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Abstract 
 
Using non-parametric and parametric models, we show that the bivariate 
distribution of an Asian portfolio is not stable along all the period under study. 
We suggest several dynamic models to compute two market risk measures, the 
Value at Risk and the Expected Shortfall: the RiskMetrics methodology, the 
Multivariate GARCH models, the Multivariate Markov-Switching models, the 
empirical histogram and the dynamic copulas. We discuss the choice of the 
best method with respect to the policy management of bank supervisors. The 
copula approach seems to be a good compromise between all these models. It 
permits taking financial crises into account and obtaining a low capital 
requirement during the most important crises.   
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1 - Introduction 
 

The main objective of the 1988 Basel Accord is to develop a risk-
based capital framework that strengthens and stabilises the banking system. In 
1996, this accord was revised in order to take into account the importance of 
market risk. Capital requirements are a common aspect of the regulations of 
financial institutions. They were implemented with a list of standardized rules 
that appear simple and robust but have the drawback to not be sensitive 
enough to the risk profile of the institutions. By now, capital requirements are 
increasingly based on risk-sensitive measures, which are directly linked to 
VaR (Value-at-Risk) for market risk. VaR is now a common language to 
describe market risk for different type of assets such as equities, rates or 
currencies. The VaR measure, which may be expressed in cash amount, can 
be translated directly into a minimum capital requirement, BCBS (1996). This 
text has leaded the financial institutions to develop their own internal VaR 
model. Nevertheless, even if all the pillars are in place to quantitatively 
calculate VaR, there is no consensus on the VaR model specifications. This 
suggests that financial institutions are free to use the model for which they are 
comfortable the most but not necessarily the model that describes the best the 
data. In this paper, we demonstrate that the choice of the model can provide a 
very different picture of risk. On the other hand, VaR is based on some 
unrealistic assumptions. Specifically, it does not verify the sub-additivity 
property of a coherent risk measure, therefore the ES (Expected Shortfall) 
measure is superior and is preferable; see for instance Artzner at al. (1997) 
and Yamai and Yoshida (2002) for a description of the VaR weaknesses.  
 

In this paper, we are interested in comparing the effect of these two 
risk measures - VaR and ES - to measure the risk associated to a two-
dimensional portfolio. This portfolio will be composed of the returns of three 
Asian composite indexes - the daily closing level of the Thai SET index, the 
Malaysian KLCI index and the Indonesian JCI index. A preliminary statistical 
study of these indexes permits detection of specific features inside the data 
sets including heteroscedasticity and switches. The analysis of the evolution 
of the marginal distribution function of each return shows the existence of 
non-stationarity that is now a well known problem inside this kind of data set, 
Mikosch and Starica (2004) and Guégan (2007b). In order to take these kinds 
of patterns into account, we calculate the two risk measures using parametric 
models like the RiskMetrics model, RiskMetrics (1996), the GARCH models, 
Bollerslev (1986) and the Markov switching processes, Hamilton (1988). We 
also consider a non parametric approach using the copula method which 
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allows us to calculate the bivariate distribution function of the portfolio in a 
dynamic way. 
 

In the literature there already exist many studies on the computation 
of the VaR of a portfolio using the previous parametric models.  We can cite, 
for instance, Guermat and Harris (2001), Huang and Lin (2004) and 
Rodriguez (2004). The copula approach has also been extensively used to 
compute the VaR, Malevergne and Sornette (2003), Rodriguez (2004), 
Caillault and Guégan (2005). At the same time several authors have pointed 
out the problem of non stationarity of the bivariate distribution function of a 
two-dimension portfolio and investigated this new domain of research. We 
specifically think of the works of Patton (2001), Dias and Embrechts (2003), 
Fermanian (2005), Patton, Granger and Terasvirta (2006), Jondeau and 
Rockinger (2006) and Guégan and Zhang (2009). 
 

In this paper, our method appears slightly different from all these 
works, associating both parametric and non-parametric methods in a dynamic 
way. It gives a more complete description of the different approaches for both 
of the risk measures (VaR and ES).  This is new in the literature and 
introduces a greater flexibility for the policy management of the bank 
supervisors.  
 

This paper is organized as follows. In Section two, we first recall the 
definitions of the VaR and ES measures. Then, we present different methods 
to compute these measures, in a dynamic way, for a two-dimensional 
portfolio: both parametric and non-parametric models. In Section three, we 
introduce the data sets. We estimate the distribution function and the models 
associated to each return. Then, we analyse the two–dimensional portfolio's 
distribution using copulas on different samples.  Finally, for each portfolio, 
we specify the estimated GARCH and Markov switching models. In Section 
four, we compute the VaR and ES measures on different windows using the 
previous models adjusted to the three two-dimensional portfolios. The results 
are also compared with those obtained under a stationary assumption. In 
Section five we discuss the choice of the best method with respect to the 
policy management of bank supervisors in order to make risk management 
decisions.  
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2 - VaR and Expected Shortfall measures 
 

In this Section we present different models to compute the VaR and 
the ES risk-measures. We denote by P the portfolio of the log-returns 
( ) 11 ++ ttR  defined as 

 
 ,' 11 ++ = tt raR  (1) 
 

where ( ) ,, '
1,1,1 +++ = tjtit rrr i, j = 1, 2, 3,3 is a 2 × 1 vector of risk factors, and a 

is  a 2 × 1 vector of portfolio weights such that ∑
=

=
2

1

1
i

ia .  

 
The VaR measure associated to the portfolio P, at date t + 1, for a 

given α , is denoted 1+tVaRα  and satisfies: 

 

 [ ] .Pr 1
1 αα =≤ +

+
t

t VaRR  (2) 

 

Thus, 1+tVaRα  is the α -quantile of the distribution function of the 

returns 1+tR  which depends on the 1+tr  multivariate distribution function. 

Thus, the VaR is simply the maximum loss that is encountered over a 
specified period with a level of confidence 1-α . Losses lower than αVaR  

occur with probability α , here at time t+1. 
 

The Expected Shortfall measure associated to 1+tR , at time t + 1, 

denoted 1+tESα , is:  

 

 ( )1
11

1 +
++

+ ≤= t
tt

t VaRRREES αα . (3) 

 
In (3), the Expectation is taken with respect to the distribution 

function of the returns 1+tR . This coherent measure represents the expectation 

                                                 
3 'x stands for transpose of vector x. 
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of loss knowing that a threshold is exceeded, here αVaR . It is a minorant of 

αVaR  introduced in (2). We note that αES  is also called the Conditional 

Value at Risk (CVaR) in some papers, for example Rochafellar and Uryasev 
(2002). 
 

