H. Alout, A. Berthomieu, F. Cui, Y. Tan, C. Berticat et al., Different amino-acid substitutions confer insecticide resistance through acetylcholinester 1 insensitivity in Culex vishnui and Culex tritaeniorhynchus (Diptera Culicidae) from China, J. Med. Entomol, vol.44, pp.463-469, 2007.

H. Alout, A. Berthomieu, A. Hadjivassilis, and M. Weill, A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus, Insect Biochem. Mol. Biol, vol.37, pp.41-47, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00367134

H. Ayad and G. P. Georghiou, Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterase, J. Econ. Entomol, vol.68, pp.295-297, 1975.

C. Berticat, G. Boquien, M. Raymond, and C. Chevillon, Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes, Genet. Res, vol.79, pp.41-47, 2002.
URL : https://hal.archives-ouvertes.fr/halsde-00186376

C. Berticat, O. Duron, D. Heyse, and M. Raymond, Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens, Genet. Res, vol.83, pp.189-196, 2004.
URL : https://hal.archives-ouvertes.fr/halsde-00186371

D. Bourguet, N. Pasteur, J. Bisset, and M. Raymond, Determination of Ace.1 genotypes in single mosquitoes: toward an ecumenical biochemical test, Pestic. Biochem. Physiol, vol.55, pp.122-128, 1996.
URL : https://hal.archives-ouvertes.fr/halsde-00201448

M. Coluzzi, V. Petrarca, and M. A. Di-deco, Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae, Boll. Zool, vol.52, pp.45-63, 1985.

V. Corbel, J. M. Hougard, R. N'guessan, and F. Chandre, Evidence for selection of insecticide resistance due to insensitive acetylcholinesterase by carbamate-treated nets in Anopheles gambiae s.s. (Diptera Culicidae) from Cote d'Ivoire, J. Med. Entomol, vol.40, pp.985-988, 2003.

X. Cousin, U. Strahle, and A. Chatonnet, Are there non-catalytic functions of acetylcholinesterases? Lessons from mutant animal models, Bioessays, vol.27, pp.189-200, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02680093

A. Della-torre, C. Fanello, M. Akogbeto, J. Dossou-yovo, G. Favia et al., Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa, Insect Mol. Biol, vol.10, pp.9-18, 2001.

A. Diabaté, F. Chandre, M. Rowland, R. N'guessan, S. Duchon et al., The indoor use of plastic sheeting pre-impregnated with insecticide for control of malaria vectors, Trop. Med. Int. Health, vol.11, pp.597-603, 2006.

L. Djogbénou, M. Weill, J. M. Hougard, M. Raymond, M. Akogbéto et al., Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance, J. Med. Entomol, vol.44, pp.805-810, 2007.

L. Djogbénou, K. R. Dabiré, A. Diabaté, M. Akogbéto, J. M. Hougard et al., Identification and geographical distribution of the ace-1R mutation in the malaria vector Anopheles gambiae in south-western Burkina Faso, West Africa, Am. J. Trop. Med. Hyg, vol.78, pp.298-302, 2008.

O. Duron, P. Labbe, C. Berticat, F. Rousset, S. Guillot et al., High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes, Evolution, vol.60, pp.303-314, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01946020

N. Elissa, J. Mouchet, F. Rivière, J. Y. Meunier, and K. Yao, Sensibilité d'Anopheles gambiae aux insecticides en Côte d'Ivoire, Cahiers Santé, vol.4, pp.95-99, 1994.

G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol, vol.7, pp.88-95, 1961.

G. Favia, G. Dimopoulos, A. Della-torre, Y. T. Touré, M. Coluzzi et al., Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.10315-10319, 1994.

D. Fournier and A. Mutéro, Modification of acetylcholinesterase as a mechanism of resistance to insecticides, Comp. Biochem. Physiol, vol.108, pp.19-31, 1994.

D. Fournier, F. Karch, J. M. Bride, L. M. Hall, J. B. Bergé et al., Drosophila melanogaster acetylcholinesterase gene: structure, evolution and mutations, J. Mol. Evol, vol.210, pp.15-22, 1989.
URL : https://hal.archives-ouvertes.fr/hal-02717733

G. P. Georghiou, R. L. Metcalf, and F. E. Gidden, Carbamates-resistance in mosquitoes: selection of Culex pipiens fatiguans Wied (=Culex quinquefasciatus) for resistance to Baygon, vol.35, pp.691-708, 1966.

G. Gibney, S. Camp, M. Dionne, K. Macphee-quigley, and P. Taylor, Mutagenesis of essential functional residues in acetylcholinesterase, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.7546-7550, 1990.

D. Grisaru, M. Sternfeld, A. Eldor, D. Glick, and H. Soreq, Structural roles of acetylcholinesterase variants in biology and pathology, Eur. J. Biochem, vol.264, pp.672-686, 1999.

P. Guillet, R. N'guessan, F. Darriet, M. Traore-lamizana, F. Chandre et al., Combined pyrethroid and carbamate 'two-in-one' treated mosquito nets: field efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus, Med. Vet. Entomol, vol.15, pp.105-112, 2001.

