Epigenetic and phenotypic variability in populations of Schistosoma mansoni - a possible kick-off for adaptative host/parasite evolution

Céline Cosseau, A. Azzi, A. Rognon, J. Boissier, S. Gourbière, E. Roger, G. Mitta, C. Grunau

To cite this version:

HAL Id: halsde-00495189
https://hal.archives-ouvertes.fr/halsde-00495189
Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Epigenetic and phenotypic variability in populations of *Schistosoma mansoni* – a possible kick-off for adaptive host/parasite evolution

C. Cosseau, A. Azzi (1), A. Rognon, J. Boissier, S. Gourbière, E. Roger (2), G. Mitta and C. Grunau (3)

Parasitologie Fonctionnelle et Evolutive
UMR 5244 CNRS/Université de Perpignan/EPHE
52, Avenue Paul Alduy
66860 Perpignan
France
Tel +33-4-68-66-21-80
Fax +33-4-68-66-22-81

1) both first authors contributed equally
2) Current address:

U 547 Inserm - Université de Lille 2
Institut Pasteur de Lille
1, rue du Professeur A. Calmette,
59019 - Lille,
France
3) corresponding author

Abstract

Epigenetics, the science of heritable but modifiable information, is now a well-accepted component of many research fields. Nevertheless, epigenetics has not yet found broad appreciation in one of the most exciting fields of biology: the comprehension of evolution. This is surprising, since the reason for the existence of this alternative information-transmitting system lies certainly in the evolutionary advantage it provides. Theoretical considerations support a model in which epigenetic mechanisms allow for increasing phenotypic variability and permit populations to explore the adaptive landscape without modifications of the genotype. The data presented here support the view that modulating the epigenotype of the human bloodfluke *Schistosoma mansoni* by treatment of larvae with histone deacetylase inhibitor leads indeed to an increase of phenotypic variability. It is therefore conceivable that environmentally induced changes in the epigenotype release new phenotypes on which selection can act and that this process is the first step in adaptive evolution.

Introduction

The genotype of an organism refers to its basic DNA sequence. The epigenotype refers to chemical modifications of that DNA and associated proteins, such as DNA-, or histone methylation that affect gene expression. The epigenotype is mitotically and to some degree meiotically heritable, but unlike in the genotype, changes in the epigenotype are reversible. It is now known that (i) individuals vary substantially in their epigenotypes (e.g. Kaminsky et al. 2009), (ii) that the epigenotype can change in response to environmental changes (e.g. Dolinoy et al. 2006), and consequently (iii) that epigenetic variation can result in phenotypic variation. We define here phenotypic variation as the change in a phenotypic character, and variability as the extent of change. Thus, epigenetic variation could be responsible for substantial phenotypic variation in natural populations that is both environmentally induced and responds to selection (at least for a few generations). While traditional models of evolution and heritability have been slow to incorporate epigenetics, some authors have suggested that epigenetics is crucial for adaptive evolution (e.g. Bossdorf et al. 2008; Jablonka and Lamb 1995). One way in which epigenetic variation could play a major role in evolution is by allowing phenotypic variability to increase, and populations to widely
explore the fitness (or adaptive) landscape. This could lead to a rapid adaptation to
environmental changes or colonization of new environments. Changes in the
epigentic status of individuals in a population could result in random phenotypic
changes that allow a population to explore new regions of the fitness landscape. Yet
unlike in traditional models of adaptive phenotypic plasticity (Crispo 2008), the
transient heritability of that induced variation allows favored phenotypes to spread
among the descendants – even without continuous environmental induction - until the
reversible variation can be converted into permanent genetic variation. Thus,
epigenetics provides new mechanisms for old concepts such as genetic assimilation
(see Pigliucci et al. (2006) for review). Epigenetics may also play a role in the rapid
speciation and adaptation that sometimes follows hybridization between species
(Barton 2001).