In the following, we compute these two quantities (2) and (3) using 
five approaches: the RiskMetrics method, the multivariate GARCH model 
with Gaussian and Student-t innovations, the multivariate Markov-Switching  
models, the Empirical Histogram method and the copulas' method. The first 
three methods are based on the specification of the conditional joint 
distribution of the process ( ) 11 ++ ttr  whereas the fourth one uses the empirical 

distribution of the process ( ) 11 ++ ttR  and the last one uses the unconditional 

distribution of the process ( ) 11 ++ ttr  obtained via the copula method. 

 
Throughout this paper we only compute the maximum potential loss 

for a portfolio P over a given time horizon 1=τ  because we work with daily 
log-returns of Asian indexes. Nevertheless, several authors have discussed the 
choice and the effects of largeτ , see for instance Christoffersen et al. (1998) 
and Brummelhuis and Guégan (2005). 
 
 
2.1 VaR and ES measures computed using parametric models 
 

)(,1 methodtVaR+
α  is the VaR calculated with one of the following 

methods whose expressions are given by the formulae (6), (8), (9) and (12) 

below. 1+tESα  is obtained using the following relationship: 

 

 { } { }∑∑
+

=
≤

−+

=
≤

+
++ 







=
1

1

11

1

1
)(,1)(,1 11

t

i
VaRRi

t

i
VaRR

t
methodt

i
methodt

i
RES

ααα . (4) 

 

{}.1  denotes the indicator function and it is equal to one if its argument is true 

and zero otherwise.  
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2.1.1 The RiskMetrics approach  
 

This method, also called the EWMA (exponentially weighted moving 
average) approach, was introduced by RiskMetrics (1996). Here, we assume 
that the returns ( ) 11 ++ ttr  are characterized by a joint conditional Gaussian 

distribution, mean 0 and time varying variance-covariance 

matrix ( )
2,1,

2
1,1 =++ =Σ

iitijt σ . The components of the matrix 1+Σ t  are computed 

via: 
 

 ( ) tjtitijtij rr ,,
2
,

2
1, 1 λλσσ −+=+ , (5) 

 
where λ  is the decay factor, taken to be 0.94 by RiskMetrics. Then, for a 

given α , 1+tVaRα  is equal to:  

 

 1
1

+
+ = t

t qVaR σαα , (6) 
 

with aa tt 1
'

1 ++ Σ=σ  and αq  the α -quantile of the standard Gaussian 

distribution. 
 
2.1.2 The GARCH approach 
 

In order to take into account the volatility of the data set, we adjust a 
multivariate GARCH model on the returns( ) 11 ++ ttr . We denote this model 

DVEC, Bollerslev et al. (1988). It is defined by:  
 

 

( )











⊗+⊗+=

=
+=

∑ ∑
= =

−+−+−++

+++

++

p

i

q

j
itiititit

ttt

tt

VBAAV

ZV

cr

1 1
1

'
111

1
2/1

11

11

εε

ε
ε

, (7) 
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where 1+tV  is the conditional covariance matrix of the 2 × 1 vector ( ) 11 ++ ttε . 

A, iA and jB  are 2 × 2 symmetric matrices, c is a 2 × 1 vector of constants 

such that ( ) ( )( )'2,1 CCc = . The symbol ⊗ stands for the Hadamard product. 
 

The conditional standard deviation of the returns ( ) 11 ++ ttR  is 

aVav tt 1
'

1 ++ = . Then:  

• if the strong white noise 1+tZ  in (7) is a multivariate Gaussian 

distribution, mean 0 and variance 1, 1+tVaRα  is equal to: 

 

 cavqVaR tt
'

11 += ++ α
α . (8) 

 
• if the strong white noise 1+tZ  follows a multivariate Student-t 

distribution with υ  degrees of freedom, then: 
 

 ( ) cavqVaR tt
'

1,1 /2 +−= ++ υυαυ
α , (9) 

 
where αυ ,q  is the α -quantile of the multivariate Student-t 

distribution. 
 
2.1.3 Markov-Switching approach 
 

In order to take volatility and jumps inside the returns into account, 
we use a multivariate Markov-Switching model, Francq and Zakoian (2001). 
Thus, the return ( ) 11 ++ ttr  depends on a state variable 1+ts  that is assumed to be 

an ergodic Markov chain with l states. In the following l = 2 or l = 3. Then, 
the multivariate process associated to ( ) 11 ++ ttr  is defined by the following 

scheme on each state: 
 

 ( )∑
=

+−+−++ +−=−
+

p

i
tisitist rr

t
1

1111 1
εµγµ , (10) 
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where 
1+ts

µ is a l × 1 vector of mean returns in state 1+ts ,  iγ  is an l × 1 

constant matrix and ( ) 11 ++ ttε  is a Gaussian white noise with variance-

covariance matrix 
1+

Λ
ts

. The Markov chain  

( ) 11 ++ tts  is characterized by its transition probability matrix ( )
ljiijpP

,...,1, =
= : 

 

 [ ]jsisp ttij === +1Pr , lji ,...,1, = . (11) 

 
When the process ( ) 11 ++ ttr  follows the model (10), 1+tVaRα  is obtained 

numerically solving: 

 

[ ]

( )∫

∑
+

+

+

∞−
+

=
+

Λ

×=
1

1

1

,...,,,

,...,Pr

1
'

1
'

1
11

t

t

t

VaR

tst

l

s
tt

dxRRaaaxN

RRs

α

µ

α ⋯

. (12) 

 

Here, [ ]tt RRs ,...,Pr 11+  represents the filtered probabilities and N is 

the Gaussian distribution with mean 1' +ta µ and standard deviation aa
ts 1

'
+

Λ . 

 
2.2 VaR and ES measures obtained from the Empirical Histogram 
 

The simplest way to compute the VaR measure is based on the 
empirical distribution of the portfolio P. Assume that, at the end of day t, we 
have t observations for P. In this case, the VaR measure available for the next 
day t + 1 is defined as the α -quantile considered in the left end side of the 
empirical distribution of P. A numerical way to obtain this quantile is to 
arrange the t observations in ascending order and to take the α -th component 

of this vector. Then, 1+tVaRα  is equal to: 

 

 ( ) tt
t RVaR ,

1
αα =+ , (13) 

 
where ( ) tiR ,  represents the i-th component of the order statistic. If tα  is not 

an integer, then we applied an interpolation method between the two 
components ( ) tteR ,α  and ( ) tteR ,1+α . Here ( ).e  is the integer part function. 
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We obtained 1+tESα  by taking the average of the log-returns that are 

lower than 1+tVaRα  : 

 ( )∑
=

+ =
t

i
ti

t R
t

ES
α

α α 1
,

1 1
. (14) 

 
In the expression (14) all the observations have the same weights.  
 

