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Abstract

In this paper, we give new sufficient conditions for the existence of a solution of the
g-maximum equality. As a consequence, we prove a new fixed point theorem. We
ensure the existence of a fixed of a function f : X → E such that X ⊂ f(X) is
established. We also prove a new theorem of existence of Nash equilibrium.
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1 Introduction

Let X and Y are a nonempty subsets of spaces E and F , respectively. Let
Ψ : X ×Y −→ R and g : X −→ Y are functions, and let r ∈ R be a constant.
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Consider the problem of finding x such that

Ψ(x, y) ≤ r, ∀y ∈ Y. (1.1)

Ky Fan [7] introduced and studied the minimax inequality problem of finding
a solution x ∈ X of the inequality (1.1) in the case where E = F , X = Y , g =
idX and r = sup

x∈X

Ψ(x, x). The Ky Fan inequality has proven to be very useful

in solving nonlinear problems in different areas. Due to various applications
of the Ky Fan inequality in many areas, many researchers made efforts to
generalize it. Indeed, many results have been obtained in this direction of
research: we mention the results of Ding and Tan [6], Georgiev and Tanaka
[11], Simons [16], Tian and Zhou [17], Yu and Yuan [18] and Yuan [19] and
equilibrium problems studied by many authors as special cases, see [2], [5], [6],
[8], [9], [10] and the references therein.

Note that in general all these works assume that X = Y in (1.1). As far as
we know there is only one result [15], where the author assumes X 6= Y , but
considers the set X as an interval in the real line R. In [14], the inequality
(1.1) has been studied in the case where E 6= F or X 6= Y . The same authors
proved the following theorem.

Theorem 1.1 [14] (g-Maximum Equality Theorem) Let X be a nonempty
subset of a metric space E, Y be a nonempty convex, compact subset of a
hausdorff locally convex vector space F and Ψ be a real-valued function defined
on X × Y. Suppose that there exists a nonempty compact subset X0 of X and
a continuous function g of X0 into Y . Assume, in addition, that the following
conditions are satisfied.

(1) g(X0) is convex in Y ,
(2) the function Ψ is continuous on X0 × Y ,
(3) the function y 7→ Ψ(x, y) is quasi-concave on Y , for each x ∈ X0,
(4) for each g(x) ∈ ∂g(X0) and for each y ∈ Y , there exists z ∈ Zg(X0)(g(x))

such that Ψ(x, y) ≤ Ψ(x, z) where Zg(X0)(g(x)) =

[
⋃

h>0

g(X0)−g(x)
h

+ g(x)

]
∩

Y.

Then there exists x ∈ X0 such that

sup
y∈Y

Ψ(x, y) = Ψ(x, g(x)). (1.2)

The main purpose of this paper is to establish the existence of a solution
of the nonlinear inequality (1.2), under assumptions different from those of
Theorem 1.1. Then using the new result, we provide a new fixed point theorem
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and we give an application in game theory, more precisely a new theorem of
existence of Nash equilibrium.

Let us first introduce some notations and definitions.

Consider a nonempty subset X of a metric space E and Y a nonempty subset
of a locally convex space F . Let 2Y be the set of all the parts of Y .
A set-valued C : X → 2Y is said to be closed if the corresponding graph is
closed in X × Y , i.e. the set {(x, y) ∈ X × Y such that y ∈ C(x)} is closed
in X × Y [3]. A function f : Y → R is said to be upper semicontinuous
over Y if ∀c ∈ R, the set {x ∈ Y, f(x) ≥ c} is closed; f is said to be lower
semicontinuous over Y if −f is upper semicontinuous and f is said to be
continuous over Y if f and −f are upper semicontinuous over Y . We say
that f is quasi-concave on Y if for any y1, y2 in Y and for any θ ∈ [0, 1], we
have min {f(y1), f(y2)} ≤ f(θy1 + (1− θ)y2). And f is quasi-convexe if −f is
quasi-concave.

Let f be a real-valued function defined from a metric space E. We say that
support of f (denoted by supp(f)) the smallest closed set S such that f(x) = 0,
∀x /∈ S, i.e. supp(f) = {x ∈ E, such that f(x) 6= 0}.

Let us consider an open finite covering {Ai}i=1,...,n of a set E. We say that
a continuous partition of unity associated to this finite covering, a family of
continuous functions {fi}i=1,...,n defined from E into [0, 1] such that:





1) ∀x ∈ E,
n∑

i=1
fi(x) = 1,

2) supp(fi) ⊂ Ai, i = 1, ...., n.

