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Abstract

We propose strike mechanisms as a solution to the classical problem of Hur-

wicz and Schmeidler [1978] and Maskin [1999] according to which, in two-

person societies, no Pareto efficient rule is Nash-implementable. A strike mech-

anism specifies the number of alternatives that each player vetoes. Each player

simultaneously casts these vetoes and the mechanism selects randomly one al-

ternative among the unvetoed ones. For strict preferences over alternatives

and under a very weak condition for extending preferences over lotteries, these

mechanisms are deterministic-in-equilibrium. They Nash implement a class of

Pareto efficient social choice rules called Pareto-and-veto rules. Moreover, un-

der mild richness conditions on the domain of preferences over lotteries, any

Pareto efficient Nash-implementable rule is a Pareto-and-veto rule and hence is

implementable through a strike mechanism.
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1 Introduction

Can one design some protocol that ensures that two players reach a Pareto efficient

agreement in equilibrium? The theorems of Hurwicz and Schmeidler [1978] and

Maskin [1999], at the outset of implementation theory, provide a negative answer to

this question: no deterministic mechanism, except dictatorship, can guarantee that

every Nash equilibrium is Pareto efficient. In fact, there is a tension between the

conditions for the existence of an equilibrium at every preference profile and those

which ensure that each outcome is Pareto efficient. We refer to this impossibility as

the two-person implementation problem.

We propose a solution to this problem based on “strike” mechanisms. A strike

mechanism endows each player i with vi vetoes to be distributed among the alter-

natives, with v1 + v2 being equal to the number of alternatives minus one, so that at

least one alternative remains unvetoed. The game is simultaneous and the outcome

is the uniform lottery over the unvetoed alternatives.

By allowing lotteries, we introduce a modification of the mechanisms used in

general for implementation but, as we shall prove, lotteries do not materialize at

equilibrium; they only act as off-equilibrium threats. From a mechanism design

perspective, we therefore consider Nash implementation through deterministic-in-

equilibrium mechanisms or simply DE mechanisms.

The idea of introducing off-equilibrium threats is already present in the im-

plementation literature.1 More precisely, Sanver [2006] allows for off-equilibrium

awards, Bochet [2007] considers lotteries whereas Benoît and Ok [2008] consider

mechanisms with awards and mechanisms with lotteries off-equilibrium. But these

papers consider three players or more while we consider the two-person case. This

aspect is important since the characterizations of Moore and Repullo [1990] and

Dutta and Sen [1991] jointly with the mentioned impossibility results suggest that,

with two players, "exact implementation is very demanding, at least in the absence of

domain restrictions" as Abreu and Sen [1991] puts it, whereas implementable rules

1Randomization off-equilibrium is used in other branches of economic theory. See for instance
Ederer et al. [2018] for recent work in the theory of incentives where similar techniques are used as a
strategy to combat gaming by better informed agents.
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of interest exist with three or more players. Another difference is that our work,

rather than relying on integer games,2 builds games –the strike mechanisms– whose

rules are simple and explicitly based on vetos.

Since we deal with lotteries, the notion of Pareto efficiency needs some qualifica-

tion (see Bogomolnaia and Moulin [2001] for a discussion). Two classical definitions

are ex-ante and ex-post Pareto efficiency. A lottery is ex-ante Pareto efficient if no

other lottery Pareto dominates it, whereas it is ex-post Pareto efficient if no alterna-

tive that can be selected by the lottery is Pareto dominated by some other alternative.

While we show that the possibility of ex-ante Pareto efficient implementation cannot

be hoped for, we establish that ex-post Pareto efficient implementation is possible,

by DE mechanisms, as soon as preferences over alternatives are strict.3

Our main result is that a SCR is Pareto efficient and Nash-implementable by a

DE mechanism if and only if it is a Pareto-and-veto rule: for some pair of integers

v = (v1,v2), with v1 + v2 + 1 being the number of alternatives, it selects all Pareto

efficient alternatives that are not among the vi worst alternatives for each player i.

The Pareto-and-veto rule with vector v is denoted pvv .4 We show that the strike

mechanism with vetoes v1 and v2 Nash implements pvv .

The study of the strike mechanism is made possible by the fact that the best-

response reasoning is straightforward in this game. Given the vetoes cast by her op-

ponent, a player can induce any unvetoed alternative as the outcome by adequately

casting her vetoes. Thus, her best response amounts to select her best element among

the unvetoed alternatives.

We prove that, when preferences are strict, the equilibria of this game are pure

and strict. Then, the nice feature of best responses has three consequences for equi-

2Jackson [2001] summarizes some views on the limits of these games.
3The current results do not extend to the setting where the players are indifferent among several

alternatives. Indeed, as proved by Sanver [2006], no selection of Pareto set is (Maskin) monotonic
and hence can be implemented.

4It is not the first time that Pareto-and-veto rules are found to be of interest in the literature.
Moulin [1983] defines pv under the name "veto core" (Chapter 6.5). Abreu and Sen [1991] (pp. 1016-
17) present this class of rules as the main example that is virtually implementable but fails to be
Nash-implementable. In a setting where monetary transfers are allowed, Sanver [2018] designs a
direct veto mechanism that implements alternatives which are Pareto efficient and preferable to some
disagreement outcome by both players.
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librium behavior. First, each veto mechanism is DE, with a unique alternative re-

mains unvetoed in equilibrium. Second, any equilibrium outcome is Pareto efficient.

Third, the equilibrium strategies have a natural shape: if x is the implemented alter-

native and vi is the number of vetoes, player i vetoes all alternatives preferred to x

by her opponent (say k alternatives) and she vetoes also vi −k among the alternatives

less preferred than x by her opponent. If both strategies veto disjoint sets of alterna-

tives, this forces each player to accept her opponent’s strategy. In any equilibrium,

this is case: the players veto disjoint sets of alternatives and only one alternative, the

implemented one, remains unvetoed.

The simple shape of the best responses also has consequences for out-of equilib-

rium behavior. As we shall prove, in the considered game, iterated best responses

converge to the equilibrium, and they do that quickly: in less than n steps.

All these results hold under the standard von Neumann and Morgenstern ex-

pected utility framework and are even more general than that. Indeed, they remain

true under a mild condition that we term “best-element bias”: for any set of alterna-

tives, a player prefers the (sure) lottery that consists of her most preferred element

in the set to any lottery with support in the same set. One can formally define the

output of the mechanism as a set of alternatives rather than a lottery, then results

equivalent to the presented ones are achieved, as will be shown, under mild hypoth-

esis on how preferences over alternatives extend to preferences over sets.

At this point, we have described a solution to the two-person implementation

problem: a mechanism that implements a Paretian SCR. We then show that, in some

sense, there cannot be a different solution. This necessity part is more involved.

Here, the key concept is the veto power generated by a mechanism: a mechanism

µ endows player i with veto power over some set X of alternatives if and only if

player i has some strategy that prevents any alternative in X to be selected with pos-

itive probability whatever her opponent plays. As we show, any mechanism µ that

ensures Pareto efficient outcomes must endow each player i with veto power over

every set of alternatives whose cardinality does not exceed some integer v
µ
i with

v
µ
1 + v

µ
2 + 1 being the number of alternatives. This is a strong result which almost

directly entails that only sub-correspondences of pvv are Nash-implementable. The
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necessity is established on a domain of preference extensions over lotteries that is

rich enough to include specific extended preferences that we label “priority” exten-

sions. In words, a “priority” extended preference is defined by the property that

whenever all the elements of a set X are preferred to all elements outside X, any

lottery that put some weight (however small) on some element of X is preferred to

any lottery that puts no weight on X. For instance, the domain of vNM preferences

satisfies this requirement.

We also identify a set of conditions that characterize the class of Pareto-and-veto

rules which, thus, turn to be necessary and sufficient for two-person Nash imple-

mentability with DE mechanisms. These conditions are Pareto efficiency, Maskin

monotonicity, neutrality-on-its-vetoes (a weakening of neutrality) and the intersec-

tion property which is the key distinction between two-player and many-player im-

plementation models. These conditions are independent as shown in the Appendix.

As such, our conditions are weaker than the necessary and sufficient conditions iden-

tified by Moore and Repullo [1990] and Dutta and Sen [1991] for two-person Nash

implementability without DE mechanisms, as their conditions coincided with dic-

tatorship over the full domain of preferences.

The structure of the paper is as follows: Section 2 introduces the basic notions

and Section 3 presents the strike mechanisms. Section 4 presents the outcomes of

these mechanisms while Section 5 tackles the necessity issue. Section 6 provides im-

possibility results that highlight the limitations of ex-ante implementation through

DE mechanisms. Section 7 shows how the current results are related to the classi-

cal characterization of implementable social choice rules with two players. Section 8

presents a review of the various other ideas that have emerged in the literature to by-

pass the Hurwicz-Schmeildler impossibility of Paretian implementation and makes

some concluding remarks.

2 Basic notions and notation
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A set N = {1, 2} of two players faces a finite set A of n+ 1 ≥ 3 alternatives. We write

A = 2A for the power set of A and A =A\{∅,A}. The set of probability distributions

(or “lotteries”) over A is denoted ∆ = {p : A→ [0,1] |
∑
x∈Ap(x) = 1}. For each lottery

p ∈ ∆, we let supp(p) = {x ∈ A | p(x) > 0} denote the support of p. For each X ∈ A,

p[X] =
∑
x∈X p(x) stands for the probability that p selects an alternative in X. Let ∆uni

denote the set of all uniform probability distributions over the non-empty subsets

of A. Slightly abusing notation, we let {x} denote both the singleton set consisting of

alternative x and the lottery that selects x with probability one.

The set of linear orders over A is denoted by LA and its generic element �i is the

preference of i ∈ N .5 The set of (strict) preference profiles over A is L2
A = LA × LA

with � = (�1, �2) denoting a generic preference profile. We write

pe(�) = {x ∈ A | @y ∈ A : ∀i ∈N,y �i x}

for the set of Pareto efficient alternatives at � ∈ L2
A. Let L(x,�i) = {y ∈ A : x �i y}

be the (strict) lower contour set and U (x,�i) = {y ∈ A : y �i x} be the (strict) upper

contour set of x ∈ A at �i∈ LA.