The physical carriers of epigenetic information are DNA methylation, modification of
histones, non-coding RNA and the location of genes in the nucleus. These information
carriers interact, and they form an Epigenetic Inheritance System (EIS) (Maynard
Smith 1990). There are abundant examples for the modulation of gene activity and
determination of phenotypes by epigenotypes (e.g. Esteller 2002, Weaver et al. 2004,
Jacobsen and Meyerowitz 1997, Cubas et al. 1999). Since the phenotype is dependent
on the epigenotype, epigenetic variability will have an effect on phenotypic
variability. Theoretical models predict that phenotypic variability increases if (i)
epigenetic variability is high, and (ii) epigenetic memory \(m \) is high (Pal and Miklos
1999). Epigenetic memory \(m \) describes the capacity to transmit the epigenetic
information from one generation to the other (0 \(\leq m \leq 1 \)). For DNA methylation in
human lymphocytes for instance, \(m \) is close to 1 (\(m = 0.96 \) (Laird et al. 2004)) during
mitosis. If \(m = 0 \) no epigenetic information transmission occurs, and phenotypic
changes beyond the limits of phenotypic plasticity require changes of the genotype.
Again, theoretical considerations predict \(m \) to be low if the effective population size
\(N_e \) is large (Rodin and Riggs 2003). Indeed, the only organisms in which epigenetic
mechanisms appear to be the exception rather than the rule are bacteria (and viruses),
i.e. those with very large \(N_e \). The relation of fitness \(W \) to all phenotypic characters \(x \)
of the individuals in a population can be imagined as an n-dimensional fitness space
or adaptive landscape (Wright 1932). If we consider a population that is located at a
fitness maximum in an adaptive landscape, it is evident that every change in the
phenotype will decrease the fitness of this population. In this situation, there will be
strong selection against a large phenotypic variability. Conversely, at a position where the adaptive landscape is concave, increasing phenotypic variability is advantageous for the population (Pal and Miklos 1999). In conclusion, the safest way for populations with low \(N_e \) to increase the phenotypic variability is to increase epigenetic variability but to keep the genotype constant. Given the impact of the epigenotype on the phenotype, the conclusion that increased epigenetic variability leads to increased phenotypic variability appears logical, however, an analysis of this relation is so far missing. Comparison of DNA methylation of 150 loci in 20 cultivars of cotton by msAFLP has shown that 67 % of the loci had differences in DNA methylation patterns (Keyte et al. 2006). In contrast, an earlier study of genetic polymorphism found only about 22 % of RFLP bands to be polymorphic (Brubaker and Wendel 1994). Compared to genetic variability, epigenetic variability appears to be large. But so far no experiment relates unambiguously epigenetic and phenotypic variability.

Parasites are models of choice for this analysis of interrelation between epigenetics and adaptation because their evolution is fast and their effective population size is small (Poulin and Thomas 2008). Therefore, we decided to conduct such experiments using populations of larvae of the human blood-fluke Schistosoma mansoni as a model. S. mansoni is a parasitic helminth whose life-cycle is characterized by passage through two obligatory sequential hosts: the fresh-water snail Biomphalaria glabrata for the asexual part, and humans or rodent as hosts for the sexual part. An estimated 200 million people in 74 countries suffer from schistosomiasis caused by S. haematobium, S. japonicum, and S. mansoni, and schistosomiasis is the most severe tropical diseases in terms of morbidity after malaria (Chitsulo et al. 2004). The eggs of the parasite are emitted with the feces but can also accumulate in the liver and cause the symptoms of the disease. When the eggs come into contact with water, free-swimming larvae (miracidia) hatch and actively seek B. glabrata snails as intermediate host. In natural populations less than 5% of snails are infected indicating the high selective pressure on the parasite at this point (Sire et al. 1999). After penetration into this host, the parasite develops via a primary (mother) sporocyst and a daughter sporocyst generation into the cercaria that infect the vertebrate host. This miracidia-sporocyst transition can easily be achieved in-vitro (Guillou et al. 2007).