2.3 VaR and ES measures computed using copulas 
 

In order to introduce the notion of copula, we denote by F the 
unconditional cumulative joint distribution of the returns( ) 11 ++ ttr . Sklar 

(1959) shows that a cumulative distribution function (cdf) of dimension 2 may 
be decomposed into 2 marginals and a copula. We denote by 1F  and 2F  the 

cdf of the returns 1,1 +tr  and 1,2 +tr  respectively. Then, if 1F  and 2F  are 

continuous, there exists an unique copula θC  defined on [ ] [ ]1,01,0 × , 

depending on a parameter θ , such that: 
 

 ( ) ( ) ( )( )1,221,111,21,11,21,1 ,,,, ++++++ =ℜ∈∀ tttt rFrFCrrFrr θ . (15) 
 

Using the expression (15) we can derive the univariate cdf, 
denoted

1+tRG , for the portfolio P. It satisfies: 

 

 ( ) ( ) ( )( )1,2211,111 ,
1

1 ++≤∫∫
+

+
= ttrRR raFraFdCrG

t
t θ . (16) 

 
1+tVaRα , which is the α -quantile computed using the 

1+tRG distribution associated to the portfolio P,  is obtained numerically by 

solving the following equation: 
 

 ( ) αα =+
+

1

1

t
R VaRG

t
. (17) 

 
Then, the expected shortfall is given by: 
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{ }( ) { }( )

{ } ( ) ( )( )1,2211,1111
1

1
1

,1

1/1

2 1
1

1
1

1
1

++ℜ ≤+
−

≤≤+
+

∫∫ +
+

+
+

+
+

=

=

ttVaRRt

VaRRVaRRt
t

raFraFdCR

EREES

t
t

t
t

t
t

θ

α

α

αα

α
. (18) 

 

Notice that the 1+tVaRα  and 1+tESα  measures depend on the margins of 

the returns and also on the copula that characterizes their joint distribution 
function. To compute the VaR and the ES measures, we need to solve the 
expressions (17) and (18). This is not always an easy task due to the non-
convex nature of the problems and in Section 4, Monte Carlo simulations are 
used to reconstruct the copulas and the distribution of the portfolio P.  
 
 
3 - Analysis and modelling of the data sets 
 

In this Section, we consider the returns of three Asian composite 
indexes which consist of the daily closing level of the Thai SET index ( )

ttr ,1 , 

the Malaysian KLCI index ( )
ttr ,2  and the Indonesian JCI index ( )

ttr ,3 . These 

returns correspond to ( ) ( )tititi WWr ,1,1, lnln −= ++ , where tiW ,  is the level price 

(expressed in Japanese currency) at date t for the three indexes i = 1,2,3. The 
data sets start from July 2, 1987 and finish December 17, 2002. Thus, we use 
T = 4033 log-returns for each market. These samples cover more than 15 
years and encompass several world crises, such as the Asian crisis in 1997. 
The descriptive statistics of these data sets are provided in Table 5 in the 
Appendix. In the next subsections, we first investigate the probability 
distribution function for each data set, and then for each portfolio composed 
by two indexes. In a second step, we adjust several parametric models among 
those introduced in Section 2. 
 
3.1 Non-parametric model 
 

To establish the variability of the unconditional distribution of each 
return, we apply the concept of moving window. Then, on each moving 
window of 522 observations, we choose the best marginal distributions for 
each return among three probability density functions (pdf): the Gaussian pdf, 
the logistic pdf and the Laplace pdf. The 522-rolling window corresponds 
roughly to two years and we move this window every six months (130 points). 



Cyril Caillault,  Dominique Guégan  - Forecasting VaR and Expected Shortfall using Dynamical Systems:  
A Risk Management Strategy – Frontiers in Finance and Economics – Vol. 6 No.1 – April 2009,  

 
We use the maximum likelihood method and the Akaike Information Criteria 
(AIC) to determine the best adjustment. Finally, we estimate 28 pdf for each 
return. According to the AIC, the Laplace pdf is retained in most of the cases, 
with parameters evolving over the period. This confirms the fact that some 
non-stationarity characterizes the data sets which convinces us to study the 
VaR and ES measures in a dynamic way.  Now, we compute the dynamic 
copula associated to each pair of markets ( ) ( )( )

ttjtti rr ,, , , 3,2,1, =ji  by using 

the previous rolling windows. 
 
 In order to take into account the existence of co-movements in the 

markets we consider a set of copulas with different tail dependence behaviors. 
We retain the Gaussian (CGau), Student-t (Ct), Gumbel (CG), survival4 Gumbel 
(CSG), Clayton (CC), survival Clayton (CSC), Joe (CJ), Survival Joe (CSJ), Frank 
(CF) and Ali-Mikhail-Haq copulas (CA), Joe (1997). The Gaussian and 
Student-t copulas are symmetric and belong to the Elliptical family. For the 
Student-t copula, the parameter θ  is a vector: ( )υρθ ,= , where ρ  is the 
correlation coefficient and υ  the number of  degrees of freedom. The other 
copulas belong to the Archimedean class and are characterized by their 
generator function, Nelsen (1999). In order to use copulas which have upper 
and lower tail dependence without being symmetric, we define new copulas 
using a convex linear combination of two copulas. Hence, for [ ]1,0∈ω  and 

two Archimedean copulas 
1θC  and 

2θC  we consider the copula C such that: 

 

 ( ) ( ) ( ) ( )vuCvuCvuC ,1,,
21 θθ ωω −+= . (19) 

 
The tail dependence parameters of these copulas can be derived from 

those of 
1θC  and 

2θC . In the remainder of the paper, several convex linear 

combinations are used. The Gumbel + Survival Gumbel (CGSG), Survival 
Clayton + Survival Gumbel (CSCSG), Survival Clayton + Clayton (CSCC), 
Gumbel + Clayton (CGC), Joe + Survival Joe (CJSJ), Joe + Clayton (CJC) and 
Gumbel + Survival Joe (CGSJ) copulas. By convention, the first copula has an 
upper tail dependence and the second one has a lower tail dependence. We 
denote again ( )21,θθθ =  the vector parameter which characterizes these 
copulas.  
                                                 
4 A survival copula CS of a copula C is defined as follows: CS(u, v)=u + v -1 + C(1 - u, 
1 - v). 
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To estimate the parameter θ  we use the pseudo log-likelihood 
function, Oakes (1994). Thus, using a sample of T observations, the pseudo-

maximum estimate θ̂  satisfies:  
 

 ( ) ( )( )∑
=

=
T

i
jtjTitiT zFzFc

1

ˆ,ˆlogmaxargˆ
θ

θ , (20) 

 

where ( ) ( )vuC
vu

vuc ,,
2

θ∂∂
∂=  and 

 

 ( ) { }∑
=

<+
=

T

p
zziTiT itipT

zF
1

1
1

1ˆ , i = 1, 2, 3. (21) 

 
This last quantity represents the empirical marginal distribution for 

each market. Using the pseudo-maximum likelihood method permits us to get 
an AIC value that we use to discriminate between the different copulas. We 
retain the copula for which the AIC value is the smallest. 
 