A social choice rule (SCR) is a mapping f : L2
A→A\{∅ }. A SCR is Pareto efficient

iff f (�) ⊆ pe(�) for all � ∈ L2
A. We say that f is a sub-correspondence of g and write

f ⊆ g whenever f (�) ⊆ g(�) for all � ∈ L2
A.

In general, a mechanism is a function µ : M → ∆ with M = M1 ×M2 where

Mi , ∅ is the message space of i ∈ N . In order to properly define the game associ-

ated to µ, we do not need to extend preferences over the whole ∆ but simply over

µ(M) := {p ∈ ∆ | p = µ(m) for some m ∈ M}, the range of µ. In this paper, we only

consider mechanisms with finite ranges.6 For example, the set of uniform lotteries

over A, denoted ∆uni = {p ∈ ∆ | p(x) = p(y) for any x,y ∈ supp(p)} is finite. The strike

mechanisms, which play the central role in this work, have ∆uni as their range.

We let Pµ(M) stand for the set of binary relations over µ(M). A typical element of

5More precisely, one of x �i y and y �i x holds for any distinct x,y ∈ A while x �i x fails for all
x ∈ A. Moreover, x �i y and y �i z implies x �i z for all x,y,z ∈ A.

6While our results still hold extending over the whole simplex, the richness condition PREX be-
comes harder to satisfy. We would like to thank Bhaskar Dutta for pointing this out.
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Pµ(M) is denoted �∗i with �∗i being its strict part. We say that �∗i is an extension of �i
when x �i y =⇒ {x} �∗i {y}, ∀x,y ∈ A with {x}, {y} ∈ µ(M).

For a mechanism µ :M→ ∆ and a preference profile over lotteries �∗= (�∗1,�
∗
2), a

Nash equilibrium is a pair of messages (m1,m2) ∈M such that, for all m′1 ∈M1 and

all m′2 ∈ M2, µ(m1,m2) �∗1 µ(m′1,m2) and µ(m1,m2) �∗2 µ(m1,m
′
2). Let N µ(�∗) denote

the set of Nash equilibria of the mechanism µ at the profile �∗.

We now turn to the question of the domain of preferences to be considered. As

already mentioned we work under the assumption that preferences over alternatives

are strict, but we are flexible as to the way preferences are extended from alterna-

tives to lotteries. Since there are many ways to do so, we use a notion of admissible

extended preferences. Let κ(�i) ⊆ P∆ be a set of admissible preferences over lot-

teries of player i associated with �i∈ LA. Abusing notation, let κ(�) ⊆ P 2
∆

be the

set of admissible preference profiles over ∆ associated with the preference profile

�= (�1,�2). Such a correspondence κ that associates to each preference a set of ex-

tended preferences (and to each profile of preference a set of profiles of extended

preferences) is called a domain of preference extensions. Throughout the paper

we use the property of Best-element bias: a player with a best-element bias prefers

the (sure) lottery that selects her best element in X to any (considered) lottery with

support in X.

Best-element bias: Let �i∈ LA be a strict preference on A, and let ∆̄ ⊆ ∆ be a set of

lotteries. An extension �∗i of �i exhibits the best element bias in ∆̄ when for any

X ∈ A with #X > 1 and any x ∈ X, if x �i y for any y ∈ X \ {x}, then {x} �∗i p for all

p ∈ ∆̄ with supp(p) ⊆ X and p , {x}.

A domain κ is said to satisfy the best element bias (in short: κ satisfies BEB) in ∆̄

if, for any strict preference > ∈ LA, any extension �∗i ∈ κ(>) exhibit the best element

bias in ∆̄. Note that BEB is satisfied by virtually all domain of preference extensions

that are considered in the literature, including the von Neumann and Morgenstern

domain.

Given a domain κ, a mechanism µ is admissible iff for all �∈ L2
A and all �∗∈ κ(�),

N µ(�∗) , ∅. It is deterministic-in-equilibrium (DE) iff for all �∈ L2
A, all �∗∈ κ(�),
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and all m ∈ N µ(�∗), #supp(µ(m)) = 1. It Nash-implements the SCR f : L2
A → A

iff for all �∈ L2
A and all �∗∈ κ(�), f (�) =

⋃
m∈N µ(�∗)

supp(µ(m)). Note that if µ Nash-

implements some SCR f , then µ is admissible.

3 The strike mechanism

3.1 Definition

A strike mechanism endows each player i ∈ N with a non-negative number vi of

vetoes, with v1 + v2 = n. The set

Mi = {X ⊆ A | #X = vi}

represents the sets of alternatives i can veto, andM =M1 ×M2 is the joint message

space.

Definition 1. The strike mechanism µv :M→ ∆uni associates to each pair of messages

m = (m1,m2), the lottery µv(m) that is uniform over the set

supp(µv(m)) = A \ (m1 ∪m2).

In other words, an alternative is uniformly drawn from the unvetoed alterna-

tives. Note that, as v1 + v2 = n, the set m1 ∪m2 contains at most n elements, so that

supp(µv(m)) is always non-empty. Our results would remain unaffected under an al-

ternative specification of the strike mechanism in which the mechanism selects one

among the unvetoed alternatives according to any probability distribution with full

support over these alternatives.

In order to study the mechanism µv , we introduce the following notation. Let

gv(Mi ,mj) = {X ∈ A | supp(µv(mi ,mj)) = X for some mi ∈Mi}

denote the attainable set for player i at mj under µv . This set contains the different

supports of the uniform lotteries that player i can induce when player j selects mj
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under the strike mechanism µv . Because of the number of vetoes at her disposal,

player i can choose the support of the outcome by adequately casting her vetoes as

described by the following result:

Lemma 1. For each player i and each strategy mj ∈ Mj , the attainable set of the strike

mechanism µv equals:

gv(Mi ,mj) = {X ⊆ A \mj | 1 ≤ #X ≤min{n+ 1− vi ,n+ 1− vj}}.

Proof. Take some player i and some strategy mj ∈Mj . Take first the case with vi < vj

so that n+ 1 − vj < n + 1 − vi . We want to prove that for each non-empty X ⊆ A \mj
(hence with #X ≤ n+ 1 − vj), there is some mi ∈ Mi with supp(µv(mi ,mj)) = X. Note

that each non-empty subset of A \mj is of the form A \ (mj ∪ C) with 0 ≤ #C ≤ vi .
Thus, it suffices to pickmi such thatmi\mj = C which ensures that supp(µv(mi ,mj)) =

A \ (mi ∪mj) = A \ (mj ∪C), as required. In the case vi ≥ vj , take mi with mi \mj = C.

Since vi ≥ vj , it follows that #C ≥ vi−vj and hence for each non-emptyX ⊆ A\mj with

#X ≤ n+1−vj−(vi−vj) = n+1−vi , there is somemi ∈Mi with supp(µv(mi ,mj)) = X.

3.2 Best responses

Lemma 1’s main implication is that player i can induce any singleton in A\mj as the

support of the outcome: formally, for any player i and any alternative x ∈ A:

x ∈ A \mj =⇒ {x} ∈ gv(Mi ,mj).

Best responses can thus be easily described, as done in the following statement. For

each strategy mj of player j, let xi(mj) be i’s preferred unvetoed alternative so that

{xi(mj)} = argmaxX\mj �i .

Proposition 1. Let the domain κ satisfies BEB in the range of µv . For each strategy mj of

her opponent, player i has a unique best response to mj , denoted m∗i (mj), with

m∗i (mj) = X \ (mj ∪ {xi(mj)}) and µv(m∗i (mj),mj) = {xi(mj)}.
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Proof. The assumption that preferences over alternatives are strict implies that xi(mj)

is well-defined, and the assumption that the preferences over lotteries satisfy BEB

implies that xi(mj) is preferred to any other possible outcome. Lemma 1 indicates

that xi(mj) belongs to the attainable set gv(Mi ,mj) for any mj ∈ Mj . It is thus the

unique best possible outcome, and it is obtained by eliminating all other unvetoed

alternatives, as indicated.

3.3 Equilibrium

The first consequence of this property is that strike mechanisms are deterministic in

equilibrium as long as the domain satisfies BEB.

Theorem 1. For any strike mechanism µv , if the domain κ satisfies BEB in the range of

µv , then µv is DE.

Proof. Assume that there is some equilibrium m = (m1,m2) with #supp (µv(m)) > 1.

Consider some player i and some alternative x ∈ supp(µv(m)) with x �i y for all y ∈
supp(µv(m)). Since x ∈ A \mj , Lemma 1 shows that {x} ∈ gv(Mi ,mj). Thus, there is

some m′i ∈ Mi with µv(m′i ,mj) = {x}. Furthermore, {x} �∗i µv(m) due to BEB, which

contradicts that m is an equilibrium.

Since a strike mechanism is DE, no uncertainty remains in equilibrium: players

veto disjoint sets of alternatives and a unique alternative is selected.

3.4 Best responses dynamics

As mentioned above, the equilibria of the considered game are pure and strict. This

ensures that the usual game-theoretical refinement criteria are satisfied. However,

what does this imply concerning the use of veto mechanisms in laboratory experi-

ments or in real-life applications? Fudenberg and Levine [2016] argue that an equi-

librium often fails to arise from introspection, but rather emerges from some non-

equilibrium learning dynamics. Moreover, as they write, "in laboratory games do

not usually resemble Nash equilibrium (except in some special cases); instead, there
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is abundant experimental evidence that play in many games moves toward equilib-

rium as subjects play the game repeatedly and receive feedback" (see Chan et al.

[2017] for a recent treatment).

We consider the simplest learning dynamics: iterated best responses. Since there

may be multiple equilibria in the game associated to a strike mechanism, there is no

hope that the synchronous best response dynamics converge necessarily. If (m1,m2)

and (m′1,m
′
2) are two different equilibria then the sequence

(m1,m
′
2), (m′1,m2), (m1,m

′
2), (m′1,m2), ...

is such that each player best-responses to her opponent’s previous moves, but they

never coordinate (This remark is very general: it holds for any two player game with

multiple equilibria). We thus consider alternate best response dynamics and show

that these processes lead to our equilibria. That point underlines the relevance of

our mechanisms in applied settings.