We have the following Lemma.

Lemma 1.1 (Theorem 4.1.31. page 187, [3]) For all open finite covering of a
metric space E, there exists a continuous partition of unity associated to this
finite covering.

Zeidler [20] showed that this Lemma rest true if E is a locally convex Hausdorff
space.

Let us consider a set-valued C defined from X into X. A point x ∈ X is called
fixed point of F if x ∈ C(x). If C is a single-valued function, then a fixed point
x of C will be such that x = C(x).

We will use the following lemma.
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Lemma 1.2 (Kakutani-Fan-Glicksberg fixed point Theorem) Let K be a sub-
set nonempty compact convex of a locally convex Hausdorff space, and let the
closed set-valued C : X → 2X have nonempty convex values. Then the set of
fixed points of C is nonempty and compact.

2 The g-maximum Equality

Let us consider the following example.

Example 2.1 Let X = [0, 1] and Y =] − ∞, 0], g(x) = −x, ∀x ∈ X and
Ψ(x, y) = −x2 − y2.

It is clear that Theorem 1.1 cannot be applicable because Y is not compact.
Nevertheless, there exists x = 0 such that sup

y∈Y

Ψ(x, y) = Ψ(x,−x). We conclude

then, under other conditions, equation (1.2) has at least one solution.

In the following theorem we provide sufficient conditions for which the g-
maximum equality has at least one solution.

Theorem 2.1 Let X be a nonempty convex compact set of a locally convex
Hausdorff space, and let Y be a nonempty set of a metric space. Let us consider
the following functions: g : X → Y continuous over X and Ψ : X × Y → R
such that

(1) function x 7→ Ψ(x, y) is continuous over X, ∀y ∈ Y and function z 7→
Ψ(x, g(z)) is lower semicontinuous over X, ∀x ∈ X

(2) function x 7→ Ψ(x, y) is quasi-concave over X, ∀y ∈ Y
(3) ∀(x, y) ∈ X × Y , ∃z ∈ X such that Ψ(x, y) ≤ Ψ(z, g(x)).

Then there exists x ∈ X such that

sup
y∈Y

Ψ(x, y) = Ψ(x, g(x)). (2.1)

Proof. Suppose that (2.1) is not true, then

∀x ∈ X, ∃y ∈ Y such that Ψ(x, y) > Ψ(x, g(x)) (2.2)

X can then be covered by the sets

θy = { x ∈ X such that Ψ(x, y) > Ψ(x, g(x))} , y ∈ Y.
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Let us prove that ∀y ∈ Y, θy is open. Indeed, let x ∈ X/θy, there exists
a sequence {xp}p≥1 in X/θy converging to x, hence ∀p ≥ 1, Ψ(xp, y) ≤
Ψ(xp, g(xp)). Taking into account condition (1) of Theorem 2.1, when p →
+∞, we obtain Ψ(x, y) ≤ Ψ(x, g(x)), i.e. x ∈ X/θy, therefore X/θy is closed
in X.

Since X is compact, it can be covered by a finite number n of subsets {θy1
, ..., θyn

}
of type θy. Consider a continuous partition of unity {hi}i=1,...,n associated to
the finite covering {θy1

, ..., θyn
} (Lemma 1.1), i.e. {hi}i=1,...,n verify





1) ∀x ∈ X,
n∑

i=1
hi(x) = 1,

2) supp(hi) ⊂ θyi
, i = 1, ..., n.

Let us now consider the simplex S of Rn

S = {λ = (λ1, ..., λn) ∈ Rn such that
n∑

i=1

λi = 1, λi ≥ 0, i = 1, ..., n}.

Consider the following set-valued function

C : X → X

defined by x 7→ C(x) =
{
z ∈ X such that max

λ∈S

n∑
i=1

λiΨ(x, yi) ≤ Ψ(z, g(x))
}

.

Now, we will prove step by step that the function C satisfies the conditions of
Lemma 1.2 (Kakutani-Fan-Glicksberg fixed point Theorem):

i) ∀x ∈ X, C(x) 6= ∅. Indeed, let be x ∈ X, the function λ 7→
n∑

i=1
λiΨ(x, yi) is

linear on Rn, so it is continuous on the compact S and by the Weierstrass
Theorem, there exists λ ∈ S such that

max
λ∈S

n∑

i=1

λiΨ(x, yi) =
n∑

i=1

λiΨ(x, yi) ≤
n∑

i=1

λi max
i=1,...,n

Ψ(x, yi) = Ψ(x, yi0)

(2.3)
where yi0 ∈ {y1, .., yn} hence

max
λ∈S

n∑

i=1

λiΨ(x, yi) ≤ Ψ(x, yi0).

