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Abstract 18 

Two well-dated ca. Holocene-long sedimentary sequences from deepest parts of Lake Bourget provide 19 

new insights onto the evolution of erosion patterns at a regional scale in NW European Alps. The 20 

combination of high resolution geochemistry – XRF core scanning, calibrated by 150 punctual 21 

measurements – and isotope geochemistry (Nd) of the terrigenous fraction permitted the 22 

reconstruction not only of the intensity, but also the type (physical erosion vs. chemical weathering) 23 

and the location (Prealpine massifs vs. High Crystalline massifs) of dominant erosion processes. Those 24 

data point the persistency of weak erosion fluxes  from 9600 to 5500 cal. BP due both to a dry climate 25 

and the growing sheltering effect of soils that rapidly progressed between 9600 and 8000 cal. BP. Soils 26 

then reached a steady state before being destabilised around 4400 cal. BP, probably in response to 27 

human impact. The human impact then reached a sufficient intensity to change erosion patterns at a 28 

regional scale, but did not result in a significant increase of the regional terrigenous flux. The 29 

following enhancement of erosion processes occurred around 2700 cal. BP. It was first paced by 30 

changing climatic conditions, but probably reinforced by human impact during Late Iron Age – 31 

Antiquity period. Over the long-term trend, the Lake Bourget record pinpoints an evolution of 32 

paleohydrological conditions in the Alps dominated by dry conditions from 9500 to 4400 cal. BP and 33 

a subsequent drift toward wetter conditions that culminated during the so-called Little Ice Age (ca. 34 

1350-1900 AD). In such a context the current dry conditions in European Alps appear out-of-trend. At 35 
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high resolution, 17 periods of enhanced hydrological activity highlight the rapid climatic changes that 1 

are typical of the Holocene. 2 

 3 

1. Introduction 4 

In contrast to huge temperature shifts that characterised glacial periods, Holocence climate variability 5 

is subtle and dominated by changes in moisture distribution (Mayewski et al., 2004; Magny et al., 6 

2011). Consequently, it is crucial to be able to reconstruct past hydrological patterns in order to 7 

understand past and future consequences of climate changes. Reconstructing erosion fluxes from 8 

sediment archives could help reaching this goal, providing the hypothesis that terrigenous input 9 

depends principally on the hydrological activity is completed. In the European Alps, such an approach 10 

has been applied in large lakes Constance (Wessels, 1998) and Bourget (Arnaud et al., 2005; Chapron 11 

et al., 2005; Debret et al., 2010) in order to get a region-wide representative signal that covers most of 12 

the Holocene. However the used proxies did not allow to fully discuss processes that link climate and 13 

erosion. In particular, very few is known about the role of soil evolution, including human land-use, 14 

upon terrigenous fluxes at a regional scale in the Alps. We attempt to address this question by 15 

reconstructing erosion patterns through a detailed high resolution geochemical study of two cores 16 

taken in Lake Bourget.  17 

Most of the Lake Bourget catchments area is made of Mesozoic sedimentary units. However it also 18 

includes the Mont Blanc Massif that is made of crystalline rocks. Those parts of the catchment differ 19 

also by their geomorphology, only the Mont Massif hosting high elevation glaciers. As a consequence, 20 

only the first one is suitable for soil development and downstream human activities which may 21 

influence erosion patterns. At the opposite, glaciers are by far the main erosion agent in the Mont 22 

Blanc Massif which hence depends only on climate conditions. We took advantage of this bi-partition 23 

to investigate the respective roles of soil dynamics – including natural and anthropogenic processes – 24 

and climate forcing upon erosion patterns. We use major elements concentrations and neodymium 25 

isotope compositions, in attempt to track the intensity of silicate flux (total terrigenous abundance) as 26 

well as both its provenance source (Nd) and degree of weathering (K/Ti ratio and Chemical Index of 27 

Alteration - CIA). 28 

Based on these new data, we attempt to address the controversial question of the potential impact of 29 

human activity on erosion patterns (Dearing & Jones, 2003, Piccarreta et al., 2011). Taking account 30 

this potential disturbance of the signal, we finally investigate the relationship between the evolution of 31 

terrigenous fluxes and paleohydrological conditions over NW European Alps. 32 

 33 

2. Studied site and sediment sequences 34 

Lake Bourget is the largest natural lake in France. Its sediment cover was investigated for more than a 35 

decade through several geophysics (Chapron, 1999; Chapron et al., 1999; van Rensbergen et al., 1999; 36 

Chapron et al., 2005; Ledoux et al., 2010) and coring surveys, both in deep water (Chapron et al., 37 
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1999; 2002; 2005; Arnaud et al., 2004; 2005; Arnaud, 2005; Revel-Rolland et al., 2005; Jacob et al., 1 

2008; 2009; Jung et al., 2008; Debret et al., 2010; Millet et al., 2010; Giguet-Covex et al., 2010) and 2 

from shallower sites (Magny and Richard, 1985; Magny et al., 2009). It also hosts several 3 

archaeological lake dwelling sites spanning from the Neolithic to the Middle Age which are currently 4 

underwater (Marguet, 2000). Although the lake is fed by three main tributaries, the present study 5 

focuses on the northern sub-basin where the terrigenous fraction is today mainly supplied by the River 6 

Rhône (Fig. 1; Revel-Rolland et al., 2005). 7 

River Rhône is the current lake emissary through its natural outlet, but this situation is inverted during 8 

major floods when the sediment-loaded waters from the river Rhône enter the lake. As the particulate 9 

sediment load from the Swiss alpine Rhône is totally trapped in Lake Geneva (Bravard, 1987), 10 

sedimentation in Lake Bourget have recorded the hydrological activity of the French part of the alpine 11 