Theorem 2. Let the domain κ satisfies BEB in the range of µv . Let m0,m1,m2,m3, ... be a

sequence of messages from alternating players such that for all t > 0, mt is a best response

to mt−1. Then (mt,mt+1) converges to an equilibrium in at most n steps: for all t > n,

mt+2 =mt.

Proof. Say, for instance, and without loss of generality, that player 2 plays m0, m2,

etc. For any t ≥ 1, mt is a best response (for player 1 if t is odd and for player 2 if t is

even) to mt−1. So #mt is equal to v1 for t odd and to v2 for t even.

As stated in Proposition 1, thanks to our strict preferences assumption (BEB),

best responses are unique. Precisely, when player i is facing a veto on the vj alterna-

tives mt−1, her best response is to pick her unique preferred alternative among the

remaining set A\mt−1 and to veto the other vi alternatives. Thus the whole sequence

is uniquely defined by its first element m0, and we have, for any t ≥ 1:

mt−1 ∩mt = ∅. (1)

Let rt for t ≥ 1 denote the outcome at date t; this is the unique alternative such
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that:

mt−1 ∪mt ∪ {rt} = A.

By definition, both mt and mt+2 contain vj alternatives. However, as previously

mentioned, mt and mt+1 are disjoint, and so are mt+1 and mt+2. Therefore, both mt

and mt+2 contain vj alternatives from the set A \mt+1, which contains n− vi alterna-

tives. Thus, since vi + vj = n − 1, mt and mt+2 differ on at most one alternative. If

mt = mt+2, an equilibrium is reached. If mt , mt+2 then mt and mt+2 differ on one

alternative exactly.

The following property of the best response correspondence is used in our proof

of convergence. Suppose that one alternative, say a, is erased from the set A. In case

a ∈ mt−1, the best response to m̃t−1 = mt−1 \ {a} is the same mt. In case a < mt−1 and

a ∈ mt+1, the best response to m̃t−1 = mt−1 is m̃t = mt \ {a}, and is the best response

of the same player in the modified game where a is not available and the player has

one veto less.

We now prove that the sequence of best responses leads to an equilibrium in at

most n iterations. Let an denote the worst alternative for player 1. If for some k ≥ 0,

an < m
2k, then the best response for player 1 implies to veto an, that is: an ∈ m2k+1.

This in turn implies (see (1)) that player 2 does not veto an at date 2k + 2. It follows

that the following chain holds: for all t ≥ 0

an <m
t =⇒ an ∈mt+1 =⇒ an <m

t+2 =⇒ ...

Consequently, an belongs either to all mt for t odd and starting at 1 (call this case 1),

or to all mt for t even and starting at 2 (call this case 2).

Now consider the sequence of sets m̃t = mt \ {an} for all t ≥ 1. We claim that this

new sequence is again a sequence of alternating best responses in the game where the

set of alternatives is A \ {an} and the numbers of vetoes are, in case 1, v′ = (v1 − 1,v2)

and in case 2, v′ = (v1,v2−1). This is true in case 1 because, in the original sequence,

player 1 always had to veto an that is her worst alternative and player 2 never had

to block a1 that is never available to her. This is also true in case 2 because, in the

original sequence, player 1 never had to veto an that was never available to her, and
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player 2 always had to veto an.

The same logic applies to the worst element for the other player as well. The

argument can be repeated for player 1 or for player 2 until all vetoes are exhausted

and about the sequences starting at m1 then at m̃2, then at ˜̃m3, etc. It follows that in

the original sequence, for all t ≥ n, mt =mt+2. We conclude that the iterative process

of alternate best responses converges to an equilibrium in at most n steps.

4 Pareto efficient implementation

The previous section has studied the game-theoretical properties of the proposed

mechanism. We now study its outcomes.

4.1 The Pareto-and-veto correspondence pvv

Definition 2. For any v = (v1,v2) ∈ {0,1, ..., n}2 with v1 + v2 = n, the Pareto-and-veto

rule pvv : L2
A→A is the SCR:

pvv(�) =

Pareto︷︸︸︷
pe(�)∩

Veto︷                                                       ︸︸                                                       ︷
{x ∈ A | #L(x,�1) ≥ v1}︸                      ︷︷                      ︸
Best n− v1 alternatives for 1

∩{x ∈ A | #L(x,�2) ≥ v2}︸                      ︷︷                      ︸
Best n− v2 alternatives for 2

.

The Pareto-and-veto rule pvv picks all Pareto efficient alternatives with a lower-

contour set at least as large as vi for every player i. The next Table fully describes

the outcome of pv(1,1) in the case of three alternatives. In the Table, lines represent

the preferences of player 1 and the columns the preferences of player 2, where for

short abc stands for a �i b �i c and so on.
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abc acb bac bca cab cba

abc a a {a,b} b a b

acb a a a c {a,c} c

bac {a,b} a b b a b

bca b c b b c {b,c}
cab a {a,c} a c c c

cba b c b {b,c} c c

Table 1: The Pareto-and-veto rule pv(1,1).

Our first observation is that pvv is non empty when v1 + v2 ≤ n. To see this, just

observe that eliminating n alternatives at most, out of n+1, leaves at least one, say a.

If a is Pareto efficient, we are done. If not, a is Pareto-dominated by some a′ ∈ pev , but

since a′ is at least as good as a for player i, a is still among her n−vi best alternatives.

As soon as v1 + v2 is at least n + 1 , the example of completely opposed preferences

shows that pvv can be empty.

4.2 Implementation of pvv

We now turn to the implementation of pvv : the strike mechanism with veto vector v

Nash-implements the Pareto-and-veto rule with the same veto vector v.

Theorem 3. Let the domain κ satisfy BEB in ∆uni. For any v ∈ {0, ..., n}2 with v1 + v2 =

n, the strike mechanism µv Nash-implements the Pareto-and-veto rule pvv .

Proof. (i) In order to check the inclusion pvv(�) ⊇
⋃

m∈N µv (�∗)
supp(µv(m)), consider any

equilibrium m. By Theorem 1 the support of µv(m) is a singleton {x}. Because player

i can always veto her worst vi alternatives in the mechanism µv any best response

outcome, and thus any equilibrium outcome x is such that #L(x,�i) ≥ vi ∀i ∈N . So x

satisfies the veto conditions in the definition of pv. It remains to show that x ∈ pe(�).

Suppose not, i.e., there exists y ∈ A with y �i x for all i ∈ N . Since µv(m) = {x}, we

have m1 ∩m2 = ∅. Thus, y ∈ mi for some i ∈ N , say i = 1, without loss of generality.

It follows that y ∈ A \m2 and thus {y} ∈ gv(M1,m2). Therefore, µv(m′1,m2) = {y} for

some m′1 and as {y} �∗1 µv(m) = {x}, we contradict m ∈ N µv (�∗).
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(ii) For the reverse inclusion, take x ∈ pvv(�). Because x is Pareto-optimal, any of

the n other alternatives is either strictly better than x for one and only one player or

strictly worse for both. So counting these n = v1 + v2 alternatives we obtain:

v1 + v2 = #U (x,�1) + #U (x,�2) + #(L(x,�1)∩L(x,�2)) . (2)

By definition of pvv , v1 ≤ #L(x,�1) = n − #U (x,�1). Therefore v2 ≥ #U (x,�1), which

means that player 2 has enough vetoes to block all the alternatives that player 1

strictly prefer to x. The same holds for player 1 with respect to player 2. Writing

Equation 2 as:

[v1 −#U (x,�2)] + [v2 −#U (x,�1)] = #(L(x,�1)∩L(x,�2)) ,

one can see that it is possible to have players 1 and 2 respectively veto v1 −#U (x,�2)

and v2−#U (x,�1) different alternatives in L(x,�1)∩L(x,�2), so that all n alternatives

are vetoed by one player or the other.

Let m1 and m2 be such strategies. We now prove that, under BEB, m1 is a strict

best response to m2. To this end, recall that U (x,�1) ⊆ m2: any alternative strictly

preferred by player 1 to x is vetoed by player 2. So when player 1 deviates to m′1 ∈
M1, the support A \ (m′1 ∪m2) of the outcome lottery excludes U (x,�1). Because of

the constraints on the number of vetoes, µ(m′1,m2) = {x} is impossible for m′1 , m1.

Therefore, for player 1, the support of µ(m′1,m2) either contains only alternatives

that are strictly worse than x, or contains x and some other alternatives that all are

worse than x. By BEB, player 1 strictly prefers {x} to such outcomes, so m1 is the

unique best response to m2. The same holds for the other player, so that we proved

that x is an equilibrium outcome.

5 On the necessity of vetoes

This section shows that, under some richness conditions concerning the domain of

preference extensions over lotteries, any Pareto efficient SCR that is implementable
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through a DE mechanism is a Pareto-and-veto rule.

We now define some conditions on the domain κ to be used throughout. The first

one restricts admissible extensions in the same spirit as the BEB condition. A player

with a worst-element bias (or simply WEB) prefers any lottery with support in X to

the (sure) one that selects her worst element in X.

Worst-element bias: Let �i∈ LA be a strict preference on A, and let ∆̄ ⊆ ∆ be a set of

lotteries. An extension �∗i of �i exhibits the worst element bias in ∆̄ when for any

X ∈ A with #X > 1 and any x ∈ X, if y �i x for any y ∈ X \ {x}, then p �∗i {x} for all

p ∈ ∆̄ with supp(p) ⊆ X and p , {x}.

As in the case of BEB, WEB is satisfied by virtually all preference extensions over

lotteries.7 We say that a domain κ satisfies WEB in ∆̄ iff WEB is satisfied in ∆̄ for all

�∗∈ κ(�), for all �∈ L2
A.

The next condition, Priority Extension, deals with the richness of the domain of

preference extensions. For any lottery p ∈ ∆, we write p[· � x] =
∑
y:y�x p(y) to refer

to the probability, according to p, of obtaining an alternative weakly preferred to x

according to �.

