C. Darwin, The origin of species by means of natural selection, p.1859
DOI : 10.5962/bhl.title.24329

E. Haeckel, Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie, p.1866
DOI : 10.1515/9783110848281

C. B. Van-niel, in Perspectives and Horizons in Microbiology 3-12, 1955.

E. Zuckerkandl and L. Pauling, Molecules as documents of evolutionary history, Journal of Theoretical Biology, vol.8, issue.2
DOI : 10.1016/0022-5193(65)90083-4

C. R. Woese and G. Fox, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proc. Natl. Acad. Sci. USA, pp.5088-5090, 1977.
DOI : 10.1073/pnas.74.11.5088

J. A. Eisen and C. M. Fraser, Phylogenomics: Intersection of Evolution and Genomics, Science, vol.300, issue.5626, pp.1706-1707, 2003.
DOI : 10.1126/science.1086292

H. Philippe and J. Laurent, How good are deep phylogenetic trees? Curr. Opin

A. Rokas and P. W. Holland, Rare genomic changes as a tool for phylogenetics, Trends in Ecology & Evolution, vol.15, issue.11
DOI : 10.1016/S0169-5347(00)01967-4

S. Gribaldo and H. Philippe, Ancient Phylogenetic Relationships, Theoretical Population Biology, vol.61, issue.4, pp.391-408, 2002.
DOI : 10.1006/tpbi.2002.1593

M. Holder and P. Lewis, Phylogeny estimation: traditional and Bayesian approaches, Nature Reviews Genetics, vol.4, issue.4, pp.275-284, 2003.
DOI : 10.1038/nrg1044

Y. L. Qiu, The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes, Nature, vol.402, issue.6760, pp.404-407, 1999.
DOI : 10.1038/46536

D. Moreira, L. Guyader, H. Philippe, and H. , The origin of red algae and the evolution of chloroplasts, Nature, vol.405, issue.6782, pp.69-72, 2000.
DOI : 10.1038/35011054

S. L. Baldauf, A. J. Roger, I. Wenk-siefert, and W. Doolittle, A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data, Science, vol.290, issue.5493, pp.972-977, 2000.
DOI : 10.1126/science.290.5493.972

O. Madsen, Parallel adaptive radiations in two major clades of placental mammals, Nature, vol.409, issue.6820, pp.610-614, 2001.
DOI : 10.1038/35054544

W. J. Murphy, Molecular phylogenetics and the origins of placental mammals, Nature, vol.409, issue.6820, pp.614-618, 2001.
DOI : 10.1038/35054550

J. E. Blair, K. Ikeo, T. Gojobori, and S. B. Hedges, The evolutionary position of nematodes, BMC Evolutionary Biology, vol.2, issue.1, p.7, 2002.
DOI : 10.1186/1471-2148-2-7

E. Bapteste, The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba, Proc. Natl
DOI : 10.1073/pnas.032662799

E. Lerat, V. Daubin, and N. A. Moran, From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the ??-Proteobacteria, PLoS Biology, vol.51, issue.1, p.19, 2003.
DOI : 10.1371/journal.pbio.0000019.st001

URL : https://hal.archives-ouvertes.fr/hal-00427440

A. Rokas, B. L. Williams, N. King, and S. B. Carroll, Genome-scale approaches to resolving incongruence in molecular phylogenies, Nature, vol.425, issue.6960, pp.798-804, 2003.
DOI : 10.1038/nature02053

D. M. Hillis, D. D. Pollock, J. A. Mcguire, and D. J. Zwickl, Is Sparse Taxon Sampling a Problem for Phylogenetic Inference?, Systematic Biology, vol.52, issue.1, pp.124-126, 2003.
DOI : 10.1080/10635150390132911

M. S. Rosenberg and S. Kumar, Taxon Sampling, Bioinformatics, and Phylogenomics, Systematic Biology, vol.52, issue.1, pp.119-124, 2003.
DOI : 10.1080/10635150390132894

