2), the number
of photoelectrons in the Cherenkov counter and the time of flight from the decay vertex to the first
scintillator (S1). The algorithm has been optimized using pion data from decays of neutral kaons into
�+��and electron data usinge+e� pairs recorded in special runs from conversions in the detector
materials. No attempt was made to identify muons with the NN. The probability to misidentify a pion as
an electron is about 2% while the probability to identify a muon from semileptonic decay as an electron,
and thus contribute to the signal, is about15%.

The events are then passed through the following kinematic and geometric fits:
– 1C-fit, requiring theK0(K0) missing mass at the primary vertex to validate the hypothesis of the
K���K0(K0) channel. The event is kept only if the fit yields a probability greater than10%.

– 6C-fit, requiring energy-momentum conservation under the assumption of a missing neutrino and
the alignment of theK0 momentum vector with the line joining the primary and secondary decay
vertices. The event is kept only if the probability is greater than5%. The fitted momenta and
vertices resulting from this fit determine the decay time with a precision of0:05 �S in the short
lifetime region and of0:2 �S in the long one.

– 4C-fit, which is performed in order to reduce theK0(K0) ! �+�� background that is dominant
at short lifetimes, by removing the events that fit the above hypothesis. We reject the event if the
probability to fit the hypothesis is greater than10%.
A total of 1:3�106 semileptonic events having a measured decay time above1 �S (�S � KS mean

life) survive the analysis.

5 Construction of the asymmetry
The detection efficiencies ofK+��andK��+pairs, used to tagK0andK0, respectively, are not

identical due to the different strong interaction cross-sections of opposite-charge kaons and pions with
matter. The difference of the two efficiencies is of the order of 12%. To restore the initial symmetry at
the production ofK0 andK0, we introduce a normalisation factor� = �(K+��)=�(K��+) which is the
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ratio of the detection efficiences for theK+�� andK��+ pairs. Similarly, the detection efficiencies of
the two final statese��+� ande+��� are not identical. To take this into account, we introduce a second
normalization factor� = �(�+e�)=�(��e+).

Correcting the measured numbers of semileptonic decays with these factors, we construct the
asymmetry

A
exp
�

(�) �
�N+(�)� �2�N�(�)

�N+(�) + �2�N�(�)
+

N�(�)� �2��N+(�)

N�(�) + �2��N+(�)
; (7)

whereN+(N�) andN+(N�) stand for the observed numbers of initialK0 andK0 accompanied by a
decaye+ (e�) and the parameter�2� is defined as�2� = [1 + 4Re(�L)]�.

Taking advantage of the fact that� is independent of the decay mode, the parameter�2� can be
directly determined from the CPLEAR neutral-kaon decays into�+�� [6]. We select events with decay
times between 1 and 4�S and build the ratio of observedK0 to K0 events. This ratio must follow the
neutral-kaon time evolution, and, in the time interval considered, can be approximated as

[1 + 4Re(�L)]�
N(K0

t=0 ! �+��t=� )

N(K0
t=0 ! �+��t=� )

= 1 + 4j�+�j cos(�m� � �+�)e
1
2
�S� : (8)

The oscillating factor on the right-hand side of Eq. (8) depends on the neutral-kaon parameters
�+�, �m and�S, for which we take the world averages of Ref. [7], and, as a result, is known with
a precision of� 1 � 10�4. We stress that the analysis of the�+�� decay channel gives exactly the
quantity�2� = �(1+4Re(�L)) which enters the asymmetry presented here [6], and, at variance with the
normalization procedure used in our time-reversal analysis [8], we do not use for the quantitiyRe(�L)
the result of an external measurement.

The quantity�2� was obtained as a function of four variables, the transverse and longitudinal
momentum of the charged kaon, the pion momentum and the magnetic-field polarity, and was applied
as a weight to the semileptonic data, event by event. The average over all the variables ish�2�i =
1:12756 � 0:00034.

The factor� was determined as a function of the momentum of the pion and the electron. For its
evaluation we used��and�+tracks from minimum-bias data, and electrons ofe+e�pairs selected from
decays ofK0(K0) ! 2�0, with a�0 ! 2. The factor� was applied as a weight to the semileptonic
data, event by event. The value of�, averaged over the particle momenta, ish�i = 1:014�0:002. Owing
to its construction, theA� asymmetry depends only weakly on�.

6 Background and regeneration
The data entering the asymmetry (7) were corrected for background and regeneration effects. The

acceptances of the different background channels relative to the signal acceptance were evaluated using a
Monte Carlo simulation [9]. The signal consists of correctly reconstructede�� events and of��� events
seen ase�� (� 10% of the signal). The main background consists of residual neutral-kaon decays to
�+�� and is concentrated at small decay times. At large decay times there are only contributions from
e�� decays where the lepton and pion assignments are exchanged, and from�+���0 decays. The level
of these contributions remains below1% of the signal. Using pions from a sample of minimum bias
events, we estimated a background charge asymmetry of(3 � 1)% owing to different probabilities for a
�+ and a�� to be misidentified as positron and electron, respectively. This charge asymmetry was then
included in the background evaluation.