Priority extension: Let �∗i extend �i and let x ∈ A, the extension �∗i is a priority

extension (PREX) of �i for x in ∆̄ iff given any two lotteries p,q ∈ ∆̄, if p[· � x] > 0

and q[· � x] = 0, then p �∗ q.

The interpretation of this property is clear: under a priority extension, each al-

ternative is used as a grading benchmark: The individual prefers to reach the bench-

mark x, even with a tiny probability, than not reaching it. The argument “What is

the best alternative I have some chance to obtain with that lottery?” has priority over

the precise values of the probabilities. We say that a domain κ satisfies PREX in ∆̄

iff for all �∈ L2
A, there is some �∗∈ κ(�) that is a priority extension of � in ∆̄ for all

x ∈ A.8

7In fact, BEB and WEB are satisfied if one considers the well-known preference extension axioms
of the literature (such as Gärdenfors [1976] or Kelly [1977]) and deduces preferences over lotteries
through the preferences over their supports. If κ satisfies BEB and WEB (which are universally
quantified), every sub-correspondence of κ satisfies them as well.

8Note that if x is bottom-ranked in �, there is no lottery q with q[· � x] = 0, so that any extension
is (vacuously) a priority extension for x.
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Here is an example of a domain of extension that satisfies the condition in the set

∆uni of uniform lotteries. Similar examples can be found for any finite set of lotteries.

Consider the correspondence κvNM : LA→ P∆uni that allows any von Neumann and

Morgenstern extension of �. In other words, for � ∈ LA, κvNM(>) is the set of all

�∗ ∈ P∆uni such that there exists a vector u ∈ RA with a � b ⇐⇒ ua > ub for all a,b ∈ A
and:

∀p,q ∈ ∆uni, p �∗ q ⇐⇒
∑
a∈A

p(a)ua >
∑
a∈A

q(a)ua.

The domain κvNM(>) contains priority extensions of � to ∆uni. To see this, label

the alternatives in A according to the preference: an+1 � an � . . . � a1 and let uak =

(n+ 1)k for any ak ∈ A. Take any pair p,q ∈ ∆uni with p[· � ak] > 0 and q[· � ak] = 0 for

some ak. The expected value of p, that is
∑
a∈Ap(a)ua, reaches its minimum when the

lottery contains in its support ak but no better alternative according to � (and hence

has k alternatives in its support). The expected value
∑
a∈Ap(a)ua is at least

uak
k
>
uak
k + 1

=
(n+ 1)k

k + 1
≥ (n+ 1)k−1.

The expected value of q,
∑
a∈A q(a)ua, reaches its maximum when q = {ak−1} and hence

its value is at most (n+ 1)k−1. Therefore, for any ak ∈ A, p[· � ak] > 0 and q[· � ak] = 0

implies that p �∗ q. Thus, uniform lotteries are ordered following the priority rule.

We are now ready to state the counterpart to Theorem 3, according to which, if

one wants to implement a Pareto efficient SCR through a DE mechanism, the SCR

must be a Pareto-and-veto rule. Precisely we prove the following:

Theorem 4. Let f be a Pareto efficient SCR that is Nash-implementable by a DE mecha-

nism µ on a domain κ. Let the domain κ satisfy BEB, WEB and PREX in the range of µ.

Then f = pvv for some v ∈ {0, ..., n}2 with v1 + v2 = n.

To prepare for the proof we provide two lemmas. For each player i, let

veto(µ, i) = {X ∈ A | ∃mi ∈Mi s.t. supp(µ(mi ,mj))∩X = ∅ for all mj ∈Mj},

denote the veto set for player i. When X ∈ veto(µ, i), we say that player i has veto
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power over the set X of alternatives, i.e., she has a strategy that ensures that no

alternative in this set belongs to the support of the outcome independently of the

strategy of her opponent. We first state a result on the structure of the veto power

that DE mechanisms generate.

Lemma 2. Under the hypothesis of Theorem 4, for any partition {X,Y } of A with X ∈ A,

either Y ∈ veto(µ,1) or X ∈ veto(µ,2) but not both.

Proof. Let µ :M→ ∆ be admissible and DE and letX ∈ A. Write Y = A\X. Pick some

�∈ L2
A such that ∀x ∈ X, ∀y ∈ Y , x �1 y and y �2 x. The existence of such preference

� is ensured by our assumption that the domain contains all strict preferences on

alternatives. Take also �∗∈ κ(�) such that p �∗1 q for all p,q ∈ µ(M) with p[X] > 0 and

q[X] = 0, and such that p �∗2 q for all p,q ∈ µ(M) with p[Y ] > 0 and q[Y ] = 0. The

existence of such extended preference �∗ is ensured by PREX. Now suppose, for a

contradiction, that Y < veto(µ,1) and X < veto(µ,2). Because µ is admissible and DE,

there exists an equilibrium m = (m1,m2) ∈ N µ(�∗) with µ(m) = {a} for some a ∈ A.

Two cases are possible:

• If a ∈ X. As Y < veto(µ,1), ∃m′2 ∈M2 such that supp
(
µ(m1,m

′
2)
)
∩ Y , ∅, hence

µ(m1,m
′
2) �∗2 {a} due to WEB, contradicting m ∈Nµ(�∗).

• If a ∈ Y . As X < veto(µ,2), ∃m′1 ∈M1 such that supp
(
µ(m′1,m2)

)
∩X , ∅, hence

µ(m′1,m2) �∗1 {a}, again contradicting m ∈ N µ(�∗).

Thus, Y ∈ veto(µ,1) or X ∈ veto(µ,2). Because the mechanism is well-defined, it is

impossible that a set belongs to veto(µ,1) and its complement belongs to veto(µ,2).

Therefore either Y ∈ veto(µ,1) or X ∈ veto(µ,2) but not both.

The next lemma shows that we can restrict attention to mechanisms that are

“neutral on their vetoes”. A mechanism µ is neutral on its vetoes for player i iff

for any X ∈ A and any permutation ρ : A→ A, X ∈ veto(µ, i)⇐⇒ ρ(X) ∈ veto(µ, i).

This does not mean that any player has any veto power (veto(µ, i) can be empty) nor

does it mean that the µ is neutral (µ does not have to treat alternative in a symmetric
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way), it just means that if a set with a given cardinality belongs to veto(µ, i) then any

other set with the same cardinality belongs to veto(µ, i) as well. Note that a player

with veto power over X has also veto power over any X ′ ⊂ X. Hence, the veto set for

player i can be written as:

veto(µ, i) = {X ∈ A | #X ≤ vi},

where the integer vi stands for the cardinality of the highest cardinality set over

which i has veto power.

Lemma 3. Under the hypothesis of Theorem 4, µ is neutral on its vetoes for both players.

Proof. Let X ∈ veto(µ,1), x ∈ X and x′ ∈ A\X.9 Thus, there existsm1 ∈M1 that vetoes

X. The set X ′ = X \ {x}∪ {x′} has the same cardinality as X. Write Y = A\ (X∪{x′}), so

that we have a partition

A = (X \ {x})∪ {x} ∪ {x′} ∪Y .

Suppose, for a contradiction, that X ′ < veto(µ,1). Lemma 2 then implies that Y ∪{x} ∈
veto(µ,2). Therefore there exists m2 ∈ M2 that vetoes Y ∪ {x}. Since x′ is neither

vetoed by m1 nor by m2, µ(m1,m2) = {x′}. Now consider a unanimous preference

profile �= (�1,�2) such that x �i x′ �i y for all y , x,x′and for i = 1,2. For this

preference profile, the second-best alternative x′ is Pareto-dominated by x but, at

(m1,m2), both players veto x. Thus, no unilateral deviation can obtain, with any

probability, a better outcome than x′. Thanks to BEB, that implies that (m1,m2) is a

Nash equilibrium, in contradiction with the Pareto efficiency assumption.

The proof of the proposition is established by noting that given any X,X ′ ∈ A
with #X = #X ′, there is a finite sequence of sets X = X1, ...,Xs = X ′ with #(Xi∩Xi+1) =

#X − 1 for each i ∈ {1, ..., s − 1} and applying repeatedly the argument above.

We can now proceed to a complete proof of the Theorem.

9The two extreme cases veto(µ,1) = {{∅}} and A ∈ veto(µ,1) are trivial.
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Proof of Theorem 4. (1) We first establish the existence of v such that f ⊆ pvv . LetM
be the joint message space of µ that DE-implements f . Take any preference profile

(�1,�2) and let �∗i be a priority extension of �i at all x ∈ A. Thus, for all p,q ∈ µ(M)

and for i = 1,2, if p[· �i x] > 0 and q[· �i x] = 0 then p �∗i q. Take any x ∈ f (�
). By assumption, µ admits a Nash equilibrium (m1,m2) with µ(m1,m2) = {x}. By

the definition of an equilibrium, player 2 has no better response to m1 than m2.

However, under�∗2, a deviationm′2 is profitable for player 2 iff supp(µ(m1,m
′
2))∩U (�2

,x) , ∅. Therefore:

∀m2 ∈M2, supp(µ(m1,m2))∩U (�2,x) = ∅

and likewise for player 1. In other words, m1 makes the set U (�2,x) unattainable for

player 2 under µ. We say that m1 gives player 1 veto power on the set U (�2,x), and

likewise for player 2.

U (�2,x) ∈ veto(µ,1), U (�1,x) ∈ veto(µ,2).

From Lemma 3, if a player has veto power on some set, she has also veto power

on any set of the same cardinality. Let vi be the largest number of outcomes that

i can veto. For the mechanism to be well-defined, one needs v1 + v2 ≤ n, so that

not all the n + 1 alternatives can be vetoed simultaneously. Now consider the case

of opposed preferences: for any x ∈ A, U (�1,x) ∩U (�2,x) = ∅. The existence of a

deterministic equilibrium (an equilibrium with a singleton outcome) in that case

shows that v1 + v2 ≥ n. Hence v1 + v2 = n.