H. Philippe, Rodent monophyly: Pitfalls of molecular phylogenies, J. Mol. Evol, vol.45, pp.712-715, 1997.

Y. Lin, Four New Mitochondrial Genomes and the Increased Stability of Evolutionary Trees of Mammals from Improved Taxon Sampling, Molecular Biology and Evolution, vol.19, issue.12, pp.2060-2070, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004031

G. K. Philip, C. J. Creevey, and J. Mcinerney, The Opisthokonta and the Ecdysozoa May Not Be Clades: Stronger Support for the Grouping of Plant and Animal than for Animal and Fungi and Stronger Support for the Coelomata than Ecdysozoa, Molecular Biology and Evolution, vol.22, issue.5, 2005.
DOI : 10.1093/molbev/msi102

M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, and S. Langley, Obtaining Maximal Concatenated Phylogenetic Data Sets from Large Sequence Databases, Molecular Biology and Evolution, vol.20, issue.7, pp.1036-1042, 2003.
DOI : 10.1093/molbev/msg115

A. G. Kluge, A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes), Systematic Biology, vol.38, issue.1, pp.7-25, 1989.
DOI : 10.1093/sysbio/38.1.7

J. Felsenstein, Inferring phylogenies (Sinauer Associates, 2004.

J. Gatesy, C. Matthee, R. Desalle, and C. Hayashi, Resolution of a Supertree/Supermatrix Paradox, Systematic Biology, vol.51, issue.4, pp.652-664, 2002.
DOI : 10.1080/10635150290102311

J. J. Wiens, Missing Data, Incomplete Taxa, and Phylogenetic Accuracy, Systematic Biology, vol.52, issue.4, pp.528-538, 2003.
DOI : 10.1080/10635150390218330

O. R. Bininda-emonds, J. L. Gittleman, and M. A. Steel, The (Super)Tree of Life: Procedures, Problems, and Prospects, Annual Review of Ecology and Systematics, vol.33, issue.1, pp.265-289, 2002.
DOI : 10.1146/annurev.ecolsys.33.010802.150511

B. Baum, Combining Trees as a Way of Combining Data Sets for Phylogenetic Inference, and the Desirability of Combining Gene Trees, Taxon, vol.41, issue.1, pp.3-10, 1992.
DOI : 10.2307/1222480

M. A. Ragan, Phylogenetic inference based on matrix representation of trees, Molecular Phylogenetics and Evolution, vol.1, issue.1, pp.53-58, 1992.
DOI : 10.1016/1055-7903(92)90035-F

O. R. Bininda-emonds, The evolution of supertrees, Trends in Ecology & Evolution, vol.19, issue.6, pp.315-322, 2004.
DOI : 10.1016/j.tree.2004.03.015

F. G. Liu, Molecular and Morphological Supertrees for Eutherian (Placental) Mammals, Science, vol.291, issue.5509, pp.1786-1789, 2001.
DOI : 10.1126/science.1056346

V. Daubin, M. Gouy, and G. Perrière, A Phylogenomic Approach to Bacterial Phylogeny: Evidence of a Core of Genes Sharing a Common History, Genome Research, vol.12, issue.7, pp.1080-1090, 2002.
DOI : 10.1101/gr.187002

URL : https://hal.archives-ouvertes.fr/hal-00427259

J. Gatesy, R. H. Baker, and C. Hayashi, Inconsistencies in Arguments for the Supertree Approach: Supermatrices versus Supertrees of Crocodylia, Systematic Biology, vol.53, issue.2, pp.342-355, 2004.
DOI : 10.1080/10635150490423971

N. Salamin, T. R. Hodkinson, and V. Savolainen, Building Supertrees: An Empirical Assessment Using the Grass Family (Poaceae), Systematic Biology, vol.51, issue.1, pp.136-150, 2002.
DOI : 10.1080/106351502753475916

O. R. Bininda-emonds, Trees Versus Characters and the Supertree/Supermatrix ???Paradox???, Systematic Biology, vol.53, issue.2, pp.356-359, 2004.
DOI : 10.1080/10635150490440396

J. R. Brown, C. J. Douady, M. J. Italia, W. E. Marshall, and M. J. Stanhope, Universal trees based on large combined protein sequence data sets, Nature Genetics, vol.28, issue.3, pp.281-285, 2001.
DOI : 10.1038/90129