In Table 1, we provide the selected copulas (using AIC) with the 
parameters' estimates, for each window and each pair of markets. We omitted 
the standard error of the estimates but this statistic can be calculated using a 
Jacknife method. Notice that, in Caillault and Guégan (2005), using the whole 
sample, we have found a Student-t copula for the pairs ( ) ( )( )

tttt rr ,2,1 , and 

( ) ( )( )
tttt rr ,3,2 ,  and a CGSG copula for the pair ( ) ( )( )

tttt rr ,3,1 , . Here, the selected 

copulas are generally tail dependent. The Gaussian copula is selected for the 
pairs ( ) ( )( )

tttt rr ,2,1 ,  and   ( ) ( )( )
tttt rr ,3,2 , , the Frank copula is selected for the 

pairs ( ) ( )( )
tttt rr ,3,2 ,  and ( ) ( )( )

tttt rr ,3,1 ,  and the Ali-Mikhail-Haq copula for 

the pair ( ) ( )( )
tttt rr ,3,1 , .  This adjustment means that the markets appear 

independent in the tails and this for the periods on which the Gaussian, Frank 
and Ali Mikhail Haq copulas are adjusted.  

 
For the pair ( ) ( )( )

tttt rr ,2,1 ,  we selected seven copulas, ten copulas for 

the pair ( ) ( )( )
tttt rr ,3,1 ,   and eight copulas for the pair ( ) ( )( )

tttt rr ,3,2 , . Thus, the 

dependence structure is not the same for the whole period under study. The 
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copulas and also their parameters change through time. For instance, if we 
considered the pair ( ) ( )( )

tttt rr ,3,2 , , between 1995 and 1998,  the parameter ρ  

of the Student-t copula is stable whereas the parameter υ  changes. This 
implies an important change in the tail behavior of the distribution. For this 
pair of markets, we observe that between December 23, 1996, the lower tail 

dependent parameter grows from ( )( )
23.0

58.01

58.01166.5
2 166.5 =










+
−+= +tLλ  to 

( )( )
41.0

54.01

54.01100.2
2 100.2 =










+
−+= +tLλ  on June 22, 1998 (where 

( ) )(1 11 xtxt ++ −= υυ  is the univariate student-t distribution with 1+υ  

degrees of freedom). Thus, during this period, a co-movement exists between 
the Malaysian and Indonesian markets. The results concerning the other pairs 
of markets confirm this existence of non-stationarity for the bivariate 
distribution.  

 
Table 1 Estimation of copulas, using the moving window, for each pair of 

markets. 
Thai/Mal Thai/Indo Mal/Indo

Dates Copulas Copulas Copulas
03/07/1989     Ct        0.47        3.44        -  CGSG        2.20        1.00        0.50  CGSG  2.58        1.06        0.34 
01/01/1990     Ct        0.55        4.00        -     Ct        0.36        3.88        -  CGSG  2.26  1.04  0.42 
02/07/1990     Ct        0.47        5.95        -  CSCSG       0.04        2.45        0.64  CGSG  1.04        3.01        0.63 
31/12/1990     Ct        0.46        4.05        -  CF       2.58        -        -  CGSG  3.14  1.13  0.32 
01/07/1991  CGSG        1.17        1.75        0.39  CF       2.51        -        -  CGSG  2.93  1.16  0.28 
30/12/1991     Ct        0.42        4.71        -  CF       2.26        -        -     Ct  0.40  4.26  - 
29/06/1992  CSCSG       0.25        1.78  0.42     Ct  0.31        5.29        -     Ct  0.39  5.46  - 
28/12/1992     Ct        0.43        7.25        -     Ct        0.31        5.23        -  CF  2.74  -  - 
28/06/1993     Ct        0.35        6.36        -  CSCSG      10.74        1.20        0.06  CF  2.91  -        - 
27/12/1993     Ct        0.42        9.21        -  CA  0.79        -        -     CGC  2.00  0.47  0.37 
27/06/1994     CJC       1.53        1.22        0.43  CA        0.85        -        -     CGC  2.73  0.47  0.24 
26/12/1994     Ct        0.48        3.89        -  CGSG        1.00        1.72        0.35     CGC  2.57        0.51        0.22 
26/06/1995  CGSG        1.00        1.85        0.15  CSCSG        -        1.75        0.23     CGC  2.08  0.68        0.26 
25/12/1995     Ct        0.57        3.50        -     Ct        0.53        3.46        -     Ct  0.53  7.58  - 
24/06/1996     Ct        0.57        5.22        -     Ct        0.59        4.22        -     Ct  0.58  6.72  - 
23/12/1996     Ct        0.55        6.63        -     Ct        0.56        7.08        -     Ct  0.58  5.66  - 
23/06/1997     Ct        0.45        5.21        -     Ct        0.45       10.18        -     CJC  1.83  1.35  0.43 
22/12/1997  CGSG        1.05        2.58        0.58     Ct        0.42        3.91        -     Ct  0.54  2.33        - 
22/06/1998     Ct        0.46        3.35        -  CGSJ       2.35        1.21        0.35     Ct  0.54        2.00        - 
21/12/1998  CGSJ       1.43        2.01        0.70  CGSJ       1.90        1.15        0.49  CGSJ  2.61        1.35        0.39 
21/06/1999    CGau        0.49        -        -  CJSJ        2.06        1.43        0.45     Ct  0.42        5.00        - 
20/12/1999  CSCSG       2.96        1.37  0.19  CJSJ        2.00        1.39        0.48     Ct  0.36  4.40        - 
19/06/2000  CSCSG       4.39        1.24  0.11  CG        1.31        -        -     Ct  0.26  9.05  - 
18/12/2000  CSG        1.28        -        -    CGau        0.34        -        -  CSG  1.14  -        - 
18/06/2001  CSG        1.27        -        -  CC  0.38        -        -     CSJ  1.24  -  - 
17/12/2001  CSG        1.31        -        -  CC  0.34        -        -  CSG  1.19  -  - 
17/06/2002  CSG        1.32        -        -    CGau        0.26        -        -  CSG  1.19  -        - 
17/12/2002  CSG        1.39        -        -  CA  0.70        -        -  CSG  1.26  -  - 

Parameters Parameters Parameters

 
3.2 Parametric models 
 

In order to take into account the volatility of the log-returns that we 
have observed on each return (see table 5 in the Annex), we adjusted, on each 
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pair of markets, several GARCH models denoted DVEC(1,1), MDIAG(1,1), 
BEKK(1,1), DVEC-t(1,1), MDIAG-t(1,1), BEKK-t(1,1) whose expressions 
are given in Section 2.1.2. At the end, we have retained the DVEC(1,1) and 
the DVEC-t(1,1) for all pairs of markets according to the smallest values of  
AIC. All the parameters are significant. 
 