Clearly, an outcome that would be among the vi worse alternatives for a player

i cannot be an equilibrium outcome under µ because i could then veto her vi worse

alternatives. Due to WEB, a player prefers any lottery with support not included

in the vi worst alternatives to any lottery that selects (surely) one of the worst vi

alternatives. Hence f being implementable imposes the required veto conditions on

the ranks of the implemented alternatives in the individual preferences. Since we

assumed that f is also efficient, we obtain f ⊆ pvv .
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(2) For this v, we now prove the reverse inclusion. Given �= (�1,�2), let x ∈
pvv(�). Consider the profile �′ defined as follows.

Label the n+ 1 alternatives in two ways: an+1 �1 an �1 . . . �1 a1 and bn+1 �2 bn �2

. . . �2 b1. Write aw1
= bw2

= x. The veto conditions in the definition of pvv are that

w1 > v1 and w2 > v2, which implies that:

an+1 �1 . . . �1 aw1
= x �1 . . . �1 av1

�1 . . . �1 a1,

bn+1 �2 . . . �2 bw2
= x �2 . . . �2 bv2

�2 . . . �2 b1.

The preference �′1 is obtained by lowering the ranks of all those, among the alter-

natives av1+1, ..., aw1−1, which are preferred to x by the other player, player 2. If

w1 = v1 + 1 we simply let �′1 = �1. If w1 ≥ v1 + 2, consider the set

H1 =
{
av1+1, . . . , aw1−1

}
∩ {bw2+1, . . . , bn+1}

and observe that

#H1 ≤ n−w2 ≤ n− v2 = v1.

Starting from �1, we define �′1 by switching in the ranking the first elements a1,...

a#H1
with the elements of H1, where a1 is switched with the most preferred element

of H1 of player 1, a2 is switched with the second most preferred element of H1 of

player 1 and so on...

We now claim that if x ∈ f (�′1,�2) then x ∈ f (�). Let µ DE-implement f . If

x ∈ f (�′1,�2), there exists a pure strategy equilibrium (m′1,m
′
2) for the game with

preferences (�′1,�2) with {x} = µ(m′1,m
′
2). With the initial preferences (�1,�2), m2 is

also a best response since player 2 does not change her preference, and m′1 is also a

best response for player 1 because her preferences differ only below x. As previously

argued,m2 gives player 2 veto power on the setU (�1,x). SinceU (�′1,x) =U (�1,x) by

construction, it follows that the support of any lottery that player 1 can attain given

m2 is included in A \U (�1,x). Hence, due to BEB, m1 is a best response for player

1 since µ(m1,m2) = {x}. Therefore this equilibrium for (�′1,�2) is also an equilibrium

for (�1,�2), that is: x ∈ f (�′) =⇒ x ∈ f (�).

21



The same construction for player 2 yields the preference profile �′′= (�′1,�
′
2) with

the property:

x ∈ f (�′′) =⇒ x ∈ f (�). (3)

But notice that, by construction of �′1, all the alternatives y such that y �2 x are now

among the v1 worse alternatives according to �′1. Therefore x is the preferred alter-

native, according to �′2, among the alternatives in the intersection of the top n − v1

alternatives for player 1 and n − v2 alternatives for player 2 in �′. Since the same is

true for the other player, we find that x is the unique Pareto optimum in the alter-

natives among the top n− v1 alternatives for player 1 and the top n− v2 alternatives

for player 2 in � ”. Since f itself is assumed to be efficient and is selecting in pvv , we

obtain that f (�′′) = {x}. From (2) it follows that x ∈ f (v) as requested.

Theorem 4 shows the existence of a strong link between implementation through

DE mechanisms and veto power. Indeed, it shows that under the conditions BEB,

WEB, and PREX, a SCR has to admit some veto structure in order to be both Pareto

efficient and implementable. This theorem is related to the impossibility result by

Hurwicz and Schmeidler [1978] in the following sense. Hurwicz and Schmeidler

[1978] show that the only SCRs which are both Pareto efficient and implementable

(through a deterministic mechanism) are the dictatorial ones. Note that a dictato-

rial SCR corresponds to pvv with v = (n,0) (if player 1 is the dictator) or v = (0,n)

(if player 2 is the dictator). Our theorem shows that by allowing lotteries as off-

equilibrium punishments, the Pareto-and-veto rules appear as a class of intermedi-

ate and, interestingly, non dictatorial SCRs.

Note that pvv is neutral for any v ∈ {0...,n}2 and that it is anonymous if and only if

v1 = v2. Thus, under the assumptions of Theorem 4, the following observations triv-

ially follow. With an odd number of alternatives, an anonymous, neutral and Pareto

efficient SCR f is Nash-implementable by a DE mechanism iff f is a Pareto-and-veto

rule with v1 = v2. On the contrary, with an even number of alternatives, there exist

no anonymous, neutral and Pareto efficient SCR that is Nash-implementable by a

DE mechanism.

22



6 Ex-ante Pareto efficiency

This section shows that ensuring ex-ante Pareto efficient equilibria through DE mech-

anisms is in general not possible. It presents two separate impossibility results for

two notions: ex-ante efficiency for mechanisms (Section 6.1) and for SCRs (Section

6.2). The first one shows that no ex-ante Pareto efficient admissible mechanism en-

sures a positive veto power to each player. The second one proves that any ex-ante

Pareto efficient and implementable SCR is a dictatorship.

6.1 Ex-ante efficient mechanisms

Ex-ante efficiency means that efficiency is observed at the level of lotteries, before

their realization. Received knowledge on this issue (see, for instance, Börgers and

Postl [2009]) highlights that ex-ante efficiency is difficult to obtain. An example

is published (Núñez and Laslier [2015]) of an ex-ante Pareto efficient two-player

mechanism for three alternatives; this mechanism, called Approval mechanism, is

not DE and fails to be efficient for four alternatives or more. The existence of a

non-DE efficient mechanism for many alternatives remains an open problem.

The difficulty can be described by the following argument. Let A = {a,b,c} with

a �1 b �1 c and c �2 b �2 a. Consider the strike mechanism that gives one veto to

each player. If the domain κ satisfies BEB, the unique equilibrium outcome is b.

Now, assume that both players prefer a non degenerate lottery with support {a,c}
to the pure outcome b. This is the case when both players extend their preference

over alternatives to uniform lotteries through expected utility and their intensity

of preference for b is low. In this case, the unique equilibrium outcome is Pareto

dominated by a lottery, that is a possible outcome of the mechanism, therefore non

dictatorial ex-ante Pareto efficiency cannot be reached with deterministic outcomes.

Our first result is a negative result, that generalizes this observation to veto rules, as

studied in this paper.

Instead of social choice rules, defined on profiles of preferences over pure alter-

natives, we are here dealing with social lottery rules (SLR), defined on profiles of

preferences over lotteries. For such a preference profile, �∗, the SLR F defines a set
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of lotteries F(�∗) ⊆ ∆. We will consider SLRs that are defined on the same domains

that were used in the previous sections: preferences over pure alternatives are strict,

and all strict preferences are admitted, and the preferences on lotteries are described

by a product correspondence κ.

For a mechanism µ and a profile of preferences over alternatives �∗, let Fµ(�∗)
denote the set of Nash outcomes: Fµ(�∗) = {µ(m) : m ∈ Nµ(�∗)}. This is a subset of

µ(M), the range of µ. A mechanism µ is ex-ante Pareto efficient on the domain κ

if for any �∈ L2
A and any �∗∈ κ(�) there is no p ∈ µ(M) and q ∈ Fµ(�∗) such that

p �∗i q for all i with at least one strict preference. Say that µ is DE at �∗ if all its

Nash outcomes are deterministic, that is, with our loose notation: Fµ(�∗) ⊆ A. A

mechanism µ is a dictatorship iff there is some i ∈ N such that for each x ∈ A, there

exists mi ∈Mi such that µ(mi ,mj) = {x} for all mj ∈Mj .

Theorem 5. Let the domain κ satisfy PREX and WEB. On κ, any admissible DE mech-

anism that is ex-ante Pareto-efficient is a dictatorship.

Proof. Suppose first that the mechanism µ is not purely deterministic, that is there

exists a strategy combination m∗ ∈M and two distinct alternatives a1, an+1 ∈ A such

that {a1, an+1} ⊆ supp(µ(m∗)). Since µ is DE, it follows that Fµ(�∗) ⊆ A. Write A =

{a1, a2, ..., an+1} (recall that n+1 ≥ 3) and consider the opposed preferences �= (�1,�2)

with a1 �1 a2 �1 ... �1 an+1 and an+1 �2 an �2 ... �2 a1. Let the players’ preferences

over lotteries, �∗1 and �∗2, be such that, for any p,q ∈ µ(M), if p[· �1 a1] > 0 and

q[· �1 a1] = 0 then p �∗1 q, and if p[· �2 an+1] > 0 and q[· �2 an+1] = 0 then p �∗2 q. Such

a profile exists because the domain κ satisfies PREX. Therefore, since {a1, an+1} ⊆
supp(µ(m∗)), µ(m∗) �∗i {x} for i = 1,2 and any x , a1, an+1. Since µ is ex-ante Pareto

efficient, it follows that Fµ(�∗) ⊆ {a1, an+1}.
Therefore, at this profile, the mechanism µ admits either {a1} or {an+1} or both

as equilibrium outcome. Assume w.l.og. that µ admits some equilibrium m̃ with

µ(m̃) = {a1}. By definition of equilibrium, {a1} = µ(m̃) �∗2 µ(m̃1,m
′
2) for any m′2 ∈ M2.

Yet, since κ satisfies WEB, then p �∗2 {a1} for all p ∈ µ(M) with p , {x}. Therefore,

µ(m̃1,m
′
2) = {a1} for any m′2 ∈ M2. It follows that for every a ∈ A, there is either

some m1 ∈M1 such that µ(m1,m
′
2) = {a} for any m′2 ∈M2 or some m2 ∈M2 such that
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µ(m′1,m2) = {a} for any m′1 ∈ M1. It follows that either for every a ∈ A there is some

m1 ∈ M1 such that µ(m1,m
′
2) = {a} for any m′2 ∈ M2 or for every a ∈ A there is some

m2 ∈ M2 such that µ(m′1,m2) = {a} for any m′1 ∈ M1. In the first case, player 1 is the

dictator and in the second case player 2 is the dictator.