M. Harel, J. L. Sussman, E. Krejci, S. Bon, P. Chanal et al., Conversion of Acetylcholinesterase to Butyrylcholinesterase -Modeling and Mutagenesis, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.10827-10831, 1992.

M. Harel, G. Kryger, T. L. Rosenberry, W. D. Mallender, T. Lewis et al., Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors, Protein Sci, vol.9, pp.1063-1072, 2000.

F. Hoffmann, D. Fournier, and P. Spierer, Minigene rescues acetylcholinesterase lethal mutations in Drosophila melanogaster, J. Mol. Biol, vol.223, pp.17-22, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02701245

E. Huchard, M. Martinez, H. Alout, E. J. Douzery, G. Lutfalla et al., Acetylcholinesterase genes within the Diptera: takeover and loss in true flies, Proc. R. Soc. Lond., B Biol. Sci, vol.273, pp.2595-2604, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01945529

T. Lenormand and M. Raymond, Resistance management: the stable zone strategy, Proc. R. Soc. Lond., B Biol. Sci, vol.265, pp.1985-1990, 1998.
URL : https://hal.archives-ouvertes.fr/halsde-00188539

J. Massoulié, J. L. Sussman, B. P. Doctor, H. Soreq, B. Velan et al., Recommendations for nomenclature in cholinesterases. Multidisciplinary approaches to cholinesterase functions, pp.285-288, 1992.

P. Menozzi, M. A. Shi, A. Lougarre, Z. H. Tang, and D. Fournier, Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations, BMC Evol. Biol, vol.4, p.4, 2004.

J. Mouchet, Agriculture and vector resistance, Insect Sci. Appl, vol.9, pp.297-302, 1988.

A. Mutéro, M. Pralavorio, J. M. Bride, and D. Fournier, Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.5922-5926, 1994.

R. N'guessan, F. Darriet, P. Guillet, P. Carnevale, M. Traore-lamizana et al., Resistance to carbosulfan in field populations of Anopheles gambiae from Côte d'Ivoire based on reduced sensitivity acetylcholinesterase, Med. Vet. Entomol, vol.17, pp.19-25, 2003.

J. G. Oakeshott, A. L. Devonshire, C. Claudianos, T. D. Sutherland, I. Horne et al., Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin-and carboxyl-esterases, Chem. Biol. Interac, vol.157, pp.269-275, 2005.

A. Ordentlich, D. Barak, C. Kronman, Y. Flashner, M. Leitner et al., Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket, J. Biol. Chem, vol.268, pp.17083-17095, 1993.

C. Pennetier, V. Corbel, P. Boko, A. Odjo, R. N'guessan et al., Synergy between repellents and non-pyrethroid insecticides strongly extends the efficacy of treated nets against Anopheles gambiae, Malaria J, vol.6, p.38, 2007.

M. Raymond, C. Berticat, M. Weill, N. Pasteur, and C. Chevillon, Insecticide resistance in the mosquito Culex pipiens What have we learned about adaptation?, Genetica, vol.112, pp.287-296, 2001.
URL : https://hal.archives-ouvertes.fr/halsde-00186377

R. T. Roush and J. A. Mckenzie, Ecological studies of insecticide and acaricide resistance, Annu. Rev. Entomol, vol.32, pp.361-380, 1987.

J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman et al., Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein, Science, vol.253, pp.872-879, 1991.

Y. T. Touré, V. Petrarca, S. F. Traoré, A. Coulibary, H. M. Maïga et al., Ecological genetic studies in the chromosomal form Mopti of Anopheles gambiae s.s, Genetica, vol.94, pp.213-223, 1994.

Y. T. Touré, V. Petrarca, S. F. Traoré, A. Coulibary, H. M. Maiga et al., The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia, vol.40, pp.477-511, 1998.

E. Van-handel and J. F. Day, Correlation between wing length and protein content of mosquitoes, J. Am. Mosq. Control Assoc, vol.5, p.180, 1989.

D. C. Vellom, Z. Radic, Y. Li, N. A. Pickering, S. Camp et al., Amino-acidresidues controlling acetylcholinesterase and butylcholinesterase specificity, Biochemistry, vol.32, pp.12-17, 1993.

M. Weill, P. Fort, A. Berthomieu, M. P. Dubois, N. Pasteur et al., A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is nonhomologous to the ace gene in Drosophila, Proc. R. Soc. Lond., B Biol. Sci, vol.269, pp.2007-2016, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01946120

M. Weill, G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu et al., Insecticide resistance in mosquito vector, Nature, vol.423, pp.136-137, 2003.

M. Weill, C. Malcolm, F. Chandre, K. Mogensen, A. Berthomieu et al., The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors, Insect Mol. Biol, vol.13, pp.1-7, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01946057

C. Wondji, F. Simard, and D. Fontenille, Evidence for genetic differentiation between the molecular forms M and S within the forest chromosomal form of Anopheles gambiae in an area of sympatry, Insect Mol. Biol, vol.11, pp.11-19, 2002.

M. Zaim, A. Aitio, and N. Nakashima, Safety of pyrethroid-treated mosquito nets, Med. Vet. Entomol, vol.14, pp.1-5, 2000.