Rhône. Main River Rhône tributaries are here the Arve River (1980 km
2
 watershed) notably draining 12 

the glacier-covered Mont Blanc range and the Fier River (1330 km
2
 watershed), draining the subalpine 13 

Aravis and Bauges massifs. The total River Rhône sediment-supplying catchments area when it enters 14 

Lake Bourget is about 4000 km
2
. 15 

The situation of intermittent entering of Rhône River into Lake Bourget has not always prevailed. 16 

Indeed, stratigaphic and seismic investigations showed that during the Lateglacial, the ombilic 17 

currently occupied by the Lavours and Chautagne swamps (Fig. 1) was entirely occupied by the river 18 

Rhône floodplain (Nicoud et al., 1987; Chapron, 1999; Van Rensebergen et al., 1999). By that time 19 

river Rhône was directly inflowing Lake Bourget as it is marked by the development of an important 20 

delta on the northern end of the lake (Van Rensebergen et al., 1999). Subsequently, following a period 21 

of sediment accumulation within the ombilic, river Rhône auto-captured itself within its own incised 22 

sediment and left Lake Bourget on its left flank. This permitted the development of peat accumulation 23 

in Lavours and Chautagne backswamps, on the right and left flanks of the new Rhône course, 24 

respectively. A recent study of a Chautagne swamp sediment core permitted to date the transition 25 

between from fluvio-deltaic sediment deposits toward a peat accumulation 8940±45 BP (10,060±150 26 

cal. BP; Disnar et al., 2008). Since then, the Chautagne backswamp acts as flood buffer between the 27 

Rhône and the lake. From seismic imagery, Chapron (1999) showed this geomorphological change 28 

was contemporaneous of a major basin-scale sediment slide. Moreover, due to the sheltering effect of 29 

the backswamp, a drastic change in Lake Bourget sedimentation style occurred that was marked by a 30 

shift from detrital-dominated prodeltaic sedimentation toward a hemipelagic bio-induced mud drape. 31 

This mud drape is made of fine-grained biogenic carbonate (mean size: 5 µm) more or less diluted by 32 

clayey-silt terrigenous input (mean size ca. 7 µm; Arnaud, 2005), including both carbonates and 33 

silicates (Arnaud et al., 2005; Arnaud, 2005; Revel-Rolland et al., 2005).  34 

 35 

2.1. Core LDB01-I 36 
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Core LDB01-I (45°44.848'N; 5°50.891'E, 128m water-depth) was taken in 2001, from a site submitted 1 

to distal river Rhône interflows (Fig. 2, Chapron et al., 2002) and was first described in Arnaud et al. 2 

(2005). Magnetic susceptibility (MS) was used as a marker of Rhône River detrital input over the last 3 

7200 years (Arnaud et al., 2005). However, due to high carbonate contents, the insufficient precision 4 

of the MS signal in the lowermost part of the core precluded from a fine interpretation of this proxy 5 

between 2700 and 7200 cal. BP. We present here new results of major elements concentrations 6 

measured following a 5mm-step using an XRF core-scanner, as well as grain size and major element 7 

punctual measurements. 8 

 9 

2.2. Core LDB04-I 10 

Core LDB04-I (45° 47N; 5°50E, 107m water-depth) was taken in 2004, by 107m water depth in the 11 

northern sub-basin (Fig. 2). The same lithological units as in core LDB01-I (Arnaud et al., 2005) were 12 

recognised Debret et al. (2010). An additional darker and laminated unit is present (U3). Seismic 13 

stratigraphy indicates that U3 corresponds to a giant underwater slide. This slide affected sediments of 14 

the former Rhône delta when it was entering directly within Lake Bourget, i.e. prior to ca. 10.5 ka cal. 15 

BP. It seems the integrity of the sediment pile was conserved within the slided unit. However, in this 16 

paper, we will only consider them as representative of the sediment fraction “prior to the Rhône auto-17 

capture” and not as a continuous sedimentary sequence. Between depth 5.8 and 6.8m in LDB04-I 18 

sequence, i) an interbedded slump within the sediment series and ii) a sediment hiatus due to coring 19 

difficulties through this particular level (fluidised sediment) have been described (Debret et al., 2010). 20 

 21 

3.  Analytical procedures 22 

 23 

3.1. Grain size measurements 24 

Grain size measurements of the non-carbonated fraction were performed on a Malvern Mastersier 800 25 

following the procedure by Trenteseaux et al. (2001), modified by Arnaud (2005). Grainsize data are 26 

not used here as a proxy, but they were useful to verify the constancy of detrital input processes. For 27 

such a purpose a low resolution was chosen: forty nine and forty seven measurements were hence 28 

performed on LDB01-I and LDB04-I, respectively.  29 

 30 

3.2. Geochemistry 31 

High resolution geochemical logging was performed on an Avaatech core scanner at the Marum center 32 

in Bremen (Germany). Titanium and potassium results only are used in this paper. The chosen 33 

sampling steps were 5 mm and 10 mm, for cores LDB01-I and LDB04-I, respectively. The sampling 34 

step was chosen in order to provide a less than 10 years resolution. 35 

Major element concentrations were measured on 1cm-tick discrete samples using X-Ray Fluorescence 36 

(XRF) at the University Claude Bernard of Lyon. The sampling step was about 10cm and 20cm (i.e., 37 
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98 and 49 samples) in cores LDB01-I and LDB04-I, respectively, to get one calibration measurement 1 

every 20 core scanner measurements (Fig. 2).  2 

Neodymium isotopic compositions were measured on selected samples. Each sample was sieved at 3 

63m and only the fraction <63m was retained for isotope composition analyses. Each sample was 4 

chemically treated to remove organic matter and carbonates in order to analyze only the siliciclastic 5 

components of the terrigenous material following the procedure described in Revel-Rolland et al., 6 