Suppose now that there is no m∗ ∈M such that supp(µ(m∗)) ⊃ {x,y} for some pair

of alternatives {x,y} ∈ A. Then, for any m ∈ M, µ(m) ∈ A so that µ is a determinis-

tic mechanism and µ(M) ⊆ A. Thus, for any N µ(�∗) = N µ(�) for any �∗∈ κ(�) and

any �∈ L2
A. Hence, ex-ante Pareto efficient is equivalent to Pareto efficiency w.r.t. �.

Thus, the two-person implementation problem (as stated by Hurwicz and Schmei-

dler [1978] and Maskin [1999]) applies: the only mechanisms that are admissible

and Pareto efficient are dictatorships.

6.2 Ex-ante efficiency of implementable social choice rules

The literature on implementation has concentrated on social choice rules (SCRs)

which, by definition use only ordinal information: a preference profile � on alterna-

tives, and not a preference profile �∗ over lotteries. Since we consider mechanisms

that can outcome lotteries, some definitions are useful in order to make the link with

this literature.

So consider a SCR f : for all �∈ L(A), f (�) ⊆ A. A mechanism µ that is DE on a

domain κ is said to implement the SCR f on κ iff:

∀ �∈ L(A), ∀ �∗∈ κ(�), Fµ(�∗) = f (�).

Note that, for a mechanism to implement a social choice rule, it is required that the

outcomes of the mechanism not only are deterministic, but also are independent of

the precise preferences over lotteries. The following definition presents a concept of

ex-ante Pareto efficient SCR that is suitable for the study of the implementation of

SCRs by mechanisms that can output lotteries. It should not be confused with the

concept of an ex-ante Pareto efficient mechanism defined above.

Given a set of lotteries ∆ ⊆ ∆ a SCR f is ex-ante Pareto efficient in the range ∆

iff given any �∈ L2
A and any �∗ in κ(�), any X ∈ f (�) and any x ∈ X, there is no p ∈ ∆
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such that p �∗i x for all i ∈N with at least one strict preference.

We show that the notions of ex-ante Pareto efficiency and admissibility clash,

hence extending the two-player implementation problem to the setting with lotteries

and DE mechanisms. This shows that ex-ante Pareto efficiency is too restrictive in

our setting.

Theorem 6. Let f be a SCR that is Nash-implementable by a DE mechanism µ on a

domain κ. Suppose that κ satisfies PREX and WEB in the range of µ. If f is ex-ante

Pareto efficient in the range of µ, then µ is a dictatorship.

Proof. Let f be an ex-ante Pareto efficient SCR that is Nash-implementable by a DE

mechanism µ on a domain κ. Borrowing the vocabulary of Hurwicz and Schmeidler

[1978], we think of the mechanism µ as a matrix where player 1 controls rows and

player 2 controls columns. We hence write, for every x ∈ X, an {x}-row is a row that

contains only {x} as an outcome and similarly for an {x}-column.

Take any profile �∈ L2
A. Let a and b respectively denote the best outcomes for

player 1 and 2 at �. Take �∗∈ κ(�) such that p �∗1 q for all p,q ∈ µ(M) with p(a) > 0

and q(a) = 0 and such that p �∗2 q for all p,q ∈ µ(M) with p(b) > 0 and q(b) = 0. The

existence of �∗ is ensured by PREX. Take any alternative x , a,b. According to �∗

both players strictly prefer a lottery with support {a,b} to the pure alternative x. Ex-

ante Pareto efficiency thus implies that x < f (�). Indeed, if x ∈ f (�), then µ admits

an equilibrium m∗ with µ(m∗) = {x} (since µ is DE). However, both players prefer the

lottery {a,b} to x, contradicting ex-ante Pareto efficiency. So f (�) ⊆ {a,b}. Thus, an

ex-ante Pareto optimal and admissible DE mechanism gives equilibrium outcomes

from the union of tops.

Now consider a preference profile � where the players’ preferences are com-

pletely opposed. Relabel the alternatives as a1, a2,..., an+1. Take a preference profile

where a1 and a2 are respectively the best and last alternatives for player 1 while a2

and a1 are, respectively, the best and last alternatives for player 2. So the equilib-

rium outcomes of µ belong to {a1, a2}. Note that µ is DE, so no lottery with support

{a1, a2} is an equilibrium outcome. Let, without loss of generality, a1 be an equilib-

rium outcome. This is the worst element for player 2 and also the worst lottery (due
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to WEB), hence player 1 must have an {a1}-row.

Now, take a preference profile where a2 and a3 are, respectively, the best and last

alternatives for player 1 while a3 and a2 are the respective top and bottom outcomes

for player 2. So the equilibrium outcomes of µ belong to {a2, a3}. We first show that

a3 cannot be an equilibrium outcome. Suppose it is. As a3 is the worst element

and lottery for player 1, player 2 must have an {a3}-column, due to WEB, which

contradicts player 1 has an {a1}-row. As a result, a2 is an equilibrium outcome and

we argue, mutatis mutandis, player 1 has an a2-row.

Iterate by making the arguments for a3, a4, . . . , an, an+1, proves that for each a ∈ A,

player 1 has an {a}-row, showing that player 1 is the dictator. Repeating the argument

assuming that a2 is an equilibrium outcome shows that player 2 is the dictator.

7 Connections to two-player Nash implementation the-

ory

A complete characterization of Nash implementable SCRs with two players was in-

dependently achieved by both Moore and Repullo [1990] and Dutta and Sen [1991].

In order to clarify the connection between our results and these characterizations,

we quote condition β of Dutta and Sen [1991] (whose equivalent version is called

condition µ2 in Moore and Repullo [1990]) which is necessary and sufficient for a

SCR to be Nash implementable with two players.

For any i ∈N , let L̃(x, �i) = L(x,�i)∪{x} be the weak lower contour set of x ∈ A at

�i∈ LA and M(C, �i) = {a ∈ C | a �i c ∀c ∈ C� {a}} be the singleton set containing the

maximal elements of C ⊆ A with respect to �i∈ LA.

Definition 3. A SCR f satisfies condition β iff there exists a set A∗ which contains the

range of f , and for each i ∈ N, � ∈ L2
A and a ∈ f (�), there exists a set Ci(a,�) ⊆ A∗, with

x ∈ Ci(a,�) ⊆ L̃(a,�i) such that for all �′∈ L2
A, we have:

(i) (a) for all b ∈ f (�′), C1(a,�)∩C2(b,�′) , ∅.
(b) Moreover, there exists x ∈ C1(a,�) ∩ C2(b,�′) such that if for some �′′∈ L2

A,

x ∈M(C1(a,�),�′′1 )∩M(C2(b,�′),�′′2 ), then x ∈ f (�′′).
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(ii) if a < f (�′), then there exist j ∈N and b ∈ Cj(a,�) such that b < L̃(a,�′).

(iii) Mi (Ci(a,�) \ {a},�′)∩Mj(A∗,�′) ⊆ f (�′) ∀i ∈N and j , i.

(iv) M(A∗,�′1)∩M(A∗,�′2) ⊆ f (�′).

Without restrictions on the domain of preferences, only dictatorial SCRs satisfy

condition β (in line with the impossibility results of Hurwicz and Schmeidler [1978]

and Maskin [1999]). As Moore and Repullo [1990] notes, parts (ii), (iii) and (iv)

of condition β are necessary and sufficient for Nash implementation with three or

more players. Among these, part (ii) corresponds to Maskin monotonicity; part (iv)

is a unanimity condition while part (iii) is a relaxation of the no-veto power condi-

tion. On the other hand, condition (i) is central for the situation with two players.

However, (i)(a), which has been referred to as a self-selection constraint or simply

intersection property (see Abreu and Sen [1991] for a discussion) turns out to be a crit-

ical condition for different implementation concepts such as virtual implementation

(Abreu and Sen [1991]) or implementation with partially honest players (Dutta and

Sen [2012]). Busetto and Colognato [2009] has shown that the different parts of

condition β exhibit problems of logical dependence.

For the sake of precision, we introduce the definitions of the intersection prop-

erty and Maskin monotonicity formally, respectively implied by conditions β(i)(a)

and β(ii).

Definition 4. A SCR f satisfies the intersection property (IP) iff for all �,�′∈ L2
A and

x,y ∈ A with x ∈ f (�) and y ∈ f (�′), we have L̃(x,�i)∩ L̃(y,�′j) , ∅ for any i ∈N� {j} .

Definition 5. A SCR f satisfies Maskin monotonicity (MM) iff for all �,�′∈ L2
A and

x ∈ A with L̃(x,�i) ⊆ L̃(x,�′i) ∀i ∈N , we have x ∈ f (�) =⇒ f (�′).

We first observe that the necessity of MM and IP prevails when DE mechanisms

are used. Theorem 4 has shown that when the domain satisfies BEB, WEB and

PREX, a Pareto efficient SCR that is Nash-implementable by a DE mechanism is

a Pareto-and-veto rule. Thus, the necessity of MM and IP for DE mechanisms can

be seen by establishing that Pareto-and-veto rules satisfy both conditions:
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Proposition 2. For any veto vector v, the Pareto-and-veto rule pvv satisfies IP and MM.

Proof. In order to check IP , for any veto vector v, take any pair �,�′∈ L2
A and any

x ∈ pvv(�) and y ∈ pvv(�′). By definition of pvv , #L̃(x,�i) ≥ vi+1 and #L̃(y,�j) ≥ vj +1

for j , i. However, since v1 + v2 = n, it follows that #L̃(x,�i) + #L̃(y,�j) ≥ n + 2 and

hence L̃(x,�i)∩ L̃(y,�′j) , ∅, which shows that IP holds.

In order to check MM, for any veto vector v, take any �∈ L2
A and any x ∈ pvv(�).

Let �′∈ L2
A be some profile with L(x,�i) ⊆ L(x,�′i) ∀i ∈N . Note that x ∈ pe(�) implies

that x ∈ pe(�′). Moreover, #L(x,�′i) ≥ #L(x,�i) for each i ∈ N (by construction of �′)
and #L(x,�i) ≥ vi ∀i ∈N (by the definition of pvv). Thus x ∈ pvv(�′), as desired.

Interestingly, MM and IP pave the way towards a full characterization of the

class of Pareto-and-veto rules.