We wondered whether modulation of the epigenotypes in a population would increase the number of different phenotypes. Since DNA methylation is probably absent in S. mansoni (Fantappie et al. 2001), we decided to use Trichostatin A (TSA), a reversible
inhibitor of histone deacetylases (HDAC) (Yoshida et al. 1995), as epigenetic modulator. HDAC are present in *S. mansoni* (Oger et al. 2008) and TSA strongly reduces HDAC activity in this organism (Dubois et al. 2009). We show here that treatment of populations of *S. mansoni* larvae with TSA increases phenotypic variability on morphological and behavioral levels, and on the level of gene transcription, and leads to changes in snail infection success. Our data fit well with a theoretical model in which epigenetic generation of phenotypic variants is a first step in adaptive evolution.

Material and Methods

Choice of parasite populations: The ideal experimental design would be to use clonal populations derived from a single individual. Such clones are produced during one stage of the life cycle of *S. mansoni* (the daughter sporocyst produces clonal populations of cercariae). These are the larvae that infect the vertebrate host. For reasons of biological safety and because our laboratory focus on parasite/snail interactions we wanted to avoid using primarily cercariae. An alternative approach of generating genetically nearly identical individuals is the use of inbreeding. Therefore a *S. mansoni* strain (geographic origin Brazil) was used that had been inbred for more than 100 generations in our laboratory. Investigation of nine microsatellite markers revealed no genetic differences among individuals (details on request). We consider heritable genetic differences between individuals of this strain negligible.

Parasite Culture: Eggs were recovered from infected hamster (*Mesocricetus auratus*) 8 weeks post-infection. Livers were collected and kept in sterile saline 0.85% containing an antibiotic / antimycotic mixture (penicillin 100 units/ml, streptomycin 0.1 mg/ml, amphotericin 0.025 µg/ml; Sigma#057K2402). Livers were homogenized and eggs were filtered and washed. Miracidia were allowed to hatch and were concentrated by sedimentation on ice for 15 - 60 minutes. For initiation of *in-vitro* transformation into primary sporocysts miracidia were transferred into Chernin’s balanced salt solution (CBSS) (Chernin 1963).

Cytotoxicity test: Cytotoxic effects of the drug were measured using the Roche Cytotoxicity Detection Kit (Roche #04744926001) that is based on the measurement of lactate dehydrogenase (LDH) activity released from dead and lysed cells into the supernatant. At least 320 larvae were used for each test.
SDS-PAGE and Western Blot: Western blots were used to evaluate the degree of histone acetylation. Four hundred sporocysts were re-suspended in denaturation buffer (0.2 % bromophenol, 10% sucrose, 3% SDS, and 0.2 M DTT, 62.5 mM Tris/Cl, pH 6.8) treated by sonication (Vibra CellT.M. 75185) (60% intensity, 6 times 15 sec, with cooling intervals on ice) and boiled 10 min at 95°C. Proteins were separated by SDS-PAGE in 15% polyacrylamide and transferred to nitrocellulose membranes (Amersham RPN203D) by the semi-dry method (SEMI-PHOR Bio-Rad). The membrane was blocked overnight at 4°C in blocking buffer (150 mM NaCl, 0.05% v/v Tween 20, 5% w/v fat-free dry milk, 20 mM Tris/Cl, pH 7.5) and incubated with anti-histone H3 (Active Motif #39164 Lot#144, or abcam #ab1791-100 Lot#455351) and, after stripping in buffer ST (62 mM TRIS/Cl, 2% SDS, 0.8% beta-Mercaptoethanol, pH6.8) and exhaustive washing in water, with anti-hyperacetylated histone H4(Penta) (Upstate #06-946 Lot#29860) for 2 hours in blocking buffer. Membranes were washed, and incubated with peroxydase-coupled anti-rabbit (Pierce 31460). Bands were revealed by Enhanced Chemical Luminescence (ECL Pierce) and direct exposure to x-ray film (Amersham EmNo.27304). Films were scanned (BioRad GS-800 Calibrated Densitometer) and band intensities were quantified with ImageJ (Abramoff et al. 2004).

Trichostatin A solution: Trichostatin A (TSA) (invivoGen met-tsa-5) was dissolved in ethanol to 20 mM and added either to the miracidia pool or the sporocyst culture, at appropriate concentration determined after preliminary trials (see Results). To the untreated control, an equal volume of ethanol was added (mock treatment).