C. Brochier, E. Bapteste, D. Moreira, and H. Philippe, Eubacterial phylogeny based on translational apparatus proteins, Trends in Genetics, vol.18, issue.1, pp.1-5, 2002.
DOI : 10.1016/S0168-9525(01)02522-7

Z. Yang, On the Best Evolutionary Rate for Phylogenetic Analysis, Systematic Biology, vol.47, issue.1, pp.125-133, 1998.
DOI : 10.1080/106351598261067

Y. I. Wolf, I. B. Rogozin, N. V. Grishin, and E. Koonin, Genome trees and the tree of life, Trends in Genetics, vol.18, issue.9, pp.472-479, 2002.
DOI : 10.1016/S0168-9525(02)02744-0

B. Snel, P. Bork, and M. A. Huynen, Genome phylogeny based on gene content

F. Tekaia, A. Lazcano, and B. Dujon, The genomic tree as revealed from whole proteome comparisons, Genome Res, vol.9, pp.550-557, 1999.

G. D. Clarke, R. G. Beiko, M. A. Ragan, and R. L. Charlebois, Inferring Genome Trees by Using a Filter To Eliminate Phylogenetically Discordant Sequences and a Distance Matrix Based on Mean Normalized BLASTP Scores, Journal of Bacteriology, vol.184, issue.8, pp.2072-2080, 2002.
DOI : 10.1128/JB.184.8.2072-2080.2002

J. O. Korbel, B. Snel, M. A. Huynen, and P. Bork, SHOT: a web server for the construction of genome phylogenies, Trends in Genetics, vol.18, issue.3, pp.158-162, 2002.
DOI : 10.1016/S0168-9525(01)02597-5

B. E. Dutilh, M. A. Huynen, W. J. Bruno, and B. Snel, The Consistent Phylogenetic Signal in Genome Trees Revealed by Reducing the Impact of Noise, Journal of Molecular Evolution, vol.58, issue.5, pp.527-539, 2004.
DOI : 10.1007/s00239-003-2575-6

J. Lin and M. Gerstein, Whole-genome Trees Based on the Occurrence of Folds and Orthologs: Implications for Comparing Genomes on Different Levels, Genome Research, vol.10, issue.6, pp.808-818, 2000.
DOI : 10.1101/gr.10.6.808

Y. I. Wolf, I. B. Rogozin, N. V. Grishin, R. L. Tatusov, and E. Koonin, Genome trees constructed using five different approaches suggest new major bacterial clades, BMC Evolutionary Biology, vol.1, issue.1, p.8, 2001.
DOI : 10.1186/1471-2148-1-8

S. T. Fitz-gibbon and C. H. House, Whole genome-based phylogenetic analysis of free-living microorganisms, Nucleic Acids Research, vol.27, issue.21, pp.4218-4222, 1999.
DOI : 10.1093/nar/27.21.4218

C. H. House and S. T. Fitz-gibbon, Using Homolog Groups to Create a Whole-Genomic Tree of Free-Living Organisms: An Update, Journal of Molecular Evolution, vol.54, issue.4, pp.539-54745, 2002.
DOI : 10.1007/s00239-001-0054-5

C. H. House, B. Runnegar, and S. Fitz-gibbon, Geobiological analysis using whole genome-based tree building applied to the Bacteria, Archaea, and Eukarya, Geobiology, vol.3, issue.1, pp.15-26, 2003.
DOI : 10.1186/1471-2148-1-8

J. A. Lake and M. C. Rivera, Deriving the Genomic Tree of Life in the Presence of Horizontal Gene Transfer: Conditioned Reconstruction, Molecular Biology and Evolution, vol.21, issue.4, pp.681-690, 2004.
DOI : 10.1093/molbev/msh061

X. Gu and H. Zhang, Genome Phylogenetic Analysis Based on Extended Gene Contents, Molecular Biology and Evolution, vol.21, issue.7, pp.1401-1408, 2004.
DOI : 10.1093/molbev/msh138

D. H. Huson and M. Steel, Phylogenetic trees based on gene content, Bioinformatics, vol.20, issue.13, pp.2044-2049, 2004.
DOI : 10.1093/bioinformatics/bth198