Coherent regeneration ofK0 andK0 results arising from scattering in the material of the detector.
The magnitude of this regeneration effect was determined from the value of�f = f(0) � f(0), the
difference in the forward-scattering amplitudes ofK0 andK0, measured by CPLEAR in a dedicated data-
taking [10]. Regeneration corrections were calculated and applied on an event-by-event basis, depending
on the momentum of the neutral kaon and on the position of its production and decay vertices. These
corrections result in a shift of theAexp

�
value of the order of0:3� 10�3.
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7 Fit and systematic errors
Equation (4), folded with the decay-time resolution [4], was fitted from 1 to20 �S to the data, with

Re(�), Im(�), Re(x�) and Im(x+) as free parameters. For�m, �S and�L we have taken the world
averages of Ref. [7]. The dependence of the fit on the error of these three parameters is negligible. The
result of the fit is

Re(�) = ( 3:0� 3:3stat)� 10�4 ;

Im(�) = (�1:5� 2:3stat)� 10�2 ;

Re(x�) = ( 0:2� 1:3stat)� 10�2 ;

Im(x+) = ( 1:2� 2:2stat)� 10�2 ;

with �2=d:o:f: = 1:14. The correlation coefficients of the fit are shown in Table 1. The asymmetryA
exp
�

is plotted in Fig. 1 together with the result of the fit.

Re(�) Im(�) Re(x�) Im(x+)

Re(�) - 0.44 �0:56 �0:60
Im(�) - �0:97 �0:91
Re(x�) - 0:96
Im(x+) -

Table 1: The correlation coefficients.

Figure 1: The asymmetryAexp
�

versus the neutral-kaon decay time (in units of�S). The solid line repre-
sents the result of the fit.

We note thatRe(x�) andIm(x+) are compatible with zero, which is expected in the case where
the�S = �Q rule holds. When we fixRe(x�) = Im(x+) = 0 in the fit, we obtain

Re(�) = ( 2:9 � 2:6stat)� 10�4 ;

Im(�) = (�0:9 � 2:9stat)� 10�3 ;

that is a negligible change forRe(�), but an error ofIm(�) smaller by an order of magnitude. The
correlation coefficient is�0:51.
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The contributions to the systematic error from various sources,
– background level and background asymmetry,
– normalization correction,
– decay-time resolution,
– regeneration correction,

were determined, and are summarized in Table 2.
We varied by�10% the background/signal ratio of the different components of the background,

and allowed the background charge asymmetry to be altered by�1% (see Section 6).
As mentioned in Section 5, the normalization factor�2� was measured with an error of�3:4 �

10�4, and the normalization factor� with an error of�2:0 � 10�3.
The decay-time resolutions, evaluated by a Monte Carlo simulation [4], were let to vary inA� by

�10%.
Finally, the evaluation of the systematic error resulting from the regeneration correction was

performed by altering the�f values along the one-standard-deviation ellipse in the complex plane
[Re(�f), Im(�f)].

Source Precision �(Re(�)) �(Im(�)) �(Re(x�)) �(Im(x+))
[10�4] [10�2] [10�2] [10�2]

Background level �10% �0:1 �0:1 �0:1 �0:1
Background asymmetry �1% �0:2 �0:3 �0:2 �0:3
�2� �3:4� 10�4 �0:5 �0:03 �0:02 �0:03
� �2:0� 10�3 �0:02 �0:03 �0:02 �0:03
Decay-time resolution �10% negligible �0:1 �0:1 �0:1
Regeneration Ref. [10] �0:25 �0:02 �0:02 �0:02

Total syst. �0:6 �0:3 �0:3 �0:3

Table 2: Systematic errors.

From Table 2 we conclude that the main systematic error onRe(�) results from the uncertainty in
the normalization factor�2�, while Im(�), Re(x�) andIm(x+) are mainly affected by the uncertainty
in the background charge asymmetry. In the case of the fit with two parameters the systematic error on
Re(�) is the same while the systematic error onIm(�) becomes three times smaller.

8 Results and conclusions
Our final result, free of assumptions, is:

Re(�) = ( 3:0� 3:3stat � 0:6syst)� 10�4 ;

Im(�) = (�1:5� 2:3stat � 0:3syst)� 10�2 ;

Re(x�) = ( 0:2� 1:3stat � 0:3syst)� 10�2 ;

Im(x+) = ( 1:2� 2:2stat � 0:3syst)� 10�2 :

If we assume the validity of the�S = �Q rule,Re(x�) = Im(x+) = 0, our analysis yields

Re(�) = ( 2:9 � 2:6stat � 0:6syst)� 10�4 ;

Im(�) = (�0:9 � 2:9stat � 1:0syst)� 10�3 ;

thus improving by two and one order of magnitude, respectively, the limit obtained under the same
assumptions by a re-analysis of two earlier experiments [11].
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