2005. About 100mg of sample were weighted and dissolved in high pressure Teflon bombs in a 7 

mixture of HF, HNO3 and HClO4 following the method described in Revillon and Hureau-Mazaudier, 8 

2009.  Nd was chemically separated using Eichrom specific resins TRU-spec, and Ln-spec following 9 

usual procedures Pin and Santos Zalduegui, 1997. 10 

Neodymium isotope compositions were measured in static mode on a Finnigan TRITON at the Pôle de 11 

Spectrométrie Océan (PSO, UBO/CNRS/IFREMER, Brest, France). Procedural blanks were <300 pg 12 

and therefore negligible in all cases. Nd isotope compositions of standard solutions La Jolla and JNdi 13 

gave 
143

Nd/
144

Nd= 0.512852 ± 0.000008 (2, n=16) and 
143

Nd/
144

Nd= 0.512101 ± 0.000006 (2, n=10) 14 

respectively. 
143

Nd/
144

Nd is normalized to 
146

Nd/
144

Nd=0.7219. For convenience, Nd isotope results are 15 

expressed as: Nd0 = [(
143

Nd/
144

Nd(meas)/
 143

Nd/
144

Nd(CHUR) )-1]*10
4
. The CHUR (Chondritic Uniform 16 

Reservoir) value is 0.512638 Jacobsen and Wasserburg, 1980.  17 

 18 

3.3. Chronology 19 

Both cores LDB01-I and LDB04-I were previously dated independently (Arnaud et al., 2005; Debret 20 

et al., 2010). However, we took advantage of their detailed litho-stratigraphic correlations to add 21 

cross-correlated 
14

C-dated samples from both of them (Table 1). We thus present a refined age-model 22 

for each of the studied cores. This was done by running the “CLAM” program (Blaauw, 2010) under 23 

the mathematics software “R” version 2.12.2 (R Development Core Team, 2011). The used calibration 24 

curve was Intcal09 (Reimer et al., 2009). All ages were acquired on vegetal terrestrial macroremains to 25 

avoid reservoir effect.  26 

 27 

4. Results and discussion 28 

 29 

4.1. Downcore evolution of selected proxies 30 

Generally speaking, both results from core scanning as well as from punctual measurements, exhibit a 31 

strong covariation of all presented elements (Ti, K, Al, Na; Fig. 2). In first instance, this supports our 32 

assumption of a simple-mixing system made of two end-members presenting a constant geochemical 33 

composition, i.e. biogenic carbonate and river-borne silicates. However the evolution of the CIA index 34 

indicates second order changes of the major element composition in both cores. 35 

 36 
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The above statement of source constancy must be slightly nuanced in the case of LDB01-I. Indeed in 1 

some particular levels this core presents a slight excess in Na and K vs. Ti and Al, as it is marked by 2 

low CIA values (Fig. 2). Remarkably, those particular levels also present enrichments in the non-3 

carbonate sandy fraction. We thus interpret changes in CIA as the influence of a minor sandy fraction 4 

made of a mixture of quartz and although of feldspars, those ones presenting lower CIA indexes than 5 

the < 10 µm silty-clays brought by River Rhône (Arnaud, 2005). As a consequence the CIA index will 6 

not be used as a proxy for Rhône terrigenous fraction composition in LDB01-I. 7 

 8 

Titanium content is commonly used as a proxy of terrigenous silicate input when interpreting XRF 9 

core scanner results as it is strictly of terrigenous origin, well-measured by this technique and is only 10 

weakly affected by weathering and underwater redox processes. However, it is a minor element, i.e. its 11 

concentration is usually <1%. It is hence more comprehensive to plot the total abundance of the 12 

terrigenous fraction to have a clearer image of the evolution of the ratio between allochthonous and 13 

autochthonous sedimentations. In that aim, we calculated the total terrigenous fraction abundance, 14 

assuming that, in each core, the maximum value of titanium concentration was corresponding to a total 15 

terrigenous fraction of 100 % (Wessels, 1998). The maximum Ti content values taken into account 16 

were 0.51 % and 0.58 % in LDB01-I and LDB04-I, respectively. The total terrigenous contribution 17 

was then computed following: 18 

(1a) Total terrigenous abundance = TiO2 / 0.51 x 100, in LDB01-1, and 19 

(1b) Total terrigenous abundance = TiO2 / 0.58 x 100, in LDB04-1. 20 

 21 

In addition to Ti and total terrigenous input, which track the quantity of matter brought by the river to 22 

the lakes, we used an index derived from the Chemical Index of Alteration (CIA), defined by Nesbitt 23 

and Young (1982) as: 24 

(2) CIA = Al2O3 / (Al2O3 + CaO + K2O + Na2O).100 25 

 26 

In this study, we were not able to assess the CaO content of the silicate fraction; we thus slightly 27 

changed the equation into: 28 

(3) CIA = Al2O3 / (Al2O3 + K2O + Na2O).100 29 

 30 

We argue that this did not change considerably the results, as we only discuss about relative variations 31 

in CIA. When comparing our results with the CIA of other records or of pure mineral phases, one must 32 

however remember that our results are slightly over-estimated.  33 

Non-weathered feldspars have CIA around 50 and granites: 45 to 55. At the opposite, clay minerals 34 

present higher values: from 70 for illite to 85 for smectite and up to 100 for kaolinite, following an 35 

increasing weathering gradient. The CIA index gives thus an assessment of the relative proportion of 36 
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primary minerals vs. secondary ones. Hence, if the source remains constant it can be interpreted as a 1 

proxy for the intensity of chemical weathering.  2 

 3 

The CIA index has been calculated for all punctual XRF measurements; however it was not possible to 4 

calculate it from core scanner results because of the poor definition of the aluminum signal. We hence 5 