Because jumps have been observed inside the data sets, we also select 
two Markov switching models with two or three regimes and an AR(1) model 
on each regime. We denote them MSIH and MSIH-3r. These models 
correspond to the best models according to the Hannan Quinn, Schwartz and 
AIC criteria. 
 
 
4 - VaR and ES measures for Asian portfolios 
 

Now, we use the previous models to compute the VaR and ES 
measures for the three Asian portfolios. We denote these portfolios 
respectively P1, P2 and P3. They are equally weighted. The VaR and ES 
measures are calculated for %1=α . Using the empirical histogram and the 
copula approaches we compute 28 VaR and ES values. With the RiskMetrics, 
GARCH and Markov switching models, the VaR and ES measures are 
computed for all t = 1,…,T. We provide the values corresponding to the 28 
dates retained with the two other methods. The first VaR measure is 
calculated at date July 3, 1989 and the last one at date December 17, 2002. 
 

In Table 2, we reported the values for the dynamic VaR measure 
computed with seven models for the portfolio P1.  We plotted on Figure 1 the 
trajectories of the VaR measure for the portfolio P1. The black dashed line 
represents the VaR measure computed on the whole period using the 
empirical histogram approach. It is equal to -5.03%. All the trajectories are far 
from this constant value which justifies working in a dynamic framework. On 
Figure 1, we have in 1991, (2) The Mexican Tequila crisis in 1994-1995, (3) 
The Asian crisis in 1997, (4) the Russian crisis in 1998, (5) the bursting of the 
technological speculative bubble in 2000. The Asian and Russian crises are 
presented on the same vertical rectangle. 
 

On Figure 1, we observe similar shapes for the evolution of the VaR 
measure whatever the method used. Note that we have the same behavior for 
the portfolios P2 and P3 (they can be provided on request). The copulas and 
the empirical histogram approaches give similar results.  
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Notice that these two last methods are based on the unconditional 
distribution of the portfolios. Nevertheless, the empirical histogram method 
provides VaR values which exhibit jumps followed by plateaus, for instance 
for the portfolio P1 from December 31, 1990 to June 29, 1993. This behavior 
appears when negative returns stay in the window during several sub-periods. 
The copula approach avoids this unpleasant effect. In most of the cases, the 
VaR values obtained with the empirical histogram method are lower than 
those obtained with the copula method.  
 
Table 2 Values of the dynamic VaR calculated with the seven approaches. 

Thai/Mal
Date Copula EH RM DVEC DVEC-t MSIH MSIH-3r

03/07/1989     -3.56%     -6.68%     -3.74%     -3.46%  -3.87%     -2.72%     -2.82%
01/01/1990     -2.81%     -3.00%     -2.33%     -2.58%  -2.89%     -2.34%     -2.17%
02/07/1990     -2.92%     -2.62%     -2.17%     -2.56%  -2.87%     -2.40%     -2.27%
31/12/1990     -3.65%     -4.46%     -3.34%     -3.10%  -3.47%     -2.55%     -2.88%
01/07/1991     -4.16%     -4.46%     -2.27%     -2.77%  -3.10%     -2.33%     -2.16%
30/12/1991     -4.15%     -4.46%     -2.08%     -2.41%  -2.69%     -2.36%     -2.19%
29/06/1992     -3.93%     -4.52%     -2.91%     -2.57%  -2.88%     -2.37%     -2.20%
28/12/1992     -3.34%     -3.31%     -2.09%     -2.39%  -2.67%     -2.34%     -2.14%
28/06/1993     -2.71%     -3.00%     -2.85%     -3.48%  -3.89%     -6.48%     -4.57%
27/12/1993     -2.38%     -2.72%     -3.34%     -3.20%  -3.57%     -3.42%     -3.26%
27/06/1994     -3.09%     -4.23%     -3.06%     -3.28%  -3.67%     -4.40%     -4.29%
26/12/1994     -3.36%     -4.23%     -2.73%     -3.01%  -3.36%     -2.34%     -2.17%
26/06/1995     -4.22%     -4.49%     -2.58%     -2.48%  -2.77%     -2.35%     -2.16%
25/12/1995     -4.24%     -4.49%     -2.11%     -2.57%  -2.87%     -2.34%     -2.18%
24/06/1996     -3.04%     -3.20%     -1.62%     -2.30%  -2.57%     -2.37%     -2.21%
23/12/1996     -3.21%     -3.20%     -2.18%     -2.67%  -2.98%     -2.39%     -2.57%
23/06/1997     -2.96%     -3.05%     -4.34%     -4.56%  -5.10%     -7.37%    -12.02%
22/12/1997     -4.90%     -5.32%     -9.86%     -9.27%  -10.36%     -7.20%     -8.16%
22/06/1998     -7.21%     -7.89%     -8.47%     -8.74%  -9.77%     -7.36%    -10.27%
21/12/1998     -7.97%     -8.34%     -4.61%     -3.76%  -4.20%     -2.40%     -3.17%
21/06/1999     -8.00%     -8.34%     -4.22%     -3.38%  -3.78%     -7.10%     -4.97%
20/12/1999     -7.89%     -6.16%     -3.17%     -3.21%  -3.59%     -2.47%     -2.61%
19/06/2000     -5.48%     -4.96%     -3.80%     -3.53%  -3.95%     -7.16%     -4.69%
18/12/2000     -4.81%     -4.04%     -1.98%     -2.43%  -2.71%     -2.60%     -2.86%
18/06/2001     -4.21%     -4.04%     -2.73%     -3.06%  -3.43%     -2.44%     -3.11%
17/12/2001     -3.81%     -4.46%     -2.51%     -2.71%  -3.03%     -2.33%     -2.16%
17/06/2002     -3.24%     -3.31%     -1.89%     -2.51%  -2.80%     -2.35%     -2.19%
17/12/2002     -2.94%     -3.76%     -2.32%     -2.97%  -3.32%     -2.37%     -2.35%  

Values of the dynamic VaR measure for the portfolio P1 at 99% confidence 
level  over a time interval from July 3, 1989 to December 17, 2002. 

 
The values of the VaR measure computed using the RiskMetrics, 

DVEC, DVEC-t models are close to each other.  With the DVEC-t model, we 
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got the smallest VaR values. This is due to the tail behavior of the t-
distribution. The empirical histogram and the copula approaches provide 
lower VaR measures than those obtained using the previous models, except 
during The Asian and Russian crises.  

 
 

Figure 1 Evolution of the dynamic VaR for the portfolio P1. 
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Values of the dynamic VaR measure for the portfolio P1 at 99% confidence 
level over a time interval from July 3, 1989 to December 17, 2002. The VaR 
measures are represented by a circle for the dynamic copulas' approach, by a 
triangle for the empirical histogram approach and so on. The black dash line 
represents the VaR measure computed on the whole period using the 
empirical histogram approach and is equal to -5.03%.  The vertical rectangles 
represent the different crises over the period. 
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The VaR values computed with the Markov switching models depend 

on the estimated probability transition matrix and on the filtered probabilities 
which, here, are close to zero or one. Thus,  the values of the VaR measure are 
stable inside a given regime. They are larger than the values obtained with all 
the previous methods, except for some dates that we discuss below.  
 