Definition 6. Under a SCR f , player i has veto power over the set X ⊂ A at the profile

�∈ L2
A iff for any Y ⊆ X, if z �i y ∀z ∈ A�Y ,∀y ∈ Y then f (�)∩Y = ∅. When i has veto

power over X for any � ∈ L2
A, we say that i has veto power over X under f .

Remark that if player i can veto X under f , she can also veto any subset Y of X

whenever Y consists of her least preferred alternatives. When player i does not have

veto power over X under f , this means that there exists a profile � in which X are

the least preferred alternatives of player i in �i and such that f (�)∩X , ∅.

Definition 7. We say that a SCR f is neutral-on-its-vetoes iff whenever f gives veto

power to player i over a set X, f gives veto power to i over every set Y with #Y = #X.

Note that when f is neutral-on-its-vetoes, the veto power of player i can be ex-

pressed by an integer vi ∈ {0, ..., n} which is the cardinality of the largest set that i

can veto.

Proposition 3. If f satisfies IP and is Pareto efficient and neutral-on-its-vetoes, then

f ⊆ pvv .

Proof. Take some f which is neutral-on-its-vetoes, satisfies IP and is Pareto efficient.

Assume that at some profile �, x ∈ f (�) with #L(x,�i) = k for k = 0, . . . ,n. IP implies
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that any profile �′, f (�′) ⊆ A\L(x,�′2). Therefore, if player 1 cannot prevent x at f (�),

then player 2 can ensure at any profile that L(x,�′2) ≥ n − k. Again, this observation

can be generalized since f neutral-on-its-vetoes: v1 = k implies that v2 = n− k.

Since f is Pareto-efficient and only selects alternatives such that v1 + v2 = n, it

follows that f ⊆ pvv as required.

Proposition 4. For any veto vector v, f ⊆ pvv satisfies MM if and only if f = pvv

Proof. Note that the proof is immediate if either v1 = n or v2 = n since, in both cases,

pvv is singleton valued for each preference profile �. Thus, f ⊆ pvv directly implies

that f = pvv and hence is MM. We assume that 0 < v1,v2 < n in the sequel of the

proof.

We show first that for any f ⊆ pvv , any � ∈ L2
A and any x ∈ pe(�), if #L(x,�i) = vi

∀i ∈ N , then f (�) = {x}. Take any f ⊆ pvv , any � ∈ L2
A and any x ∈ pe(�) with

#L(x,�i) = vi ∀i ∈ N . Assume by contradiction that there is some y ∈ f (�) with

y ∈ A \ {x}. Since f ⊆ pvv , #L(y,�i) ≥ vi ∀i ∈N , and as #L(x,�i) = vi ∀i ∈N , it follows

that #L(y,�i) > vi ∀i ∈N . But this implies that y �i x ∀i ∈N , contradicting x ∈ pe(�).

Hence, since f (�) is non-empty, f (�) = {x} as wanted.

We now show that for any �∈ L2
A and any x ∈ pvv(�), if f is MM and f ⊆ pvv ,

then x ∈ f (�). For each x ∈ A and each veto vector v, let Bxv = {�∈ L2
A | x ∈ pe(�

) with #L(x,�i) = vi∀i ∈ N }. Since the preferences are unrestricted, for any partition

(X,Y ) of A \ {x} with #X = vi and #Y = vj , there is some �∈ Bxv such that L(x,�i) = X

and L(x,�j) = Y .

As shown before, we know that for any f ⊆ pvv and any �∈ Bxv , f (�) = {x} with

L̃(x,�1)∪ L̃(x,�2) = A since x ∈ pe(�) with #L(x,�1) + #L(x,�2) = n (since v1 +v2 = n) .

Consider now any profile �′ with x ∈ pvv(�′). Assume by contradiction that x <

f (�′). Since x ∈ pvv(�′), it follows that x ∈ pe(�′) and #L(x,�′i) ≥ vi for all i ∈ N .

Note that there is at least some strict inequality since otherwise �′∈ Bxv and hence

x ∈ f (�′), a contradiction. Since x ∈ pe(�′), L(x,�′1)∪L(x,�′2)∪{x} = Awhereas #L(x,�′1
) + #L(x,�′2) > n. Since L(x,�′1)∪L(x,�′2)∪ {x} = A, it follows that:

#
(
L(x,�′1) \L(x,�′2)

)
+ #

(
L(x,�′2) \L(x,�′1)

)
+ #

(
L(x,�′1)∩L(x,�′2)

)
= n = v1 + v2, (4)

30



where L(x,�′1)∩L(x,�′2) denote the set of alternatives that x Pareto dominates. Since

#L(x,�′1) + #L(x,�′2) > n, note that L(x,�′1)∩L(x,�′2) , ∅.
Since #

(
L(x,�′1) \ L(x,�′2)

)
≤ v1

10 and #
(
L(x,�′2) \ L(x,�′1)

)
≤ v2, we can find a

partition (X,Y ) of A \ {x} with

X ⊆ L(x,�′1) and Y ⊆ L(x,�′2) with X ∩Y = ∅,#X = v1 and #Y = v2.

It follows that there is some �∗∈ Bxv with L̃(x,�∗i ) ⊆ L̃(x,�′i) since L̃(x,�∗i ) = vi + 1 and

L̃(x,�′i) ≥ vi + 1 ∀i ∈ N . Moreover, x ∈ f (�∗) since �∗∈ Bxv . Hence MM implies that

x ∈ f (�′), as desired.

We have shown that any alternative that could be selected by a Pareto-and-veto

rule is selected by any MM sub-correspondence which shows the desired result.

We are now in the position to characterize the class of Pareto-and-veto rules by

the conditions of IP , MM, Pareto efficiency and neutrality-on-its vetoes. These con-

ditions are independent as shown in the appendix.

Theorem 7. A SCR f satisfies IP and is neutral-on-its vetoes, MM and Pareto efficient if

and only if f is a Pareto-and-veto rule.

Proof. Take some f that satisfies IP and is neutral-on-its vetoes, MM and Pareto ef-

ficient. Proposition 3 implies that f is a sub-correspondence of a Pareto-a-veto rule.

Moreover, Proposition 4 shows that the only MM subcorrespondence of a Pareto-

a-veto rule is the Pareto-and-veto rule itself, proving the if claim. The converse

implication follows directly from Proposition 2.

To conclude our comments on the classical Moore-Repullo-Dutta-Sen character-

ization we point precisely which condition, in this result, is not satisfied by the

Pareto-and-veto rules.

Proposition 5. For any veto vector v, the Pareto-and-veto rule pvv fails condition β(i)(b)

Proof. We provide a proof for three alternatives and for the Pareto-and-veto rule

with veto vector v = (1,1). It can be easily generalized to any Pareto-and-veto rule

10Note that L(x,�′1) ≤ n and L(x,�′2) ≥ v2. Hence, L(x,�′1)−L(x,�′2) ≤ n− v2 = v1 + v2 − v2 = v1.
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and any number of alternatives. Let �= (�1,�2) and �′= (�′1,�
′
2) be two preference

profiles such that: (1) c �1 a �1 b and a �1 b �1 c and (2) b �′1 a �
′
1 c and c �′1 b �

′
1 a.

For these profiles, PVv(�) = {a} and PVv(�′) = {b}. Since L̃(a,�1) = {a,b} and L̃(b,�′2)

= {a,b} as well, we are going to find a violation of condition β(i)(b) for profiles �′′

that are unanimous (�′′1 = �′′2 ) and in favor of c (c �′′i a and c �′′i b for i = 1,2), so that

PVv(�′′) = {c}
Since C1(a,�) and C2(b,�′) are subsets of {a,b} with a non-empty intersection, as

stated by condition β(i)(a), the following cases have to be considered:

Case 1: C1(a,�) = C2(b,�).

In this case, since �′′ is unanimous, M(C1(a,�),�′′1 ) =M(C2(b,�′),�′′2 ) ⊆ {a,b}. There-

fore c does not belong to the intersection M(C1(a,�),�′′1 )∩M(C2(b,�′),�′′2 ), in con-

tradiction with β(i)(b).

Case 2: C1(a,�) = {a} and C2(b,�′) = {a,b}, or C1(a,�) = {a,b} and C2(b,�′) = {a}. Take

then c �′′i a �
′′
i b for i = 1,2; for this �′′: M(C1(a,�),�′′1 )∩M(C2(b,�′),�′′2 ) = {a}, again

a contradiction.

Case 3: C1(a,�) = {b} and C2(b,�′) = {a,b}, or C1(a,�) = {a,b} and C2(b,�′) = {b}. The

same contradiction appears for the unanimous profile such that c �′′i b �
′′
i a.

8 Concluding comments

This section provides a short review of the two-player implementation problem (see

Dutta [2019] for a recent and complete survey) and some concluding comments on

the strike mechanisms.

As argued in the introduction, the pioneering works (Hurwicz and Schmeidler

[1978] and Maskin [1999]) provide a provocative result: dictatorships are the only

Pareto efficient rules that can be Nash implemented. Their proof builds on three

key assumptions: (i) the preference domain is universal (any preference profile is

allowed) while implementing mechanisms are (ii) simultaneous and (iii) determin-

istic.
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The literature has explored the consequences of weakening each of these assump-

tion.11 The first strand relaxes condition (i), Dutta and Sen [1991] and Moore and

Repullo [1990] are the key papers in this direction. They identify the domain re-

strictions under which one can design Pareto efficient and non-dictatorial Nash-

implementable rules. While the full characterization is rather complex, the suffi-

cient domain conditions for implementation often rely in the Euclidean space (see

Section 5 in Dutta and Sen [1991] for instance); in the current work, we do not im-

pose any structure on the alternatives or the preferences, beyond the assumption

that preferences over alternatives are strict.

A second strand is concerned with (ii), that is, replacing simultaneous with dy-

namic mechanisms. This literature, in which Moore and Repullo [1988], Abreu and

Sen [1991] and Herrero and Srivastava [1992] play a key role, shows that introducing

an order of play expands the set of implementable rules with more than two players.