use instead the K/Ti ratio. Indeed K is more concentrated in non-weathered minerals, as it is 6 

preferentially leached by weathering processes. Plotting K/Ti vs. CIA index gave a high anti-7 

correlation, with a R2 value of 0.8 and 0.85 for LDB04-I and LDB01-I samples, respectively (not 8 

shown).  9 

 10 

Isotopic composition of neodymium (Nd) presents fluctuations along both cores, staying roughly 11 

within the range of measured samples from core B16 (-9.3 to -10.8; Revel-Rolland et al., 2005; cf. 12 

black boxes in Fig. 2). There is a certain relationship between terrigenous fraction abundance and Nd: 13 

in general, Nd are more negative when the abundance of the terrigenous fraction is low. However this 14 

technique being relatively time consuming, it was not possible to make as many measurements as for 15 

major elements. This results in a relatively lower resolution signal which is more difficult to compare 16 

with the other ones. For that reason, Nd will be sole proxy for which we will present graphs 17 

combining samples taken in different cores vs. a common age-scale. It will hence be easier to interpret 18 

its variations as a function of age. 19 

 20 

The right part of Figure 2 presents the correlation between XRF measurements of Ti and K in both 21 

cores from both core scanning and punctual samples. The correlation appears to be satisfying for all 22 

presented elements except for K in LDB01-I. We will thus not use this last one in further development 23 

of this paper. In particular the induced bias precludes to accurately compute the Ti/K ratio from core 24 

LDB01-I. 25 

 26 

4.3. Age-depth modelling 27 

Age-depth models were computed using a smooth spline function, with a smoothing factor of 0.1 28 

(Blaauw, 2010) and reported in Figure 3. One age at 4.6m in LDB01-I (4.1m in LDB04-I) appeared to 29 

be slightly too old as it was generating age inversions in the model. It has thus been removed from the 30 

dataset and new models were generated. Sedimentation rates were automatically calculated and also 31 

displayed on Figure 3 (lower panel). 32 

 33 

The age-depth model comprises both a hiatus and an instantaneous deposit at 6.2-6.75m-depth (Fig. 3 34 

inset A). Geotechnics tries yielded a weaker sediment coherency within the suspected mass-wasted 35 

deposit. Together with seismic imagery this led to interpret it as a slump (Debret et al., 2010). The age 36 
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of the deposit has been fixed as the modelled age at 6.2m (4870 +/- 150 cal. BP). The time-cover of 1 

the coring-generated hiatus can be assessed by making the difference between the modelled age of the 2 

uppermost non-reworked sediment layer (i.e. 5220 cal. BP at 6.75m) and the age of the slump (4870 3 

cal. BP): 350 years (i.e. ca. 40cm). 4 

 5 

Following the same procedure, we imposed to the model both a hiatus and an instantaneous deposit  6 

between 11 and 10.2m (Fig. 3 inset). The maximum age of the instantaneous deposit (9900 cal. BP) is 7 

given by two similar 
14

C ages (8645 +/- 45 and 8720 +/-50 BP) present in it. We arbitrary fixed the age 8 

of instantaneous deposit as the maximum of probability of those ages (ca. 9700 cal. BP). The resulting 9 

hiatus covers the period 9700 – 10350 cal. BP, i.e. ca. 650 years. 10 

 11 

4.4. The Holocene evolution of regional erosion patterns at the Alpine footstep with 12 

respect to Alpine soils, vegetation and climate histories 13 

In a previous work, Debret et al. (2010) defined 12 periods of enhanced detrital input labelled by 14 

letters from A to L. The higher resolutioon of our proxies and the increased consistency given by the 15 

comparison of two cores led us to refine this cutting into 17 periods over the last 9600 years. We 16 

however kept Debret et al.‟s nomenclature, but slightly refined the limits of defined periods and, when 17 

useful, added five new ones in between the former ones (B1, C1, C2, K1, K2). Finally, we added the 18 

period M corresponding to the sediments of unit 3. Those short-term fluctuations are superimposed on 19 

the long-term evolution of the detrital input we describe below as periods I to VIII (Fig. 4). 20 

 21 

4.4.1. Period I: 11000-10500 ka cal. BP 22 

The oldest sediments in core LDB04-I from the deep basin are dated ca. 11 ka cal. BP. According to 23 

seismic imagery they are not in place (Debret et al., 2010). No sediment has been recovered dated 24 

between 10.5 and 9.6 ka cal. BP. The transition from unit 3 to unit 2 marks the onset of the Holocene 25 

drape, i.e. the characteristic Holocene sedimentary facies of Lake Bourget (van Rensbergen et al., 26 

1999).  27 

The age-depth model within unit 3 (HDU) must be taken cautiously. We will thus not use results from 28 

this unit as a continuous record, but as representative, in average, of the very early Holocene period, 29 

when River Rhône was directly entering the lake (period M, Fig. 4). Sediments from this period 30 

present the highest values of terrigenous abundance and sedimentation rate (3.8mm/a), as well as of 31 

proxies of physical weathering (high K/Ti, low CIA). This can be explained easily, considering the 32 

river Rhône was entering directly Lake Bourget.  33 

The variability of computed terrigenous abundance (40 to 100 %), whereas the CIA (i.e. the 34 

composition of the siliciclastic fraction) remains almost constant, indicates that a significant biogenic 35 

carbonate production probably occurred. Interestingly, the Nd value is relatively low, whereas the 36 
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CIA is low. This means the main source of erosion is made of perialpine sedimentary rocks (low Nd) 1 

which were by that time only poorly weathered (low CIA), indicating the soil formation processes 2 

were still relatively weak.  3 

 4 

4.4.2. Period II: 9700-7400 cal. BP 5 

The early Holocene is characterised by low sedimentation rates (< 1 mm/a) and a major contribution 6 