Now, we specify the impact of the crisis on the evolution of the three 
portfolios.  

• The portfolio P1 is affected by The first Gulf war and The Mexican 
Tequila crisis. Using the copula and the empirical histogram 
approaches, we see that the VaR values obtained for this portfolio 
change as soon as the two crises appear. On the other hand, the 
stochastic volatility models do not take into account these two crises 
and the Markov switching models are unaware concerning the crisis 
provoked by the first Gulf war. The VaR values obtained for this 
portfolio, with the MSIH-3r model, are four times the VaR computed 
with the copula method (-12.02% against -2.96%). 

 
• For the portfolios P1 and P2, the Markov switching approach provides 

small VaR values just before the Asian crisis at date June 23, 1997 
(officially the Asian crisis started in July, 1997). We observe that the 
Markov switching models overestimate the risk of these portfolios at 
this date when we compare their results with the values obtained from 
the other models. 

 
• For the three portfolios, at date June 28, 1993, we observe a peak 

using the Markov switching approach between the first Gulf war and 
the Mexican Tequila crises. This peak does not appear with the other 
models. The three portfolios are dramatically affected by the Asian 
and Russian crises. During these two periods the seven models 
provide their lowest VaR values. At time of the bursting of the 
technological speculative bubble in 2000 the values of the VaR 
measure stay low except for those obtained with the GARCH models. 
But this crisis is less significant than the Asian one. 

 
The values of the dynamic ES measure obtained for the portfolio P1, 

with the seven models are provided in Table 3. The Figure 2 represents the 
values of the dynamic ES measure for this portfolio. The black dash line 
represents the constant ES measure computed on the whole period using the 
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empirical histogram approach. It is equal to -7.08%. The shapes that we 
obtained are similar whatever the methods used.  We can summarize the 
results in the following way: 

• The parametric models give in mean lower ES value than the copula 
method (and not only during the Asian and Russian crises). 

• For the portfolios P2 and P3, on December 22, 1997, the ES measures 
are identical with the Riskmetrics and GARCH models. This comes 
from the lack of observations. 

• For the portfolio P1, the MSIH model does not react to the first Gulf 
war crisis at the level of difference of all other models that take into 
account all the crises. 

Table 3 Values of the dynamic Expected Shortfall calculated with the 
seven approaches. 

Thai/Mal
Date Copula EH RM DVEC DVEC-t MSIH MSIH-3r

03/07/1989     -5.61%     -8.54%     -6.45%     -6.25%  -6.45%     -5.30%     -5.30%
01/01/1990     -3.41%     -5.35%     -4.80%     -5.09%  -5.67%     -4.80%     -4.55%
02/07/1990     -3.49%     -4.16%     -4.49%     -5.09%  -5.67%     -4.99%     -4.64%
31/12/1990     -5.13%     -7.81%     -6.33%     -6.20%  -6.46%     -5.07%     -5.85%
01/07/1991     -5.12%     -7.81%     -4.32%     -5.20%  -5.89%     -4.40%     -4.17%
30/12/1991     -5.38%     -7.01%     -3.96%     -4.42%  -4.92%     -4.31%     -4.11%
29/06/1992     -5.20%     -7.01%     -5.30%     -4.59%  -5.30%     -4.24%     -4.09%
28/12/1992     -4.05%     -3.92%     -3.86%     -4.24%  -4.67%     -4.18%     -3.91%
28/06/1993     -3.40%     -3.81%     -5.11%     -6.23%  -6.57%     -8.88%     -7.88%
27/12/1993     -2.93%     -3.30%     -5.92%     -5.67%  -6.23%     -6.12%     -5.67%
27/06/1994     -3.59%     -5.64%     -5.39%     -5.50%  -5.92%     -7.22%     -6.85%
26/12/1994     -4.06%     -5.64%     -4.78%     -5.30%  -5.56%     -4.14%     -3.93%
26/06/1995     -5.55%     -5.74%     -4.42%     -4.23%  -4.70%     -4.06%     -3.85%
25/12/1995     -5.41%     -5.74%     -3.71%     -4.36%  -5.02%     -4.03%     -3.83%
24/06/1996     -3.98%     -3.78%     -2.98%     -3.98%  -4.32%     -4.04%     -3.85%
23/12/1996     -4.08%     -3.82%     -3.80%     -4.41%  -5.01%     -4.04%     -4.34%
23/06/1997     -3.87%     -3.64%     -6.77%     -7.38%  -7.85%     -9.73%    -12.94%
22/12/1997     -6.36%     -7.23%    -11.48%    -11.48%  -12.12%     -9.00%     -9.74%
22/06/1998     -9.35%     -9.15%     -9.91%    -10.46%  -11.52%     -9.46%    -11.97%
21/12/1998    -10.09%    -10.08%     -6.83%     -5.69%  -6.27%     -4.20%     -5.11%
21/06/1999    -10.23%    -10.08%     -6.26%     -5.22%  -5.66%     -9.32%     -7.31%
20/12/1999    -10.28%     -9.32%     -4.97%     -4.99%  -5.35%     -4.20%     -4.37%
19/06/2000     -7.13%     -6.87%     -5.63%     -5.24%  -5.80%     -9.46%     -6.83%
18/12/2000     -5.98%     -4.72%     -3.51%     -4.07%  -4.43%     -4.32%     -4.67%
18/06/2001     -4.97%     -4.62%     -4.46%     -4.86%  -5.17%     -4.08%     -4.93%
17/12/2001     -5.35%     -5.41%     -4.19%     -4.43%  -4.83%     -3.99%     -3.78%
17/06/2002     -4.23%     -4.87%     -3.41%     -4.19%  -4.60%     -3.99%     -3.81%
17/12/2002     -4.17%     -4.95%     -3.94%     -4.75%  -5.04%     -4.00%     -3.98%  

Values of the dynamic Expected Shortfall measure for the portfolio P1 at 99% 
confidence level over a time interval from July 3, 1989 to December 17, 2002. 
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Figure 2 Evolution of the dynamic ES for the portfolio P1. 
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Values of the dynamic ES measure for the portfolio P1 at 99% 
confidence level over a time interval from July 3, 1989 to December 17, 2002. 
The ES measures are represented by a circle for the dynamic copulas' 
approach, by a triangle for the empirical histogram approach and so on. The 
black dash line represents the ES measure computed on the whole period 
using the empirical histogram approach and is equal to -7.08%.  The vertical 
rectangles represent the different crises through the period. 