No characterization of implementable rules via subgame-perfect or via backward

induction is available. By altering the notion of implementation (role-robust imple-

mentation), De Clippel et al. [2014]12 show that a possibility arises with dynamic

vetoes and randomized order of play (see also Barberà and Coelho [2019] who con-

sider the implementation of the fallback-bargaining solution). However, while ex-

ante fairness is achieved by randomizing the order of play, ex-post fairness fails. The

order of play matters for determining the outcome, creating first, or second, mover

advantages. As Moulin [1981] puts it, "voting by veto procedures introduce a strong

asymmetry among agents: ... the ordering of the agents has a strong influence on the

outcome".

The third and final strand of the literature deals with assumption (iii), as does the

current work: it explores the consequences of modifying the type of mechanisms.13

11Other approaches have modified the rationality notion, using “partial honesty”; see Dutta and
Sen [2012] among others.

12A classic literature considers sequential voting by veto with many players (see Mueller [1978],
Moulin [1981], Bloom and Cavanagh [1986], Felsenthal and Machover [1992] and Anbarci [2006])
where each player is assigned a certain number of vetoes to be distributed freely among the alterna-
tives. See also the rules of k-names in Barberà and Coelho [2010].

13See also the papers on approval voting with two players as Núñez and Laslier [2015] and Laslier
et al. [2017]. See also Jackson and Sonnenschein [2007] who show that linking decisions (that is, a
common decision on several independent problems) can help overcoming incentive constraints in
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As mentioned in the introduction, Sanver [2006], Bochet [2007] and Benoît and Ok

[2008] exploit the idea of allowing lotteries/awards off-equilibrium. The main idea

of these works is that, with at least three players, monotonicity fully characterizes

the class of Nash implementable rules under a domain restriction so that the no-veto

power condition is dispensable. This is in line with the results present in this paper

in which DE mechanisms expand the set of implementable rules. Yet, this paper is

the first one to consider this idea with two players. This strand of literature is related

to the one on virtual implementation, a reformulation of the original implementa-

tion problem. A social choice rule is virtually implementable if there exists a game

form G, such that for all preference profiles G admits a unique equilibrium outcome

(a lottery) which is ε-close to the outcome prescribed by the rule at this preference

profile and this holds for every ε > 0. Following this approach, Matsushima [1988]

and Abreu and Sen [1991] provide a strong possibility result: with at least three

players, any rule is implementable. With two players, the result is more nuanced but

some SCRs are virtually implementable, among which the Pareto-and-veto rule de-

scribed in the current work. However, under the virtual implementation approach,

"any alternative can be the outcome of the game as it receives positive probability in

the equilibrium lottery" (Bochet and Maniquet [2010]). In other words, in order to

virtually implement a social choice rule, one constructs game forms whose equilib-

rium outcome at every preference profile is a full-support lottery, arbitrarily close to

the outcome prescribed by the social choice rule. This represents a threat to the rel-

evance of these solutions since it involves that socially undesirable alternative, even

with a small probability, can be selected.

Strike mechanisms arise as a solution to the two-person implementation prob-

lem. This solution is obtained by altering two key elements of the classic frame-

work: (i) considering mechanisms that allow in equilibrium pure alternatives and

off equilibrium lotteries and (ii) restricting efficiency to the ex-post Pareto notion.

Our class of DE mechanisms is a simultaneous version of the dynamic veto mech-

anisms (see Moulin [1981]) which, by allowing off-equilibrium set-valued outcomes,

resolve the unfairness generated by dynamic mechanisms. To see the difference be-

Bayesian collective decision problems.
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tween our solution and the one based on dynamic veto mechanisms, consider a dy-

namic game that allows player 1 to veto n+1−k alternatives and player 2 to veto k−1

of the remaining k alternatives, where k ∈ {1, . . . ,n+ 1}. At each preference profile �,

the subgame perfect equilibrium outcome of this game is the most preferred alter-

native of player 1 among pvv(�) where v1 = n+ 1− k and v2 = k − 1. In other words,

this dynamic veto mechanism subgame perfect implements a sub-correspondence

of pvv by refining it with respect to the true preference of the first mover. One could

argue that fairness here could be achieved by selecting randomly the first-mover.

Yet, this needs qualification since this randomization prevents some alternatives to

arise as the following example shows. When A = {a,b,c,d,e}, at the preference profile

a �1 b �1 c �1 d �1 e and c �2 b �2 a �2 d �2 e, the dynamic veto mechanism which

gives 2 vetoes to each voter implements, by alternating first movers, either a or c but

excludes b. However, pvv picks all three of a, b and c. Thus, our simultaneous di-

rect veto mechanisms allow for the implementation of the compromise alternative b

whereas their dynamic counterparts fail to do so. This constitutes a strong argument

in favor of using simultaneous mechanisms.

We close by noting three limitations of our analysis. First, it is restricted to Nash

implementation in pure strategies. Allowing for mixed strategies and exploring the

existence of interesting DE mechanisms for settings with two or more players seems

to be a promising research avenue (see Mezzetti and Renou [2012]). Second, the set

of implementable SCRs expands if one considers implementation through non-DE

mechanisms. Indeed, as long as BEB holds, the game-form associated to plurality

rule Nash implements the union of tops14 which selects at each preference profile all

alternatives that are top-ranked by at least one player.15 Third, we have considered

implementation through ex-post Pareto efficient DE mechanisms. Other notions of

efficiency are present in the literature such as stochastic dominance. Whether other

SCRs can be Nash implemented through DE mechanisms by considering different

notions of efficiency remains to be explored.

14See Yeh [2008] for an axiomatization of this rule.
15In this game form, each player announces a single alternative and one of them is selected ran-

domly. Since it is a dominant strategy to announce one’s best alternative, this mechanism is not DE
as we may have several alternatives selected with positive probability in equilibrium.
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A Independence of the conditions

We discuss in this section the independence of the four conditions, namely MM, IP ,

neutral-on-its-vetoes (N ) and Pareto (P ) used to characterize Pareto-and-veto rules.

Lemma A.1. N , P and MM do not imply IP .

Proof. Take f = PVv with 0 vetoes and consider the profiles � with a �1 b �1 c and

b �2 c �2 a and �′ with a �′1 b �
′
1 c and b �′2 a �

′
2 c. It follows that f (�) = {a,b,c} and

f (�′) = {a,b}. Yet, L(a,�2) = a and L(b,�′1) = {b,c}, contradicting IP .

Lemma A.2. N , MM, IP do not imply P .

Proof. Take f that selects all alternatives not ranked last by some player. . In the

profile � with a �1 b �1 c and a �2 b �2 c, f (�) = {a,b} while only a is Pareto efficient.

Lemma A.3. N , P , IP do not imply MM.

Proof. This is a direct consequence of Proposition 4.

Lemma A.4. MM, P and IP do not imply N .

Proof. Let A = {a,b,c}. Let f be the SCR depicted in the following Table. In the Table,

the lines represent the preferences of player 1 and the columns the preferences of

player 2. For short, abc stands for a �i b �i c and so on. The rule f is constructed as

follows. For each i if {a}, {c} or {a,c} are ranked last for i, a, c or both are eliminated.

The unvetoed alternatives are shown in the Table in parenthesis next to the prefer-

ences. Then f (�) contains all remaining Pareto efficient alternatives. It is indicated

in the corresponding cell of the Table.

For instance f (bac,acb) = {b} since player 1 has veto power over {a,c} whereas 2

can’t veto {b}. Similarly, f (cab,acb) = {a,c} since b is Pareto dominated by both a and

c and no player has veto power over {b}, the common least preferred alternative.
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abc acb bac bca cab cba

(ab) (acb) (b) (b) (cab) (cb)

abc (ab) a a b b a b

acb (acb) a a b b {a,c} c

bac (b) b b b b b b

bca (b) b b b b b b

cab (cab) a {a,c} b b c c

cba (cb) b c b b c c

Table 2: f that satisfies MM, P and IP but fails N .

This SCR is well-defined since a non-empty set is associated to each preference

profile. By construction each player has veto power over {a} and {c} under f . For

each player it maybe the case that b is chosen when b is her worst alternative; thus

no player has veto power over {b}. Consequently f does not satisfy N .

The rule f satisfies P by definition.

The condition MM also holds since a candidate not going down in the voter’s

rankings is not harmed with the rule f . Indeed, if x ∈ f (�), then x is Pareto efficient

and neither of the players can veto {x} in �. For any �′ with L̃(x,�i) ⊆ L̃(x,�′i) ∀i ∈N ,

x remains Pareto efficient and neither of the players can veto {x} in �′i , which implies

that x ∈ f (�′) which implies that MM holds.

We now prove that f satisfies IP . Take x ∈ f (�) and y ∈ f (�′). We wish to prove

that L̃(x,�i)∩ L̃(y,�′j) , ∅ and this is obvious if x = y; so let x , y.

Consider first the case where neither x nor y equals b. Let, without loss of gen-

erality, x = a and y = c. Take some player i. By definition of f , a = f (�) is ranked

last by no player at �, so L̃(a,�i) contains some z other than a. In case a �i c, the

condition for IP is satisfied as c = f (�′) and L̃(c,�′j) contains c. In case c �i a, z must

be b, so L̃(a,�i) = {a,b}. Again by definition of f , L̃(c,�′j) contains some z other than

c and the condition for IP holds whether z is a or b.

Consider second the remaining case where, without loss of generality, x = b and

y ∈ {a,c}. Say y = a without loss of generality. Take player i. There are two subcases.

In the first one L̃(b,�i) = {b}. Note that at �′j , b cannot be ranked at top, as j has
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veto power over {a,c} which would contradict that a ∈ f (�′). If �′j ranks b the second

best, then a must be ranked top at �′j , as otherwise a would be ranked bottom and

wouldn’t be picked at �′ by the veto power of j on a. Thus, L̃(a,�′j) contains b which

was in L̃(b,�i), ensuring the IP condition. Now consider the other subcase where

L̃(b,�i) contains some z other than b. In case z = a, the condition for IP is satisfied.

Now let z be c. So a �i b �i c. For the condition to fail, a must be ranked last by �′j
which contradicts that a ∈ f (�′). We therefore conclude that f satisfies IP .
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