of biogenic carbonates (65 to 80 %), as a consequence of very low terrigenous input. However proxies 7 

for physical weathering (K/Ti, CIA), as well as Nd are still high, suggesting the predominance of 8 

physical erosion in Alpine catchments.  9 

Within this period, some peaks in terrigenous abundance indicate periods of enhanced physical erosion 10 

around 9.4; 8.9; 8.6; 8.3, 8.0 and 7.6 ka cal. BP (periods L, K2, K1, K, J, I, respectively). Within age 11 

uncertainty, period J (8.3 ka cal. BP) could correspond to the so-called 8.2 ka event which has been 12 

demonstrated to be relatively wet in Lake Annecy, some kilometres west from Lake Bourget (Magny 13 

et al., 2003). However, one must note, it is not a prominent wiggle in detrital input, whereas the 8.2 k 14 

event was marked by a dramatic drop in temperature at the footstep of the Alps (von Grafenstein et al., 15 

1999). 16 

Periods of enhanced terrigenous supplies are frequent, but relatively weak. The persistence of high 17 

K/Ti ratio tracks the weakness of pedogenetic processes during this apparently dry, as indicated by 18 

low detrital input, period (9.6-7.8 ka cal. BP). The preponderance of physical erosion might reflect the 19 

necessary delay for the vegetation, and thus for soils, to recover from Lateglacial conditions. At 7.8 ka 20 

cal. BP, a marked drop in K/Ti tracks the increasing contribution of weathered material at the favour 21 

of a reduced terrigenous input. We interpret this signal as a marker of active soil formation in the 22 

Alpine catchments.  23 

Those results are in agreement with recent results from a high altitude lake, within the catchments area 24 

of Lake Bourget. Indeed at Lake Anterne (2060 m asl), Giguet-Covex et al. (2011) showed that the 25 

period from 11 to 8 ka cal. BP was dominated by physical erosion prior to a period of soil 26 

stabilisation. This last one was there evidenced by the deposit of more weathered material interpreted 27 

as the response to Alpine soils development (Giguet-Covex et al., 2011). It is noticeable that this 28 

period is also marked by the extension of trees up to the Subalpine belt (van der Knaap et al., 2005; 29 

David, 1993). The similarity of results from Anterne and Le Bourget suggests trees were developing in 30 

the uppermost parts of the catchments area, leading to the development of differentiated soils that 31 

modified the chemistry of eroded material carried by Rhône River floods. 32 

 33 

4.4.3. Period III: 7400-5700 cal. BP 34 

This period is marked by low K/Ti values, even in periods of relatively higher terrigenous input. We 35 

interpret this as the consequence of the soils development in the whole catchment area. This is in 36 

agreement with the growing idea that this period of the Holocene was marked by a pedological 37 
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optimum during which developed soils occupied most of Alpine terranes, including high altitude ones, 1 

at least up to 2100 m asl (Mourier et al., 2010; Giguet-Covex et al., 2011). 2 

Some peaks in terrigenous input mark periods of slightly enhanced erosion around 6.8 and 6 ka cal. 3 

BP (periods H and G). One notes that each rise in terrigenous input is accompanied by a rise in K/Ti, 4 

which may indicate a displacement of the sediment source toward the upper Arve catchment where 5 

physical erosion still prevails in the Mont Blanc massif. We however do not have Nd isotope 6 

compositions data in this period to further confirm this hypothesis. 7 

 8 

4.4.4. Period IV: 5700-3700 cal. BP 9 

This period is made of two important rises in terrigenous supply at 5.7-5.4 and 4.8-3.8 ka cal. BP 10 

(periods F and E), separated by an apparent pause in river discharge of about 600 years (5.4-4.8 ka cal. 11 

BP). The 4.8-3.8 ka cal. BP is the oldest, millennial-long period of enhanced terrigenous supply. It is 12 

characterised by some of the highest values of K/Ti, indicating the preponderance of physical erosion.  13 

 14 

4.4.5. Period V: 3700-2800 cal. BP 15 

At 3.7 ka cal. BP, the K/Ti signal marks a drastic drop, lasting ca. 1000 years. When compared to 16 

previous and following ones, even phases of enhanced detrital supplies from this period present 17 

significantly lower K/Ti. This must be interpreted as the preponderant erosion of well-developed soil 18 

horizons. Low values of Nd support this interpretation, suggesting the preponderance of Prealps 19 

erosion sources. 20 

By that time Lake Anterne catchment experienced a strong intensification of erosive processes that has 21 

been attributed to human impact (Giguet-Covex et al., 2011) whereas in Austrian Alps Schmidt et al., 22 

2002 also report the onset of human impact on erosive fluxes. In Lake Bourget geochemical record, 23 

this period does not correspond to a marked rise in terrigenous supply. The intense erosion triggered 24 

by human impact on highest catchment areas thus did not generate an excess in terrigenous supply 25 

down to the Rhône valley. However it is characterised by the lowest K/Ti ratio of the whole sequence, 26 

even during periods of enhanced terrigneous input indicating the deposition of highly weathered 27 

material.   28 

Based on the study of cores LDB04-I and LDB01-I, Jabob et al. (2008; 2009) demonstrated the 29 

synchronous occurrence of two biomarkers: miliacin (olean-18-en-3b-ol methyl ether) and TTHC 30 

(3,3,7-trimethyl-1,2,3,4-tetrahydrocrysene) at 3.7 ka cal. BP. Those markers track the introduction of 31 

the non-native cultivated cereal Broomcorn millet (Panicum miliaceum) and a dramatic increase in 32 

uppermost soils erosion, respectively. Such a result was interpreted as a major shift in agricultural 33 

practises and land-use (Jacob et al., 2009). It occurred at a period when the terrigenous input was very 34 

low and is synchronous with very low K/Ti values. Once again, this suggests that Bronze human 35 

impact on soil stability is detectable qualitatively as it changed the nature of the erosion products, but 36 

did not have a significant impact on regional terrigenous fluxes as they are recorded in Lake Bourget.  37 
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 1 