D. Sankoff, Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome., Proc. Natl. Acad. Sci. USA, pp.6575-6579, 1992.
DOI : 10.1073/pnas.89.14.6575

S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip, Proceedings of the twenty-seventh annual ACM symposium on Theory of computing , STOC '95, pp.1-27, 1999.
DOI : 10.1145/225058.225112

M. Blanchette, T. Kunisawa, and D. Sankoff, Gene Order Breakpoint Evidence in Animal Mitochondrial Phylogeny, Journal of Molecular Evolution, vol.49, issue.2, pp.193-203, 1999.
DOI : 10.1007/PL00006542

L. B. Koski and G. B. Golding, The Closest BLAST Hit Is Often Not the Nearest Neighbor, Journal of Molecular Evolution, vol.51, issue.6, pp.540-542, 2001.
DOI : 10.1007/s002390010184

H. Philippe and C. J. Douady, Horizontal gene transfer and phylogenetics, Current Opinion in Microbiology, vol.6, issue.5
DOI : 10.1016/j.mib.2003.09.008

W. M. Fitch, Distinguishing Homologous from Analogous Proteins, Systematic Zoology, vol.19, issue.2, pp.99-113, 1970.
DOI : 10.2307/2412448

URL : http://sysbio.oxfordjournals.org/cgi/content/short/19/2/99

M. J. Stanhope, Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates, Nature, vol.22, issue.6840, pp.940-944, 2001.
DOI : 10.1038/35082058

T. Sicheritz-ponten and S. G. Andersson, A phylogenomic approach to microbial evolution, Nucleic Acids Research, vol.29, issue.2, pp.545-552, 2001.
DOI : 10.1093/nar/29.2.545

A. Campbell, J. Mrazek, and S. Karlin, Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA, Proc. Natl. Acad. Sci. USA 96, pp.9184-9189, 1999.
DOI : 10.1073/pnas.96.16.9184

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17754

S. V. Edwards, B. Fertil, A. Giron, and P. J. Deschavanne, A Genomic Schism in Birds Revealed by Phylogenetic Analysis of DNA Strings, Systematic Biology, vol.51, issue.4, pp.599-613, 2002.
DOI : 10.1080/10635150290102285

D. T. Pride, R. J. Meinersmann, T. M. Wassenaar, and M. J. Blaser, Evolutionary Implications of Microbial Genome Tetranucleotide Frequency Biases, Genome Research, vol.13, issue.2, pp.145-158, 2003.
DOI : 10.1101/gr.335003

J. Qi, B. Wang, and B. Hao, Whole Proteome Prokaryote Phylogeny Without Sequence Alignment: A K -String Composition Approach, Journal of Molecular Evolution, vol.58, issue.1, pp.1-11, 2004.
DOI : 10.1007/s00239-003-2493-7

M. Nikaido, A. P. Rooney, and N. Okada, Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: -47 hippopotamuses are the closest extant relatives of whales, Proc. Natl. Acad. Sci

B. Venkatesh, M. V. Erdmann, and S. Brenner, Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates, Proc. Natl. Acad. Sci. USA 98, pp.11382-11387, 2001.
DOI : 10.1073/pnas.201415598

H. Philippe, Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions, Proceedings of the Royal Society B: Biological Sciences, vol.267, issue.1449, pp.1213-1221, 2000.
DOI : 10.1098/rspb.2000.1130

A. Stechmann and T. Cavalier-smith, Rooting the Eukaryote Tree by Using a Derived Gene Fusion, Science, vol.297, issue.5578, pp.89-91, 2002.
DOI : 10.1126/science.1071196

B. Snel, P. Bork, and M. Huynen, Genome evolution, Trends in Genetics, vol.16, issue.1, pp.9-11, 2000.
DOI : 10.1016/S0168-9525(99)01924-1

E. Bapteste and H. Philippe, The Potential Value of Indels as Phylogenetic Markers: Position of Trichomonads as a Case Study, Molecular Biology and Evolution, vol.19, issue.6, pp.972-977, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004156