 
Thus we can observe that the values we obtained for the market risk 

with the VaR and ES measures are different. According to the equation (2), 
the ES measure is always a minorant of the VaR measure for the 28 dates we 
considered.  For instance for the portfolio P1 with the copula approach, in 
December 22, 1997, the value of the VaR measure is -4.90% and the value of 
the ES measure is -6.36%. Note that the market risk computed with ES 
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measure is very low for the three portfolios. For instance, for the portfolio P3, 
using the DVEC-t model, we get ES = -18.22% on December 22, 1997, which 
is a very low value. In that case, the ES measure is more significant than the 
VaR measure. This means that the VaR measure, in some cases, can be unable 
to take into account high negative returns. The Bis committee of the Global 
Market in 1999 justifies the non-anticipation of the financial crisis in autumn 
1998 by the fact that one uses the VaR. Indeed, this measure can, in certain 
cases, be inefficient and it seems interesting to use the ES measure which is 
more informative by taking into account the behavior of the portfolios' tail 
distributions. 
 
 
5- Conclusion 
 

In this paper, we use several models to compute the Value at Risk and 
the Expected Shortfall measures for Asian portfolios composed of two 
indexes. Under the constraint of validation by the regulators, banks are free to 
choose one of the models developed here to answer the requirement stated by 
the 1996 Basle amendment. This amendment stipulates that banks have to 
develop their own internal models to compute a measure of market risk every 
day and have to test their accuracy over a period of 250 business days.  
 

On the basis of this rule, we have investigated the dynamics of three 
portfolios via their distribution. We show, using the copula approach and 
parametric models that the bivariate distribution of a portfolio is not stable 
over the period under study. This is the reason why we compute the Value at 
Risk and the Expected Shortfall measures in a dynamic way. 
 

Another point of the Basle amendment concerns the computation of a 
capital requirement to cover the market risk. The effective daily capital 
requirement is the absolute value of the minimum of the previous day's VaR 
and k times the average of the daily VaR over the last 60 days. The multiplier 
k is a penalization coefficient ranging between 3 and 4 and depends on the 
backtesting results. The bigger the number of exceptions (the number of time 
that the model fails over the last 250 trading days), the more the supervisors 
increase k. 
 

Our results show significant differences in the Value at Risk measures 
we obtained according to the method we used. This implies differences for the 
capital requirement value. It constitutes an opportunity for banks (which 
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prefer to have a low capital requirement) to develop their internal VaR model. 
If we use this opportunity, the GARCH approach seems more appropriate 
(except during the Asian crisis). This choice shows that capital requirement 
managment can lead developing some market practices which are unsuitable. 
The copula approach appears more attractive for banks, because it permits 
them to take into account all crises, and does not require a large capital 
requirement during important crises such as the Asian one, periods for which 
the banks need liquidity. 

 
Moreover, our results can be used to select the least risky of the three 

portfolios P1, P2 , P3. In practice, a risk averse manager invests in the portfolio 
for which the absolute Value at Risk measure is the smallest. The criteria we 
propose here is the following: we will select the portfolio for which the 
absolute Value at Risk and the Expected Shortfall measures are the smallest. 
We apply this criterion at five different dates during the crises: July 01, 1991, 
June 27, 1994, December 22, 1997, December 21, 1998 and December 18, 
2000. For these five dates we have seven values for the Value at Risk and the 
Expected Shortfall measures. We apply the previous method at each date for 
the three portfolios. We reported the absolute value of the Value at Risk and 
Expected Shortfall measures in Table 4. Then, according to our previous 
criteria, we select the following best portfolios: 

 
• the portfolio P3 on  July 01, 1991,  
• the portfolio P2 on  June 27, 1994,  
• the portfolio P1 on December 22, 1997,  
• the portfolio P1 on December 21, 1998 and December 18, 
2000. 
 
If we have only the choice between the portfolios P1 and P2 on July 

01, 1991 the selection is more complicated. Indeed, using the Value at Risk 
measure, we select the portfolio P1, but using the Expected Shortfall measure 
we select the portfolio P2 because the extreme losses are bigger with P1 than 
with P2. In that latter case, the Expected Shortfall measure is more 
informative than the VaR measure. Thus, using these two measures seems 
important in a risk management strategy. 

 
The question of forecasting, underlying this work, is of great interest. 

Historically, it seems natural to use the parametric models to forecast the VaR 
and the ES measures. Nevertheless this work shows that the use of the 
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dynamic copula is interesting. Indeed, it permits, using the last period on 
which the model appears stationary, the use of the copula estimated on this 
sub-sample to forecast the VaR and the ES measures. The interest of the 
copula lies on the fact that the approach is free of assumptions. We just use 
the notion of local stationarity, whose interest has been recently discussed in 
Guégan (2005, 2007a, b).  

 
Table 4 Maximum absolute values of the VaR and ES measure at 99% 

    P1   

  01/07/91 27/06/94 22/12/97 21/12/98 18/12/2000 

VaR 99% Method EH MSIH DVEC-t EH Copulas 

 Value 4.46% 4.40% 10.36% 8.34% 4.81% 

ES 99% Method EH MSIH DVEC-t Copulas Copulas 

 Value 7.81% 7.22% 12.12% 10.09% 5.98% 

    P2   

VaR 99% Method EH DVEC-t DVEC-t EH EH 

 Value 4.84% 3.14% 15.58% 11.76% 5.58% 

ES 99% Method EH DVEC-t DVEC-t EH EH 

 Value 6.48% 4.46% 17.02% 13.57% 6.72% 

    P3   

VaR 99% Method EH EH DVEC-t EH EH 

 Value 3.90% 3.34% 16.87% 12.83% 4.99% 

ES 99% Method EH DVEC-t DVEC-t EH MSIH.3r 

 Value 5.83% 5.28% 18.22% 15.71% 7.02% 

Maximum absolute values of the VaR and ES measure at 99% confidence 
level at five different dates for the three portfolios (EH: empirical histogram). 

 
In summary, the bank supervisors propose to use the Value at Risk as 

the measure of market risk as a first step, but it appears reasonable to consider 
other measures in light of the previous analysis. The subprime crises started in 
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July 20075 have confirmed that the VaR measure is not informative enough to 
prevent all risks such as the liquidity risk that we are experiencing (see 
footnote 5). Here we have considered the ES measure but the maximum 
drawdown as well as the Omega function could be interesting alternatives to 
VaR. The Omega function, for instance, has been recently investigated in 
several papers with promising results; see Gilli and al. (2006), Keating and 
Shadwick (2002) and Caillault and Monier (2009).  Now, the banks have to 
continue with the rules imposed by the Basel amendment, taking into account 
the variability of the tools proposed. From our point of view all these factors 
reinforce the uncertainty on the market risk measurement and do not stabilize 
the financial system as initially planned by the regulators.  
 
 
References 
 
Artzner P., F. Delbaen, J. Eber and D. Heath, 1997. Thinking Coherently. 