4.4.6. Period VI: 2800-1600 cal. BP 2 

The terrigenous input significantly increases four times within only 1000 years (periods C2, C1, C and 3 

B1; at 2.8, 2.4, 2.2, 1.9 ka cal. BP, respectively). Each of those peaks presents a weaker chemical 4 

weathering contribution than the previous one, which can be interpreted as a diminishing contribution 5 

of low to mid-altitude non-glaciated catchments. However the Nd remains relatively low, indicating 6 

the constancy of the sediments source area. We thus interpret this period as marked by a reinforcement 7 

of the physical erosion in subalpine rather than high alpine catchments areas. 8 

Remarkably the increase in terrigenous contribution between 2.8 and 1.6 ka cal. BP is more marked in 9 

core LDB01-I than at LDB04-I site. The different response of both sites indicates the preponderance 10 

during that period of interflows i.e. floods of lower magnitude. This could indicate that changes in 11 

both quantity and quality of terrigenous fluxes are driven rather by changes in erosion patterns than by 12 

enhanced precipitations. This is particularly true for the Late Iron Age (C) and Antiquity (B1) periods 13 

which are known as periods of glacier retreat (Holzhauser et al., 2005; Joerin et al., 2006; 2008) and 14 

however presents higher detrital fluxes in our record. In Lake Anterne, the period between 2.2 and 1.8 15 

ka cal. BP is marked by the only phase of enhanced erosion which is in contradiction with climate 16 

record over the last 3500 years, which has been attributed to human impact (Giguet-Covex et al., 17 

2012; David, 2010). It is hence possible that changes in land-use practices at the end of the Iron Age 18 

and during the Antique period produce a dramatic increase of erosion in Northern French Alpine 19 

catchments areas that was strong enough to be imprinted at a regional scale in Lake Bourget sediment 20 

record. Sediment records from Lake Annecy, some kilometres in the NE of Lake Bourget, also pointed 21 

the influence of Gallo-Roman land-use reorganisation as a major trigger of erosion cycle disturbance 22 

(Dearing et al., 2001; Noël et al., 2001). Noticeably, this scheme is in apparent contradiction with 23 

archaeological data from Southern French Alps, indicating a continuous, but moderate exploitation of 24 

alpine grasslands at this period (Walsh et al., 2007). It is hence obvious that this period presents a 25 

complex human – climate – erosion pattern and requires deeper studies to be fully understood. 26 

 27 

4.4.7. Period VII: 1650-50 cal. BP 28 

In LDB01-I, at 1.65 ka cal. BP, both the sedimentation rate and the terrigenous supply experience a 29 

dramatic rise (1650-1300 cal. BP, i.e., 300-650 AD). However, in LDB04-I, the same period appears 30 

more contrasted and can be cut into two distinct phases: B1 (1650-1450 cal. BP, i.e. 300-500 AD) and 31 

B (1450-1300 cal. BP, i.e., 500-650 AD). During phase B1, the terrigenous input is high, but lower 32 

than in LDB01-I and moreover the K/Ti ratio remains low. During phase B (500-650 AD), the 33 

terrigenous input is even higher and K/Ti reaches some of its highest values in the whole record. 34 

Moreover during B1 the Nd reaches an unprecedented value since the Early Holocene, indicating a 35 

massive influx of terrigenous particles from the Mt Blanc massif. As a consequence we interpret B1 36 

(300-500 AD) as a period of enhanced erosion mainly in the lowest catchment area, characterised by 37 
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low magnitude floods. Those interpretations match those based on Lake Annecy sediment sequence 1 

from Dearing et al. (2001) who pointed the displacement of sediment source toward the lowlands and 2 

from Noël et al. (2001) who pointed an unprecedented increase in soil erosion depth since 1700 cal. 3 

BP. By contrast, phase B (500-650 AD) is marked by an increasing contribution of the highest 4 

catchment area to the terrigenous flux and is interpreted as period of generalised more intense physical 5 

erosion. This phasing can be interpreted as a period dominated by human impact at the end of 6 

Antiquity (B1), whereas the High Middle Age (B) erosion patterns are dominated by a climate change, 7 

as indicated by a major glacier advance (Holzhauser et al., 2005). 8 

 9 

The following period, between phases B and A (1300-1050 cal. BP, i.e., 650-900 AD) is marked by a 10 

drastic drop in terrigenous input and in K/Ti, reflecting the reduced influence of the highest catchment 11 

areas. The detrital supply rises then gradually until the onset of phase A around 750 cal. BP (1200 AD) 12 

and reaches a maximum around 650 cal. BP (1300 AD). This progressive rise is punctuated by two 13 

short-lived peaks in detritism around 1050 (A2) and 900 (A1) cal. BP (i.e. 900 and 1050 AD, 14 

respectively).  15 

The terrigenous flux stays then high until the 20
th
 century AD. This is the longest, most prominent 16 

period of erosion throughout our continuous record (since 9600 cal. BP). It is dominated by the input 17 

of lowly weathered material (high K/Ti). The Nd has been measured following a relatively higher 18 

resolution and presents a strong variability, following variations in detrital input. The Mont Blanc 19 

source is hence well-imprinted, but this period of strong erosionnal activity concerns the whole 20 

catchment, as shown by the return to relatively low Nd during short-lived phases of relative drop in 21 

terrigenous supply.  22 

Based on historical evidences, the second half of the Middle Age (800-1500 AD) has been a period of 23 

forest clearance in the Alps, especially between 1000 and 1350 AD (cf. Carrier and Mouthon, 2010, 24 

for an  Alpine-wide review), this could explain the progressive rise in terrigenous regional flux. 25 