Tracking of larvae movement: Larvae were kept in mineral water at 22-26°C and filmed with a conventional numerical camera (Nikon Coolpix 5000) adapted to a stereomicroscope for one minute at 15 frames per second (fps) and an image size of 320 x 240 pixels. Background was removed, and larva movement was tracked with ImageJ and a particle tracker plug-in (Sbalzarini and Koumoutsakos 2005). Positions were converted into x/y coordinates for each frame and each individual miracidium. A detailed description is available on our web-site (http://methdb.univ-perp.fr/cgrunau/methods/Larvae_tracking.html). Points on the trajectory were considered different when they were at least two pixels apart. Straightness of the movement was calculated as rate of change of direction, i.e. the sum of all deviations in the trajectory as rad/sec (Ulyott 1936). Migration speed was converted into mm/sec.
Measurements of larvae: Individual sporocysts were photographed with a CCD camera under a microscope without coverslip, and length and largest width were measured using Visilog 6.3 (Noesis). Cercariae were fixed with hot 70% ethanol, stained with azocarmin (Touassem et al. 1992), photographed, and head length and width, body length and length of the bifurcated tail were measured as above.

mRNA preparation from individual larvae and reverse transcription: For RNA isolation, individual sporocysts were collected into 100 µl lysis buffer (Dynabeads mRNA DIRECT™ Micro kit, Dynal® Biotech) in Rnase-free tubes and stored at — 80°C. Messenger RNA were extracted using the Dynabeads mRNA isolation Kit according the manufacturer’s instructions. This protocol is based on base-pairing between the poly-A residues at the 3’ end of the messenger RNA and the oligo-dT residues covalently coupled to the surface of the paramagnetic beads. For cDNA synthesis, reaction mixture was directly added to the bead-trapped mRNA. Reaction was carried out in a final volume of 20 µl (0.5 mM dNTPs, 0.01 mM DTT, 1x first-strand buffer, 2 U RNase out, 10 U SuperScript™ II RT (Invitrogen, lot#366592)) 50 min at 40°C.

RT-PCR amplification: Duplicated genes are particularly prone to be under epigenetic control and we decided to use a family of genes that was recently discovered in our laboratory (SmPoMuc, (Roger et al. 2008b)) as markers for gene expression variants. These genes are particularly useful because length polymorphism reflecting different transcripts can easily be detected using nested PCR with two primer pairs hybridizing to conserved regions in the cDNA (Roger et al. 2008a; Roger et al. 2008c). cDNA was PCR amplified using forward primer Exon1F12 GGAAGAATGAACAAAGAAAATTATTCTC, reverse primer Exon1R TGACACAGAAAACTTAAAGATCC and reaction conditions (95°C 1min; 40x 95°C 30 s, 65°C 30 s, 68°C 3 min; 68°C 10 min). In a subsequent nested PCR forward primer NestedExon1F TATNTTGCCTGATAAG, reverse primer NestedExon15R ATCATAAAACAAACACTGAGG and 46°C annealing temperature were used. These primers amplify polymorphic transcripts of the SmPoMuc genes (Roger et al. 2008c). PCR was done with the Advantage® 2 PCR Enzyme System (Clontech). PCR products were separated by electrophoresis in 2% agarose gels, and visualized by staining with ethidiumbromide. Amplicons of different length were counted.

Infection of Biomphalaria glabrata and mice: Infection was performed as described before (Theron et al. 2008) by the same person. In brief, eggs were incubated in 0.9%
saline for 3 h in the dark, then mineral water was added and beakers were exposed to
light for 1 h. Ten miracidia were brought into contact with individual *B. glabrata*
(diameter 4.5 mm) for 24 h in 5 ml mineral water. Thirty to sixty snails were infected
in parallel. For infection of female mice, 170 cercariae were used for each animal.

Statistical methods: Because analyzed variables are not normally distributed
(Kolmogorov-Smirnov test, p<0.05), means were compared using non-parametric
Mann-Whitney test and variances were compared using Brown-Forsythe test (Brown
and Forsythe 1974). This test is an alternative formulation of the Levene test but is
more robust under non-normal distribution (Conover et al. 1981). Infection success
was tested using a c²-test.