Condition (3) of Theorem 2.1 imply, ∃z ∈ X such that

max
λ∈S

n∑

i=1

λiΨ(x, yi) ≤ Ψ(x, yi0) ≤ Ψ(z, g(x)).
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Therefore, z ∈ C(x), thus C(x) 6= ∅.
ii) ∀x ∈ X, C(x) is convex in X. Indeed, let x ∈ X and z, z be two elements

of C(x) and θ ∈ [0, 1].
Let us prove that θz + (1 − θ)z ∈ C(x).

Since z and z are two elements in C(x), we have

max
λ∈S

n∑

i=1

λiΨ(x, yi) ≤ Ψ(z, g(x)) and max
λ∈S

n∑

i=1

λiΨ(x, yi) ≤ Ψ(z, g(x)),

hence

max
λ∈S

n∑

i=1

λiΨ(x, yi) ≤ min {Ψ(z, g(x)), Ψ(z, g(x))} , (2.4)

the condition (2) of Theorem 2.1 and the inequality (2.4) imply

max
λ∈S

n∑

i=1

λiΨ(x, yi) ≤ Ψ(θz + (1 − θ)z, g(x)), ∀θ ∈ [0, 1] ;

thus θz + (1 − θ)z ∈ C(x).

iii) C has a closed graph in X × X.
We have Graph(C) ⊂ X×X. By assumption X is compact. Let (x, z) ∈

Graph(C), then there exists a sequence {(xp, zp)}p≥1 in Graph(C) which
converges to (x, z).

Hence we have ∀p ≥ 1, zp ∈ C(xp), i.e. ∀p ≥ 1, max
λ∈S

n∑
i=1

λiΨ(xp, yi) ≤
Ψ(zp, g(xp)).
Taking into account the condition (1) and the continuity of g of Theorem
2.1 when p → ∞, we obtain

max
λ∈S

n∑

i=1

λiΨ(x, yi) ≤ Ψ(z, g(x)),

i.e. z ∈ C(x), hence (x, z) ∈ Graph(C), then Graph(C) is closed in
X × X.

From (i)-(iii), we conclude that the function C satisfies all conditions of Lemma
1.2. Consequently, ∃x̃ ∈ X such that x̃ ∈ C(x̃), i.e.

max
λ∈S

n∑

i=1

λiΨ(x̃, yi) ≤ Ψ(x̃, g(x̃))

hence ∀λ ∈ S,
n∑

i=1
λiΨ(x̃, yi) ≤ Ψ(x̃, g(x̃)).
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Using the continuous partition of unity {hi}i=1,...,n given above, let λ̃ = (h1(x̃), ..

., hn(x̃)), we have λ̃ ∈ S because hi(x̃) ≥ 0 and
n∑

i=1
hi(x̃) = 1, therefore,

n∑

i=1

hi(x̃)Ψ(x̃, yi) ≤ Ψ(x̃, g(x̃)).

Let J = {i ∈ {1, ..., n} such that hi(x̃) > 0}, then J 6= ∅.
Note that

n∑
i=1

hi(x̃) Ψ(x̃, yi) =
∑
i∈J

hi(x̃)Ψ(x̃, yi).

We have ∀i ∈ J, hi(x̃) > 0, therefore x̃ ∈ supp(hi) ⊂ θyi
∀i ∈ J, i.e.

∀i ∈ J, Ψ(x̃, yi) > Ψ(x̃, g(x̃)).

It follows that
∑
i∈J

hi(x̃)Ψ(x̃, yi) >
∑
i∈J

hi(x̃)Ψ(x̃, g(x̃)) = Ψ(x̃, g(x̃)) and then

Ψ(x̃, g(x̃)) <
∑

i∈J

hi(x̃)Ψ(x̃, yi) =
n∑

i=1

hi(x̃).Ψ(x̃, yi) ≤ Ψ(x̃, g(x̃)),

i.e. we obtain a contradiction,

Ψ(x̃, g(x̃)) > Ψ(x̃, g(x̃)).

Therefore (2.2) is not true, hence

∃x ∈ X such that Ψ(x, y) ≤ Ψ(x, g(x)), ∀y ∈ Y,

i.e. sup
y∈Y

Ψ(x, y) = Ψ(x, g(x)).