However, one must also notice that each periods A2, A1 as well as the onset of A corresponds to a 26 

marked advance of the Great Aletsch glacier (Holzhauser et al., 2005) as well as marked higher lake 27 

level in the neighbouring Jura massif (Magny et al., 2010). It is hence possible that glacier advances 28 

that preceded the onset of the LIA sensu stricto and moreover the one of the LIA itself completely 29 

hided the effects of human impact, as the glacial erosion was dominating the regional erosion flux. Of 30 

course this does not rule out the possibility that locally the human-steered land management led to 31 

important reinforcement of erosion processes. This point is however still a research field to be 32 

addressed. 33 

 34 

4.4.8. Period VIII: The 20
th

 century AD 35 

Since the early 20
th
 century AD, the terrigenous input experienced a drastic drop, linked to the end of 36 

the LIA. This decline coincides with a drop in K/Ti and Nd, marking a diminution in the contribution 37 
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of high altitude material. This period corresponds both to a major retreat of Alpine glaciers and to a 1 

marked regression in agricultural land-use in the Alps. Those causes converged toward a reduction of 2 

the terrigenous input. However, very low values in Nd, indicate the higher Arve source of sediment 3 

was more reduced than the Prealpine one, indicating the preponderant impact of climate upon the 4 

reduction of erosive fluxes after the end of the Little Ice Age. 5 

 6 

4.5. Regional paleohydrological context 7 

 8 

In a recently published synthetic work Magny et al. (2011) pointed the importance of the long-term 9 

Holocene trend in precipitation patterns, in response to orbital forcing. Two of the main series used in 10 

Magny et al. (2011), lakes Accesa (Italy, Tuscany) and Cerin (Jura massif, 20km west of Lake 11 

Bourget), are reported together with Lake Bourget results on Fig. 4,. Additionally we present in this 12 

figure results from Lake Constance (Wessels, 1998) which is a system comparable to Lake Bourget. 13 

Wessels (1998) reconstructed past interflow activity from the mid-resolution measurement of major 14 

elements concentrations. Here we present the authigenic calcium carbonate concentration, on an 15 

inverted axis, as a proxy of Rhine river terrigenous input to Lake Constance. To facilitate the 16 

comparison of different records, we reported our 18 phases of enhanced terrigenous input represented 17 

as their average terrigenous input value (upper limit of shaded boxes) and have drawn the envelope of 18 

those values. 19 

 20 

4.5.1. Long-term trend 21 

Obviously, all different records present the same long-term evolution. The early Holocene is marked 22 

both by high lake levels and maximum terrigenous supply. The strong decline in terrigenous supply in 23 

Lake Bourget between 10.5 and 9.6 ka cal. BP is also marked in lake level records. However, it is first 24 

due to a major shift in sediment input pattern following the abandonment of the lake by River Rhône. 25 

It is remarkable that this river autro-capture was contemporaneous of a regional drop in lake levels. It 26 

can therefore be suggested that this change in local geomorphology is related to a climatic shift toward 27 

dryer conditions, leading to the incision of River Rhône bed.  28 

The first post-abandonment peak in terrigenous flux (period L, 9.4 ka cal. BP) is well correlated to a 29 

phase of high lake levels. The magnitude of this phase will not have an equivalent in lake level or in 30 

detrital supply before 4.4 ka cal. BP. Indeed, the period 9.4 – 4.4 ka cal. BP is the one of lowest 31 

hydrological activity of the whole Holocene. One marked exception must however be noticed around 32 

5.5 ka cal. BP, a date which marks in the Alps the onset of the so-called “Neoglacial” period (Magny 33 

et al., 2006; Deline and Orombelli, 2005). The 4.4-3.8 ka cal. BP event marks the onset of more humid 34 

conditions resulting both in a marked rise in lake levels and terrigenous input. It is contemporaneous 35 

of the so-called 4.2 ka event that is marked regionally by more humid conditions  (Magny et al., 2011) 36 
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and locally by a marked rise in lake level (Magny et al., in press). The trend which is then initiated 1 

will culminate during the LIA and will only end at the 20
th
 century AD. 2 

We thus confirm the Early and Mid Holocene (9.4-4.4 ka cal. BP) were dry period in NW Alps as well 3 

as in the Jura Mountains. On the contrary, the maximum of terrigenous supply during the LIA, but also 4 

during the so-called “Dark Age” period (ca. 400-700 AD) is well-associated with a marked rise in lake 5 

levels and can thus be interpreted as climatically-forced. Geomorphological data acquired just 6 

downstream Lake Bourget from River Rhône sediment themselves corroborate our interpretation as 7 

they a long period of low sediment transfer from at least 7000 cal. BP up to 4000 cal. BP. Since then 8 

two periods of particularly high energy deposits, well-marked by the progradation of a gravelly 9 

bedload, occurred around 1500 cal. BP and during the Little Ice Age (Salvador et al., 2004; Berger et 10 

al., 2008). 11 

The continuity of our record over the last 9600 years, suggests that the first half part of this period 12 

(9600-4600 cal. BP) has been in average, dryer than the 20
th
 century AD. It also suggests that current 13 

climatic conditions, marked by low hydrological activity are out-of-trend compared to the Holocene 14 

long-term trend toward more humid conditions in NW Alps. Indeed despite a shot period of low 15 

terrigenous input during Medieval Warm Period, current conditions were not experienced since the 16 

Late Bronze Age driest period. 17 

 18 

4.5.2. Centennial-scale hydrological fluctuations 19 

Most of rises in lake levels evidenced in Accesa and Cerin lakes are well-marked in Lake Bourget. 20 