Results

Establishment of 20 μM TSA for 4 h as optimal experimental condition

One hundred to four hundred sporocysts were incubated with increasing
concentrations of TSA (2nm, 20nM, 200nM, 2μM, 20µM, 200µM and mock
treatment) for 2, 4 and 16 hours and morphological changes were observed by light
microscopy. Such changes became clearly visible after 4 hours. We decided to
quantify the morphological alterations by measuring length and width of the
sporocysts. A total of 580 sporocysts were photographed and measured after
incubation for 4 hours in the above-mentioned conditions. TSA was replenished after
2 hours. Most pronounced changes in morphological variability were observed with
20µM TSA. Western blots (normalized to histone H3) indicate that acetylation of
histone H4 increases by about 25% under these conditions, and the LDH test shows
that cytotoxicity is at most 7% (supplementary figure 1 and supplementary table1).
Consequently, all subsequent experiments were done with 20µM TSA for 4 hours.
Since we had no *a priori* hypothesis about the phenotypic impact of the modulation of
the epigenotype by TSA we decided to measure three very different phenotypic
characters: (i) behavior (explorative movement of miracidia), (ii) morphology
(length/width ratio of sporocysts) and (iii) gene transcription of a family of genes that
code for polymorphic proteins: *SmPoMuc*. The *SmPoMuc* gene family and their
polymorphism were earlier characterized and extensively studied by our laboratory
(Roger et al. 2008a; Roger et al. 2008b; Roger et al. 2008c). When sporocysts were
used, incubation with TSA was started after transfer into CBSS, for miracidia
incubation was started with transfer into mineral water.
Incubation with TSA changes phenotypic variability of explorative movement

Incubation with TSA changes the distribution of swimming behavior in populations of miracidia. While in the mock-treated control almost all larvae move in straight lines with occasional U-turns, in TSA treated populations we observed a large variety of swimming behaviors ranging from straight lines to wave-like movements with a great frequency of changes of direction. To quantify this behavior we used a method developed by Ullyott (1936) that describes the straightness of the trajectory by a single numerical values: rate of change of direction (rdc). If this value is 0, the movement is perfectly straight, larger values indicate direction changes. For mock-treated controls, mean rdc is 0.086 rad/sec and variance is 0.003 rad/sec (n=43), while after TSA treatment mean rdc is 0.139 rad/sec and variance in rdc is 0.009 rad/sec (n=43) (figure 1 and supplementary figure 2). Differences in means and variances are statistically significant (U=609, p=0.006 and W=7.95, p=0.006, for means and variances respectively). In other words, after TSA treatment there are still miracidia that migrate in straight lines but in addition, new phenotypes with a different curve-rich movement occur. In contrast, mean and variance in velocity of the miracidia did not change (mock-treated: 6.04 points/sec±6.4 (1.61±0.70 mm/sec), with TSA: 5.95 points/sec±5.64 (1.58±0.63 mm/sec), U=843, p=0.48 and W=0.73, p=0.39 for means and variances respectively).

Incubation with TSA changes phenotypic variability of morphology

Next, we analyzed the influence of TSA on the phenotypic variability on a morphological level. A simple way to describe morphology by a single numerical value is the ratio of length to width (L/W). A ratio of 1 describes a circular form, and higher values indicate lengthening of the shape. In mock-treated populations we observed round and moderately elongated forms with a L/W ratio from 1.01 to 4.85 (n=63). In the TSA treated population, we still found round sporocysts but observed also very long forms with a L/W ratio up to 7.65 (n=65). The mean phenotype did only moderately change (mock-treated: m=2.04, TSA-treated: m=2.58, U=1141, p=0.17) but the TSA treatment led to the generation of additional long phenotypes and thus an increasing variance in morphology (mock-treated: V=0.78, TSA-treated V=2.37, W=7.95, p=0.006) (figure 1 and supplementary figure 3).