Consider again Example 2.1. We have X = [0, 1] and Y =]−∞, 0], g(x) = −x,
∀x ∈ X and Ψ(x, y) = −x2 − y2.

It is clear that the assumptions and conditions (1)-(2) of Theorem 2.1 are
satisfied. Let us verify condition (3) of Theorem 2.1. Indeed, let be (x, y) ∈
X×Y , we have Ψ(x, y) = −x2−y2 and Ψ(z, g(x)) = −z2−x2. Since −y2 ≤ 0,
∀y ∈ Y , then there exists z = 0 ∈ X such that Ψ(x, y) = −x2−y2 ≤ −z2−x2 =
Ψ(z, g(x)). Consequently ∃x = 0 such that sup

y∈Y

Ψ(x, y) ≤ Ψ(z, g(x)). Indeed,

x = 0 is such a point.

If the sets X and Y are identical and if we consider g = idX , we obtain the
following inequality similar to the Ky Fan inequality under other conditions.

Corollary 2.1 Let X be a nonempty, convex and compact set in a locally
convex Hausdorff space E and Ψ a real valued function defined on X × X.
Suppose that the following conditions are satisfied
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(1) function x 7→ Ψ(x, y) is continuous over X, ∀y ∈ X and function y 7→
Ψ(x, y) is lower semicontinuous over X, ∀x ∈ X

(2) function x 7→ Ψ(x, y) is quasi-concave over X, ∀y ∈ X
(3) ∀(x, y) ∈ X × X, ∃z ∈ X such that Ψ(x, y) ≤ Ψ(z, x).

Then, there exists x ∈ X such that

sup
y∈X

Ψ(x, y) = Ψ(x, x) ≤ sup
y∈X

Ψ(y, y).

Remark 2.1 If the function Ψ is semi-symmetrical, i.e. Ψ(x, y) ≤ Ψ(y, x),
then the condition (3) of Corollary 2.1 is satisfied.

3 Applications

In this section, we establish two applications of Theorem 2.1. In first, we
prove a new theorem of existence of fixed point; in the second, we show a new
theorem of existence of Nash equilibrium.

3.1 Fixed point problem

Let us consider the following example.

Example 3.1 Let f be the following function

f : X = [6
5
, 2] → R

x 7→ f(x) = 1/(x − 1).

We have max
x∈[ 6

5
,2]
|f ′(x)| = 25, then f is a 25-lipschitz and also f([6

5
, 2]) *

[6
5
, 2] because f(6

5
) = 5 /∈ [6

5
, 2]. Therefore the classical fixed point Theorems

(Cauchy’s, Banach-Cacciopoli-Picard’s, Brouwer’s, Browder’s fixed point The-
orem, ...) are not applicable.

The following theorem ensures the existence of a fixed point for this type of
functions.

Theorem 3.1 Let X be a nonempty convex compact of normed space (E, ‖.‖E).
Let f be a continuous function over X into E such that
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(1) function x 7→ ‖f(x) − y‖E is quasi-convexe over X, ∀y ∈ E,
(2) X ⊂ f(X).

Then f has a fixed point.

Proof. Let us consider the functions Ψ and g defined as follows:

Ψ : X × E → R

(x, y) 7→ Ψ(x, y) = −‖f(x) − y‖E,

g : X → E

x 7→ g(x) = x.

The function ‖.‖E is uniformly continuous over E, then the function Ψ is
continuous over X × E, and x 7→ Ψ(x, y) is quasi-concave over X (condition
(1)), ∀y ∈ E.

Let us prove that ∀(x, y) ∈ X × E, there exists z ∈ X such that Ψ(x, y) ≤
Ψ(z, x). Indeed, according condition (2), we have X ⊂ f(X), then ∀x ∈ X,
∃z ∈ X such that x = f(z), which implies ‖f(z)−x‖E = 0 and since ∀x ∈ X,
∀y ∈ E, we have ‖f(x) − y‖E ≥ 0. Thus,

∀x ∈ X, ∀y ∈ E, ∃z ∈ X such that 0 = ‖f(z) − x‖E ≤ ‖f(x) − y‖E,

i.e.
∀x ∈ X, ∀y ∈ E, ∃z ∈ X such that Ψ(x, y) ≤ Ψ(z, x) = 0.

Since X is a nonempty, convex and compact subset of a normed space E, then
according to Theorem 2.1, ∃x ∈ X such that

‖f(x) − y‖E ≥ ‖f(x) − x‖E, ∀y ∈ E.