Slight discrepancies can occur, but most of them can be explained by different sampling resolutions 21 

and/or age-model model uncertainties (cf. correlation lines in Fig. 5). This points out the strong 22 

reactivity of Lake Bourget record to changing hydrological conditions, even at an infra-centennial 23 

scale.  24 

A main discrepancy must however be noticed for the period 5.3 – 4.7 ka cal. BP when two marked 25 

rises in lake level are reported both in Cerin and Accesa lakes. Considering Lake Cerin is very close to 26 

Lake Bourget, one may not evocate a different climate pattern. However, this period corresponds to 27 

important reorganisations of Lake Bourget sedimentation patterns, as it is marked by the occurrence of 28 

an important slump deposit. It is hence possible that either the threshold to generate the inversion of 29 

flux from the Rhône to the lake was higher or the flood regime was dominated by underflows which 30 

have not been recorded in LDB01-I (interflows-dominated) and were not recovered in LDB04-I 31 

(missing section). Anyway this question remains open and will require further studies to be solved. 32 

The strong correlation of lakes Constance and Bourget peaks in terrigenous between 5 and 2.2 ka cal. 33 

BP underlines a common climate forcing leading to high frequency wiggles in terrigenous discharge 34 

around the Alps. Since 2.2 ka cal. BP, both records exhibit discrepancies that could be explained by 35 

different responses to human impact on erosion. 36 

 37 
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5. Conclusion 1 

Lake Bourget high resolution geochemical record brings new insights upon both the evolution of soil 2 

dynamics and paleohydrology at a regional scale in NW Alps. We show that most of the Holocene was 3 

a period of reduced erosion fluxes due to a combination of dry climate and extensive soil development 4 

precluding intense erosion where remaining glaciers did not take place. The first impacts of human 5 

activities, during the Bronze Age, resulted more into a change in erosion patterns than a marked 6 

increase in regional erosion fluxes. In this our record differs from local studies led in small-scale high 7 

elevated catchments areas. It is nevertheless likely that at the end of the Iron Age and more probably 8 

during the Antiquity, the intensity of human impact was such that it resulted in a regional increase of 9 

terrigenous fluxes. However, the subsequent periods were dominated by far by the activation of glacier 10 

systems in the Mont Blanc Massif that culminated during the Little Ice Age which is the longest and 11 

most intense period of erosion over the whole Holocene. 12 

Regarding paleohydrology, our results exhibit a pattern in agreement with previous lower resolution 13 

studies, both in the long-term trend and at a higher time resolution. In particular, we illustrate that the 14 

Holocene has been marked by dry conditions in the Alps until ca. 5.5 ka cal. BP and the onset of the 15 

so-called Neoglacial. Since then a trend was onset toward more humid conditions that culminated 16 

during the Little Ice Age. This suggests that current climatic conditions, marked by low hydrological 17 

activity, are out-of-trend compared to the Holocene climate evolution and could be attributed to 18 

current global warming. 19 

 20 
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Figure caption 1 
 2 

Fig. 1. A) Location of Lake Bourget in Western Europe together with Lakes Constance (Co) and 3 

Accesa (Ac) that are discussed in the text. The white square is a zoom on the location of lake Bourget. 4 

Lakes Cerin, Annecy and Anterne that are discussed in the text, are also displayed. The grey areas 5 

represent the Upper Rhône catchment area (4000 km²), upstream Lake Bourget (excluding Lake 6 

Léman catchment area, cf. text): in light grey are carbonate-dominated areas (Jura and Prealps); dark 7 

grey areas represent crystalline massifs (Mt Blanc). B) Location of studied sediment cores in Lake 8 

Bourget northern basin, together with seismic profiles crossing core locations. 9 

 10 

Fig. 2. Geochemical proxies measured both by core scanning and punctual XRF and non-carbonated 11 

sand contents for core LDB01-I and LDB04-I. On the right side are the bi-plots used to calibrate XRF 12 

core scanner data using punctual measurement. Note that bad correlation of K in LDB01-I led not to 13 

use the K/Ti ratio for this core. 14 

 15 

Fig. 3. Age-modelling of both cores LDB01-I and LDB04-I. Black symbols represent calibration 16 

probability plots of samples taken on LDB01-I, whereas white ones were taken on LDB04-I. To 17 

increase the representativeness of age models, when possible, samples from one core were reported in 18 

the age-model of the other one through the correlation of high resolution geochemical signals. Age-19 

models, as well as sedimentation rates, were computed using CLAM. For LDB04-I two sections 20 

received a particular attention to take into account both hiatuses and instantaneous deposits which 21 

were previously identified thanks to seismic imagery. 22 

 23 

Fig. 4. Geochemical proxies plotted against time together with their interpretation in terms erosion 24 

intensity (VH = very high), pattern (chemical vs. physical) and source (prealps = P vs. Mont Blanc 25 

massif = MB). Phases of enhanced detrital input generally fit with previously published one by Debret 26 

al. (2010), however the higher resolution of the geochemical signal led to propose a refined 27 

nomenclature of them. Human impact is suspected since the Bronze Age due a preponderance of 28 

prealpine, highly weathered material. 29 

 30 

Fig. 5. Main Lake Bourget geochemical signals compared with regional reconstructions of  31 

hydrological conditions (Lake Accesa and Cerin: Magny et al., 2011; Lake Constance: Wessels, 1998)  32 

 33 

Table 1. Chronostratigraphic information incorporated into CLAM to generate age-depth models. All 34 

data were previously published in * Chapron et al., 1999; ** Debret et al., 2010; *** Giguet-Covex et 35 

al., 2010; **** Arnaud et al., 2005. 36 
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