J. Krzywinski and N. J. Besansky, Frequent Intron Loss in the White Gene: A Cautionary Tale for Phylogeneticists, Molecular Biology and Evolution, vol.19, issue.3, pp.362-366, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004091

J. Pecon-slattery, P. Wilkerson, A. J. Murphy, W. J. O-'brien, S. et al., Phylogenetic Assessment of Introns and SINEs Within the Y Chromosome Using the Cat Family Felidae As a Species Tree, Molecular Biology and Evolution, vol.21, issue.12, pp.2299-2309, 2004.
DOI : 10.1093/molbev/msh241

W. J. Murphy, Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics, Science, vol.294, issue.5550, pp.2348-2351, 2001.
DOI : 10.1126/science.1067179

H. Amrine-madsen, K. P. Koepfli, R. K. Wayne, and M. S. Springer, A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships, Molecular Phylogenetics and Evolution, vol.28, issue.2, pp.225-240, 2003.
DOI : 10.1016/S1055-7903(03)00118-0

A. Reyes, Congruent Mammalian Trees from Mitochondrial and Nuclear Genes Using Bayesian Methods, Molecular Biology and Evolution, vol.21, issue.2, pp.397-403, 2004.
DOI : 10.1093/molbev/msh033

P. S. Soltis, D. E. Soltis, and M. W. Chase, Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology, Nature, vol.402, issue.6760, pp.402-404, 1999.
DOI : 10.1038/46528

T. J. Barkman, Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny, Proceedings of the National Academy of Sciences, vol.97, issue.24
DOI : 10.1073/pnas.220427497

K. M. Pryer, Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants, Nature, vol.409, issue.6820, pp.618-622, 2001.
DOI : 10.1038/35054555

D. E. Soltis, P. S. Soltis, and M. J. Zanis, Phylogeny of seed plants based on evidence from eight genes, American Journal of Botany, vol.89, issue.10, pp.1670-1681, 2002.
DOI : 10.3732/ajb.89.10.1670

M. J. Zanis, D. E. Soltis, P. S. Soltis, S. Mathews, and M. J. Donoghue, The root of the angiosperms revisited, Proc. Natl. Acad. Sci. USA 99, pp.6848-6853, 2002.
DOI : 10.1073/pnas.092136399

V. Savolainen and M. W. Chase, A decade of progress in plant molecular phylogenetics, Trends in Genetics, vol.19, issue.12, pp.717-724, 2003.
DOI : 10.1016/j.tig.2003.10.003

N. King and S. B. Carroll, A receptor tyrosine kinase from choanoflagellates: Molecular insights into early animal evolution, Proc. Natl. Acad. Sci. USA 98, pp.15032-15037, 2001.
DOI : 10.1073/pnas.261477698

B. F. Lang, C. O-'kelly, T. Nerad, M. W. Gray, and G. Burger, The Closest Unicellular Relatives of Animals, Current Biology, vol.12, issue.20, pp.1773-1778, 2002.
DOI : 10.1016/S0960-9822(02)01187-9

A. G. Simpson and A. J. Roger, The real ???kingdoms??? of eukaryotes, Current Biology, vol.14, issue.17, pp.693-696, 2004.
DOI : 10.1016/j.cub.2004.08.038

M. C. Rivera and J. A. Lake, The ring of life provides evidence for a genome fusion origin of eukaryotes, Nature, vol.87, issue.7005, pp.152-155, 2004.
DOI : 10.1093/nar/25.17.3389

C. Esser, A Genome Phylogeny for Mitochondria Among ??-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes, Molecular Biology and Evolution, vol.21, issue.9, pp.1643-1660, 2004.
DOI : 10.1093/molbev/msh160

C. Woese, Bacterial evolution, Microbiol. Rev, vol.51, pp.221-271, 1987.

W. Doolittle, Phylogenetic Classification and the Universal Tree, Science, vol.284, issue.5423, pp.2124-2129, 1999.
DOI : 10.1126/science.284.5423.2124

H. Ochman, J. G. Lawrence, and E. A. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, issue.6784, pp.299-304, 2000.
DOI : 10.1038/35012500

S. Yang, R. F. Doolittle, and P. Bourne, Phylogeny determined by protein domain content, Proc. Natl. Acad. Sci. USA, pp.373-378, 2005.