Incubation with TSA changes phenotypic variability of gene transcription

We then hypothesized that the observed changes in morphological and behavioral variability should be caused by and underlying change in gene expression. RNA was
extracted from individual sporocysts, cDNA was produced and SmPoMuc transcripts were amplified and separated by electrophoresis. The number of polymorphic bands was counted for each individual. We observed in the mock-treated control as well as in the TSA treated group, individuals with only 1 band, but with TSA we detected up to 6 bands, while without TSA we never found more than 5 bands. In the TSA treated population the average number of transcripts per individual increased from 2.7±1.1 (mock: median=3, n=34) to 3.6±1.1 (with TSA: median=4, n=36) (figure 1 and supplementary figure 4). Significant difference is observed between means (U=346, p=0.001). Clearly, TSA induces the generation of new combinations of transcripts in the population without loosing the old combinations. Since SmPoMuc is a bona fide candidate for a key-element in the molecular interaction with the snail-host (Roger et al. 2008a; Roger et al. 2008c), the generation of new variants is expected to have an impact on infection success of the parasite larvae.

Incubation with TSA influences infection success

Theoretical considerations predict that the increase of phenotypic variability in a population will have an influence on the fitness of the individuals of this population. We decided to use infection success as a measure for fitness and exposed mock-treated and TSA-treated miracidia to a compatible B. glabrata host. Four weeks post-infection the infected snails were counted. With TSA treatment, infection success decreased 1.6 fold from 79±13% infected snails for mock-treated larvae (n=90) to 48±22% (n=90) with TSA. The experiment was repeated three times. The difference is significant (c1²=16.28, p<0.0001). Variance was not calculated since the number of experiments was too small.

TSA has an effect on the phenotype through several mitotic generations

By definition, epigenetic information is heritable, but changes in the information are reversible. We wondered if phenotypic changes would be detectable after several mitotic generations. We therefore studied the phenotype of the second type of free-swimming larvae that are produced after infection by the miracidia by clonal reproduction in the snail-host: the cercariae. Cercariae were collected after 40 days of infection and length to width ratio of the head, length of the body and size of the bifurcated tail were measured. No differences between cercariae that were descendants of the TSA-treated miracidia and the control group were detected for head and tail. In contrast, body length differed significantly (U=575.5, p<0.0001; W=2.915, p=0.091): body length of cercariae was 210±14 µm in the control group
(n=56), and 194±18 µm for cercariae derived from TSA-treated miracidia (n=50) (supplementary figure 5). Apparently, the effect of TSA is detectable on the morphology after three metamorphosis steps (from miracidia to primary sporocyst, secondary sporocyst and cercaria). Interestingly, body length variance did not change.

TSA has no effect on infection success after one meiotic generation

Finally we wondered whether phenotypic information that influences infection success would be transmitted to the next generation after meiosis. Miracidia were treated with TSA, used to infect snail and cercariae shed from these snails were used to infect 10 mice. After sexual reproduction of *S. mansoni*, eggs were extracted, miracidia were pooled and used to infect snails. In this case, no significant difference in infection success was observed ($\chi^2=0.02, p=0.97$). The F2 generation of TSA-treated F1 had 97% infection rate (n=30), and F2 of mock-treated F1 had 96% infection rate (n=57).

Discussion

Ten years ago Pal and Miklos (Pal and Miklos 1999) proposed that the reason for the existence of an alternative information transmitting system – the epigenetic inheritance system (EIS) (Maynard Smith 1990) – could reside in an evolutionary advantage that is conferred by such a system. With EIS, populations would dispose of a larger phenotypic variability that increases in response to changes in the environment, thus creating additional phenotypes on which selection would act. These phenotypes remain cryptic under normal conditions. There is ample evidence that the epigenotype influences the phenotype. The phenotype must therefore be considered as an expression of both genotype and epigenotype, under influence of the environment. However, in contrast to the genotype, the epigenotype can be influenced directly by the environment (reviewed for instance by Liu et al. (2008) and Pembrey (2002)). Nevertheless, the question whether changes in the environment increase epigenetic variability and this in turn increases phenotypic variability was never addressed. It is technically difficult, if not impossible for the moment, to prove that environmental changes induce changes in the epigenetic variability. Instead, we decided to influence directly epigenetic variability in a population and to measure the effect on phenotypic variability. TSA is a specific reversible inhibitor of HDAC. Treatment with this drug influences only histone acetylation and the equilibrium between heterochromatin and
euchromatin. Basically, euchromatin is the open, transcription permissive form of chromatin that is highly acetylated, while heterochromatin correspond to the de-acetylated condensed form where gene transcription is impaired. We show here that the treatment with TSA does not lead to strong change in the mean phenotype in a population, but increases phenotypic variability, i.e. reveals cryptic phenotypes. This is the first time that experimental proof for the hypothesis of Pal and Miklos is delivered (figures 1 and 2). Nevertheless, our findings can be related to earlier observations: in a now classical experiment C.H. Waddington treated pupae of *Drosophila melanogaster* with heat-shocks. He observed the induction of a cryptic phenotype (crossveinless) and could select for this phenotype (Waddington 1953).