Thus, if we let y = f(x) in the last inequality, we obtain

‖x − f(x)‖E ≤ 0.

Therefore f(x) = x, i.e. x is a fixed point of function f .

Consider again the Example 3.2. We have the function x 7→ |1/(x− 1)− y| is
quasi-convexe over [6

5
, 2], ∀y ∈ R (see FIGURE 1.).

Since f is not increasing order, then f([6
5
, 2]) = [f(2), f(6

5
] = [1, 5] ⊃ [6

5
, 2].

Thus according to Theorem 3.1, f has a fixed point in [6
5
, 2]. Indeed, x =

(1 +
√

5)/2 is such a point.

Theorem 3.1 can be generalized as follows.
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Fig. 1. The graph of function x 7→ |1/(x − 1) − y|, ∀y ∈ R

Definition 3.1 Let X be a nonempty convex subsets of a vector space E
and let Y be a nonempty subsets of a metric space (F, d). Let us consider
a set-valued C : X → 2Y . C is said to be d-quasi-convexe over X if x 7→
d(C(x), y) = inf

u∈C(x)
d(u, y) is quasi-convexe over X, ∀y ∈ Y .

We have the following theorem.

Theorem 3.2 Let X be a nonempty convex compact set of a locally convex
Hausdorff space, Y be a nonempty set of a normed space and g be a continuous
function defined from X into Y . Let us consider a nonempty closed set-valued
C : X → 2Y such that

(1) d(C(x), y) is continuous over X × Y , where d(C(x), y) = inf
u∈C(x)

‖u − y‖,
(2) C is a d-quasi-convexe over X,
(3) ∀x ∈ X, ∃z ∈ X such that g(x) ∈ C(z).

Then ∃x ∈ X such that g(x) ∈ C(x).
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Proof. It is a straightforward consequence, if we consider the following func-
tions Ψ(x, y) = −d(C(x), y) = − inf

u∈C(x)
‖u − y‖, ∀(x, y) ∈ X × Y in Theorem

2.1.

We deduce the following corollary in case where the set-valued C is an ordinary
function (singleton).

Corollary 3.1 Let X be a nonempty convex compact set of a locally convex
Hausdorff space, Y be a nonempty set of a normed space (F, ‖.‖F ) and g be
a continuous function defined from X into Y . Let us consider a continuous
function f : X → Y such that

(1) x 7→ ‖f(x) − y‖F is quasi-convexe over X, ∀y ∈ Y
(2) g(X) ⊂ f(X).

Or

(1’) x 7→ ‖g(x) − y‖F is quasi-convexe over X, ∀y ∈ Y
(2’) f(X) ⊂ g(X).

Then ∃x ∈ X such that g(x) = f(x).

3.2 Nash equilibrium

As an application of Theorem 2.1 to game theory, in this section, we establish
a new theorem of existence of Nash equilibrium.

Consider the following noncooperative game

< I, X, f(x) > (3.1)

where I is the set of players, which may be an infinite set; Xi is the set of
strategies of the player i ∈ I, Xi is a subset of a locally convex vector space Ei,
fi : X → R is the payoff function of the player i ∈ I, X =

∏
i∈I

Xi ⊂ E =
∏
i∈I

Ei

is the set of strategy profiles; x = (xi)i∈I ∈ X is a strategy profile of the game
where xj ∈ Xj is the strategy of the player j ∈ I. If a strategy profile x ∈ X
is played, each player i ∈ I receives his payoff fi(x).
The aim of each player in this game is to maximize his payoff function.

We will use the following notations. Let i ∈ I be any player, then −i =
I − {i} = {j ∈ I such that j 6= i}, X−i =

∏
j∈−i

Xj and x−i = (xj)j∈−i.

Definition 3.2 [12] An issue x ∈ X is said to be a Nash equilibrium of game
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(3.1) if

∀i ∈ I, ∀yi ∈ Xi, fi(x−i, yi) ≤ fi(x).

First let us recall the some results of existence of this equilibrium.

Theorem 3.3 (Nash Theorem [12]) Let I be an indexed finite or infinite
countable set. Let {Ei}i∈I be a family of locally convex Hausdorff spaces and
let Xi be a nonempty convex and compact subset of Ei such that

(1) fi is continuous over X,
(2) yi 7→ fi(x−i, yi) is quasi-concave over Xi, for each x−i ∈ X−i.

Then game (3.1) has a Nash equilibrium.