Risk, 10, 68-71. 
Basel Committee on Banking Supervision, 1996, Amendment to the Basel 

Capital Accord to incorporate market Risk. BIS, Basel, Switzerland. 
Bollerslev T., 1986. Generalized Autoregressive Conditionnal 

heteroscedasticity. Journal of Econometrics, 31, 307-327. 
Brummelhuis R. and D. Guégan, 2005. Multi-period Conditional Distribution 

for Heteroscedastic Models with Application to VaR. The Journal of 
Applied Probability, 42, 110-130. 

Caillault C. and D. Guégan, 2005. Empirical Estimation of Tail Dependence 
using Copulas: application to Asian Markets. Quantitative Finance, 5, 
489 – 201. 

Caillault C. and S. Monier, 2009. Copulas and Risk Measures for Strategic 
Asset Allocation. A Case Study for Central Banks and Sovereign 
Wealth Funds. Joint BIS/ECB/World Bank Conference “Strategic 
Asset Allocation for Central Banks and Sovereign Wealth Managers”, 
to be published in summer 2009 by Palgrave MacMillan. 

Christoffersen F., F.X. Diebold and T. Schuermann, 1998. Horizon Problems 
and Extreme Events in Financial Risk Management, Economic Policy 
Review, 4, 109-118. 

Dias A. and P. Embrechts, 2004. Dynamic Copula Models for Multivariate 
High-Frequency Data in Finance. In: Risk Measures for the 21st 

                                                 
5 At this stage (March 09), the crisis is not over.  



Cyril Caillault,  Dominique Guégan  - Forecasting VaR and Expected Shortfall using Dynamical Systems:  
A Risk Management Strategy – Frontiers in Finance and Economics – Vol. 6 No.1 – April 2009,  

 
Century, ed. by Giorgio Szegoe, Chapter 16, 321-335. (Wiley Finance 
Series). 

Fermanian J.D, 2005. Goodness of fit tests for copulas. Journal of 
Multivariate Analysis, 95, 119 – 152. 

Francq C. and J.M. Zakoian, 2001. Stationarity of Multivariate Markov-
Switching ARMA models. Journal of Econometrics, 102, 339-364. 

Guégan D., 2005. How can we define the concept of long memory? An 
econometric survey. Econometric review, 24, (2). 

Guégan D., 2007a. La persistance dans les marchés financiers, Revue Banques 
et Marchés, 90, 34 - 43. 

Guégan D., 2007b. Global and Local Stationary Modelling in Finance. 
Submitted to Econometrics Review. www.ces.ens-cachan.fr. 

Guégan D. and J. Zhang (2009) Pricing Bivariate Option under GARCH-GH 
Model with Dynamic Copula: Application for Chinese Market, to 
appear in European Journal of Finance. 

Germat C. and R. D. Harris, 2001. Robust conditional variance estimation and 
value-at-risk, Journal of Risk, 4, 25 - 41. 

Hamilton J., 1988. Rational Expectations Econometric Analysis of Changes in 
Regime: An Investigation of the Term Structure of Interest Rates. 
Journal of Economic Dynamics and Control, 12, 385-423. 

Huang Y. C. and B.J. Lin, 2004.Value-at-Risk Analysis for Taiwan Stock 
Index Futures: Fat Tails and Conditional Asymmetries in Return 
Innovations. Review of Quantitative Finance and Accounting, 22, 79 - 
95. 

Gilli, M., E. Këllezi and H. Hilda, 2006. A Data-Driven Optimization 
Heuristic for Downside Risk Minimization. Journal of Risk, 8 (3), 1-
19. 

Keating C. and W. F. Shadwick, 2002. A Universal Performance Measure. 
The Finance Development Centre. 

Joe H., 1997. Multivariate Models and Dependence Concepts. (Chapman & 
Hall, London). 

Jondeau E. and M. Rockinger, 2006, Conditional Dependency of Financial 
Series: The Copula-GARCH Model. Journal of International Money 
and Finance, 25, 827 – 853.  

Malevergne Y.and D. Sornette, 2003. Testing the Gaussian copula hypothesis 
for financial assets dependences. Quantitative Finance, 4, 231 – 250. 

Mikosch T.and C. Starica, 2004. Non-Stationarities in financial time series, 
the long range dependence and the IGARCH effect. The review of 
economics and Statistics, 86, 378 – 390. 



Cyril Caillault,  Dominique Guégan  - Forecasting VaR and Expected Shortfall using Dynamical Systems:  
A Risk Management Strategy – Frontiers in Finance and Economics – Vol. 6 No.1 – April 2009,  

 
Nelsen R., 1999. An Introduction to Copulas. Lectures Notes in Statistic 139. 

(Springer Verlag, New York). 
Oakes D., 1994, Multivariate Survival Distribution. Journal of Nonparametric 

Statistics, 3, 343-354. 
Patton A. J., C. W. J. Granger and T. Teräsvirta, 2006. Common Factors in 

Conditional Distributions for Bivariate Time Series. Journal of 
Econometrics, 127, 43 - 57. 

RiskMetrics Technical Document, 1996. (J.P. Morgan, 4th Edition, New 
York). 

Rockafellar R.T. and S. Uryasev, 2002. Conditional Value-at-Risk for General 
Loss Distributions. Journal of banking and finance, 26, 1443-1471. 

Sklar A., 1959, Fonctions de Répartition à n Dimensions et leurs Marges. 
Publications de l'Institut de Statistique de L'Université de Paris, 8, 
229-231. 

Yamai Y. and T. Yoshiba (2002), Comparative Analyses of Expected 
Shortfall and Value-at-Risk (3): Their Validity under Market Stress. 
Monetary and Economic Studies, Bank of Japan, 20, 181-238. 

 
 
Appendix: Descriptive Statistics 
 

Table 5 Descriptive statistics for the three processes ( )
ttr ,1  , ( )

ttr ,2  and 

( )
ttr ,3  

 ( )
ttr ,1  ( )

ttr ,2  ( )
ttr ,3  

Mean  -1.34 410−×  -4.33 510−×  -1.00 410−×  
Standard 
deviation  0.020 0.019 0.026 
Kurstosis  5.897 26.928 40.391 
Skweness  0.014 0.023 0.838 
Jarque-Bera test  5827 121508 273992 
Df  2 2 2 
p-value  0 0 0 

 ( ) ( )( )
tttt rr ,2,1 ,  ( ) ( )( )

tttt rr ,3,1 ,  ( ) ( )( )
tttt rr ,3,2 ,  

Jarque-Bera test 127336 279820 395501 
Df  4 4 4 
p-value  0 0 0 
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Descriptive statistics for the three processes ( )
ttr ,1  ,( )

ttr ,2  and ( )
ttr ,3  (full 

period 02/07/87-17/12/02,  N=4033 observations).  The Jarque-Bera test 
critical value at 5% is 5.991 for Gaussianity under the null assumption. 