O. Matte-tailliez, C. Brochier, P. Forterre, and H. Philippe, Archaeal Phylogeny Based on Ribosomal Proteins, Molecular Biology and Evolution, vol.19, issue.5, pp.631-639, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004122

URL : https://hal.archives-ouvertes.fr/hal-00698045

J. Felsenstein, Cases in which Parsimony or Compatibility Methods Will be Positively Misleading, Systematic Zoology, vol.27, issue.4, pp.401-410, 1978.
DOI : 10.2307/2412923

J. Felsenstein, Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, vol.39, issue.4, pp.783-791, 1985.
DOI : 10.2307/2408678

J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback, Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology, Science, vol.294, issue.5550, pp.2310-2314, 2001.
DOI : 10.1126/science.1065889

V. V. Goremykin, K. I. Hirsch-ernst, S. Wolfl, and F. Hellwig, The Chloroplast Genome of Nymphaea alba: Whole-Genome Analyses and the Problem of Identifying the Most Basal Angiosperm, Molecular Biology and Evolution, vol.21, issue.7, pp.1445-1454, 2004.
DOI : 10.1093/molbev/msh147

D. E. Soltis, Genome-scale data, angiosperm relationships, and ???ending incongruence???: a cautionary tale in phylogenetics, Trends in Plant Science, vol.9, issue.10, pp.477-483, 2004.
DOI : 10.1016/j.tplants.2004.08.008

S. Stefanovic, D. W. Rice, and J. D. Palmer, Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?, BMC Evolutionary Biology, vol.4, issue.1, p.35, 2004.
DOI : 10.1186/1471-2148-4-35

A. Adoutte, The new animal phylogeny: Reliability and implications, Proc. Natl. Acad. Sci. USA 97, pp.4453-4456, 2000.
DOI : 10.1073/pnas.97.9.4453

K. M. Halanych, The New View of Animal Phylogeny, Annual Review of Ecology, Evolution, and Systematics, vol.35, issue.1, pp.229-256, 2004.
DOI : 10.1146/annurev.ecolsys.35.112202.130124

A. M. Aguinaldo, Evidence for a clade of nematodes, arthropods and other moulting animals, Nature, vol.387, issue.6632, pp.489-493, 1997.
DOI : 10.1038/387489a0

H. Dopazo, J. Santoyo, and J. Dopazo, Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species, Bioinformatics, vol.20, issue.Suppl 1, pp.116-121, 2004.
DOI : 10.1093/bioinformatics/bth902

P. J. Keeling, N. M. Fast, and . Microsporidia, Microsporidia: Biology and Evolution of Highly Reduced Intracellular Parasites, Annual Review of Microbiology, vol.56, issue.1, pp.93-116, 2002.
DOI : 10.1146/annurev.micro.56.012302.160854

J. Sullivan and D. L. Swofford, Should we use model-based methods for phylogenetic inference when we know that assumptions about among-site rate variation and nucleotide substitution pattern are violated?, Syst. Biol, vol.50, pp.723-729, 2001.

J. P. Huelsenbeck, The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining

B. S. Gaut and P. Lewis, Success of maximum likelihood phylogeny inference in the four-taxon case., Molecular Biology and Evolution, vol.12, issue.1, pp.152-162, 1995.
DOI : 10.1093/oxfordjournals.molbev.a040183

A. Siepel and D. Haussler, Phylogenetic Estimation of Context-Dependent Substitution Rates by Maximum Likelihood, Molecular Biology and Evolution, vol.21, issue.3, pp.413-428, 2004.
DOI : 10.1093/molbev/msh039

S. Whelan and N. Goldman, Estimating the Frequency of Events That Cause Multiple-Nucleotide Changes, Genetics, vol.167, issue.4, pp.2027-2043, 2004.
DOI : 10.1534/genetics.103.023226

D. M. Robinson, D. T. Jones, H. Kishino, N. Goldman, and J. L. Thorne, Protein Evolution with Dependence Among Codons Due to Tertiary Structure, Molecular Biology and Evolution, vol.20, issue.10, pp.1692-1704, 2003.
DOI : 10.1093/molbev/msg184