The molecular basis for this environmentally induced heritable change in phenotypic variability remains unclear. However, recently it was shown that heat-shock protein hsp90 interacts with chromatin modifying enzymes (Sollars et al. 2003) and this interaction could be the physical link between heat-shock and the release of epigenetic control of cryptic phenotypes. Waddington’s original data are not anymore available but it is conceivable that he observed the same increase in phenotypic variability, but selected for a single, easily observable phenotype. In *S. mansoni*, the induction of a metastable phenotype (resistance to an antischistosomal drug hycanthone) by a single exposure to the drug was described (Jansma et al. 1977). Resistance was maintained through the first seven generations and became metastable in the subsequent generations. In these experiments the phenotypic variability of the studied population was not measured, so it is not clear if particular phenotypes were induced, and then selected for, or if a larger variety of additional phenotypes was induced and only those that were selected for were documented.

The hypothesis of Pal and Miklos predicts that: (i) environmental changes increase epigenetic variability, (ii) this increase in epigenetic variability allows for expression of cryptic phenotypes without losing old phenotypes. Our data support this second essential point. This increase in phenotypic variability permits to explore the adaptive landscape at a wide scale and allows for the colonization of new fitness maxima (figure 2). It was not a goal of our experiments to reach this fitness maximum, but to show that the mechanism that leads to increased fitness (increased phenotypic variability) can be based on an epigenetic mechanism. In the fitness landscape defined in our infection experiment, increasing epigenetic variability and generating novel phenotypes by TSA treatment decrease the proportion of mean phenotypes having the
optimal fitness. This explains why when we modified the epigenetic variability fitness of the larvae population, their infection success decreased by about 40%. We used the infection success as a measure for the fitness. One might argue that it is simply a toxic effect of the TSA that we observed. However, direct measurement of cytotoxicity of 20µM TSA revealed low toxicity of ≤7% after 4h. After 4 h of treatment, no difference in H3 quantity could be detected. We also observed no difference in swimming speed of the miracidia. Their velocity (mock-treated: 1.61±0.70, with TSA: 1.58±0.63 mm/sec) corresponds to earlier published values (1.92 – 2.41 mm/sec (Mason and Fripp 1976)). If TSA would be highly toxic then we should find stronger impact on cell survival, protein synthesis and mobility. Our findings correspond well to a recent study on induction of apoptosis in schistosomules: after 24 h of treatment with TSA no caspase 3/7 activity or other signs of apoptosis could be detected (Dubois et al. 2009). Earlier we had shown that 20µM TSA does not influence the transformation of miracidia into sporocysts while higher concentrations do so (Azzi et al. 2009). Consequently, we conclude that the major part of the observed effect on fitness is in fact due to the increased phenotypic variability that produces phenotypes that are away from the fitness maximum. We detected such change in phenotypic variability in three arbitrarily chosen phenotypic characters (morphology, mobility and SmPoMuc expression) but it is likely that the same style of change had also occurred in characters that are directly related to infection success. In our experimental setting, where ~100% matching between host and parasite is generally observed, the appearance of new phenotypes was of course disadvantageous for the parasites since new phenotypes have a high chance of not matching the host. However, in the natural environment where the host populations are probably fluctuating irregularly, phenotypic variability would be a way to assure that always at least a small proportion of phenotypes is produced that matches to whatever host is present. This idea is known as “risk-spreading” or “bet-hedging” (reviewed by Hopper (1999)). Theoretical models support the view that bet-hedging is a way to cope with fluctuating environments, but that this strategy is also costly for the population (Kussell and Leibler 2005). This increased cost should somehow be reflected in the descendants of the population that followed this strategy. Interestingly, we noticed a decrease in body length of cercariae (supplementary figure 5) that was observed after exposure of the corresponding miracidia to TSA. We believe that this reduction of body length by about 10% in the cercariae that are