Theorem 3.4 (Abalo-Kostreva Theorem [1]) Let I be an indexed finite or in-
finite countable set. Let {Ei}i∈I be a family of metrizable locally convex topo-
logical vector spaces and let Xi be a nonempty convex and weakly compact
subset of Ei such that

(1) fi is continuous over X,
(2) arg max

yi∈X
−i

fi(x−i, yi) is a singleton for each x−i ∈ XI−Si
.

Then game (3.1) has a Nash equilibrium.

Let us consider the following example.

Example 3.2 Assume that in game (3.1) n = 2, I = {1, 2}, X1 = X2 =
[−1, 1], x = (x1, x2) and

f1(x) = x2
1 − x3

2

f2(x) = −x3
1 + x2

2.

For this example, we have ∀i ∈ I, the function yi 7→ fi(x−i, yi) is not quasi-
concave and arg max

yi∈X
−i

fi(yi, x−i) = {−1, +1}, for each i = 1, 2. Therefore, the

Nash Theorem (Theorem 3.4) and Abalo-Kostreva Theorem (Theorem 3.5) are
not applicable.

We have the following theorem.

Theorem 3.5 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a
family of locally convex Hausdorff spaces and let Xi be a nonempty convex
and compact subset of Ei such that

(1) fi is continuous over X,

12



(2) x−i 7→ fi(x−i, yi) is quasi-concave over X−i, for each yi ∈ Xi.

(3) ∀(x, y) ∈ X × X, ∃z ∈ X such that
n∑

i=1
fi(x−i, yi) ≤

n∑
i=1

fi(z−i, xi).

Then game (3.1) has a Nash equilibrium.

Proof. It is a straightforward consequence of Theorem 2.1, if we consider the

following functions g = idX and Ψ(x, y) =
n∑

i=1
fi(x−i, yi), ∀(x, y) ∈ X × X.

Let us consider again the Example 3.3, we have for each x = (x1, x2) and
y = (y1, y2)), Ψ(x, y) = −x3

1 − x3
2 + y2

1 + y2
2. Since max

u∈[−1,1]
{−u3 − u2} = 0 and

max
u∈[−1,1]

{u2} = 1, hence, max
x1,x2∈[−1,1]

{−x3
1−x2

1−x3
2−x2

2}+ max
y1,y2∈[−1,1]

{y2
1 +y2

2} = 2.

Therefore,

−x3
1 − x3

2 + y2
1 + y2

2 ≤ 2 + x2
1 + x2

2 = Ψ((−1,−1), x), ∀xi, yi ∈ [−1, 1], i = 1, 2.

Then we conclude that ∀(x, y) ∈ X, ∃z = (−1,−1) such that Ψ(x, y) ≤
Ψ(z, x). Since x−i 7→ fi(x−i, yi) is quasi-concave over X−i and fi is continuous
over the convex compact [−1, 1]. According to Theorem 3.6, this game has a
Nash equilibrium. In fact, we can easily verify that (-1,-1), (1,-1).., are such
equilibria.

In Theorem 3.6, if the set of players is an infinite countable set, we deduce the
following corollary.

Corollary 3.2 Let I be an infinite countable index set. Let {Ei}i∈I be a family
of locally convex Hausdorff spaces and for each i ∈ I let Xi be a nonempty,
convex and compact subset of Ei such that

(1) fi is uniformly continuous over X,
(2) {fi}i∈I is uniformly bounded over X, i.e. ∃M ∈ R such that fi(x) ≤ M ,

∀i ∈ I, and ∀x ∈ X,
(3) x−i 7→ fi(x−i, yi) is quasi-concave over X−i, for each yi ∈ Xi,
(4) ∀(x, y) ∈ X × X, ∃z ∈ X such that

∑
i∈I

1
2i fi(x−i, yi) ≤

∑
i∈I

1
2i fi(z−i, xi).

Then game (3.1) has a Nash equilibrium.

4 Conclusion

In this paper, through Theorem 2.1, we have established that the g-maximum
equality has a least one solution under new conditions. This new Theorem

13



(Theorem 2.1) is complimentary to Theorem 1.1. As an application of The-
orem 2.1, we have proved a new interesting fixed point theorem. We have
provided new sufficient conditions for the existence of Nash equilibrium. We
have exhibited examples where our results are applicable, but the well known
theorems are not applicable. This shows that our results enlarge the class of
functions for which a fixed point exists and also the class of games for which
a Nash equilibrium exists. Finally, we hope that our results will be useful for
solving theoretical and practical problems from various domains.
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