descendants of the TSA treated miracidia corresponds to the cost of bet-hedging. Environmentally-induced bet-hedging with positive feed back (i.e. epigenetic memory) would present a strategy that combines the advantages of constant phenotypes with high fitness in stable environments with phenotypic variations in fluctuating environments. Indeed, such a system was recently described for bacteria (Veening et al. 2008). One might wonder why no effect of TSA was detectable after one meiotic generation. Experiments with *S. mansoni* larvae have the advantage that sufficiently large populations of genetically homogenous individuals can easily be produced and phenotypic characters can be measured. However, very little is known about epigenetic mechanisms in *S. mansoni*. Apparently, a reset of epigenetic information takes place during gametogenesis or early embryonic development. This was documented for a number of other species (e.g. (Rousseaux et al. 2008)). The biological reason for this reset is unknown. It was speculated that it serves to erase errors in the epigenetic information (Holliday 1984). The reset is however often incomplete and allows for transmission of a bit of information to the next generation. While it is clear that transgenerational epigenetic effects exist, the mechanism of transmission is still under discussion (reviewed by Youngson and Whitelaw (2008)). It is possible that the transgenerational effect of the TSA treatment in our system is too small to be detected after only one generation. It could also be that the amount of information that is passed to the next generation is a function of the environmental conditions. Investigation of such transgenerational epigenetic effects is of tremendous scientific interest. However, it was not in the focus of our present work. Further experiments are needed to identify the ways of transmission of epigenetic information trough the germline of *S. mansoni* and its impact on adaptive evolution. Our data provide evidence that in *S. mansoni* phenotypic variability is inducible by directly modulating the epigenotype of this parasite. However, we do not exclude that other mechanisms act as well. Increase of phenotypic variability could be the initial step for adaptive evolution towards a phenotype that is compatible with a new host. This could have occurred in the past during the recent colonization of the new world by *S. mansoni* (Morgan et al. 2005). While the resurgence of speciation is at the heart of many studies in evolutionary biology, the only attempt, to our knowledge, to anticipate how epigenetic inheritance could influence species diversification is theoretical (Pal and Miklos 1999). Pal and Miklos suggested that a peak shift could be
facilitated by epigenetic inheritance of the ecological trait under disruptive selection. This is directly relevant to adaptive speciation by host switch. However, host switch is not the only scenario allowing for parasite species adaptive diversification. Co-speciation has been documented for many years, and within-host duplication is currently being more and more widely acknowledged (Perez-Tris et al. 2007). In the last two cases, disruptive selection gradually appears as a result of host divergence or as a consequence of ecological interactions within hosts. It is not obvious that an epigenetically caused phenotypic variability would then favor adaptive diversification of the parasites. In conditions where disruptive selection arises as a result of ecological interactions, the evolution of phenotypic variability could actually be an alternative to (and thus impede) adaptive speciation (Rueffler et al. 2006). Expanding Pal and Miklos’ theory to account for epigenetic inheritance of such plasticity in an ecological trait involved in co-speciation or within host duplication should definitively provide valuable theoretical insight contributing to the assessment of the potential impact of epigenetic mechanisms in the ecology and evolution of parasites.

Acknowledgment

The authors are indebted to André Theron and Michael Blouin for many discussions during the preparation of this manuscript. The comments of the two anonymous reviewers were immensely helpful. Bernard Dejean provided valuable technical support. The work received funding from the Program Schistophepigen ANR-07-BLAN-0119-02 of the French National Agency for Research and from the CNRS through a post-doctoral fellowship.
References