N. Rodrigue, N. Lartillot, D. Bryant, and H. Philippe, Site interdependence attributed to tertiary structure in amino acid sequence evolution, Gene, vol.347, issue.2, 2005.
DOI : 10.1016/j.gene.2004.12.011

URL : https://hal.archives-ouvertes.fr/lirmm-00105355

N. Galtier and M. Gouy, Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis, Molecular Biology and Evolution, vol.15, issue.7, pp.871-879, 1998.
DOI : 10.1093/oxfordjournals.molbev.a025991

URL : https://hal.archives-ouvertes.fr/hal-00428472

P. G. Foster, Modeling Compositional Heterogeneity, Systematic Biology, vol.53, issue.3, pp.485-495, 2004.
DOI : 10.1080/10635150490445779

W. M. Fitch, Rate of change of concomitantly variable codons, Journal of Molecular Evolution, vol.4, issue.1, pp.84-96, 1971.
DOI : 10.1007/BF01659396

C. Tuffley and M. Steel, Modeling the covarion hypothesis of nucleotide substitution, Mathematical Biosciences, vol.147, issue.1, pp.63-91, 1998.
DOI : 10.1016/S0025-5564(97)00081-3

D. Penny, B. J. Mccomish, M. A. Charleston, and M. D. Hendy, Mathematical Elegance with Biochemical Realism: The Covarion Model of Molecular Evolution, Journal of Molecular Evolution, vol.53, issue.6
DOI : 10.1007/s002390010258

N. Galtier, Maximum-Likelihood Phylogenetic Analysis Under a Covarion-like Model, Molecular Biology and Evolution, vol.18, issue.5
DOI : 10.1093/oxfordjournals.molbev.a003868

J. P. Huelsenbeck, Testing a Covariotide Model of DNA Substitution, Molecular Biology and Evolution, vol.19, issue.5, pp.698-707, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004128

N. Lartillot and H. Philippe, A Bayesian Mixture Model for Across-Site Heterogeneities in the Amino-Acid Replacement Process, Molecular Biology and Evolution, vol.21, issue.6, pp.1095-1109, 2004.
DOI : 10.1093/molbev/msh112

URL : https://hal.archives-ouvertes.fr/lirmm-00108585

M. Pagel and A. Meade, A phylogenetic mixture model for detecting patternheterogeneity in gene sequence or character-state data, Syst. Biol, vol.53, pp.571-581, 2004.

C. R. Woese, L. Achenbach, P. Rouviere, and L. Mandelco, Archaeal Phylogeny: Reexamination of the Phylogenetic Position of Archaeoglohus fulgidus in Light of Certain Composition-induced Artifacts, Systematic and Applied Microbiology, vol.14, issue.4, pp.364-371, 1991.
DOI : 10.1016/S0723-2020(11)80311-5

F. Delsuc, M. J. Phillips, and D. Penny, Comment on "Hexapod Origins: Monophyletic or Paraphyletic?", Science, vol.301, issue.5639, p.1482, 2003.
DOI : 10.1126/science.1086558

URL : https://hal.archives-ouvertes.fr/halsde-00192990

M. J. Phillips and D. Penny, The root of the mammalian tree inferred from whole mitochondrial genomes, Molecular Phylogenetics and Evolution, vol.28, issue.2, pp.171-185, 2003.
DOI : 10.1016/S1055-7903(03)00057-5

A. Gibson, V. Gowri-shankar, P. G. Higgs, and M. Rattray, A Comprehensive Analysis of Mammalian Mitochondrial Genome Base Composition and Improved Phylogenetic Methods, Molecular Biology and Evolution, vol.22, issue.2, pp.251-264, 2005.
DOI : 10.1093/molbev/msi012

M. J. Phillips, F. Delsuc, and D. Penny, Genome-Scale Phylogeny and the Detection of Systematic Biases, Molecular Biology and Evolution, vol.21, issue.7, pp.1455-1458, 2004.
DOI : 10.1093/molbev/msh137

URL : https://hal.archives-ouvertes.fr/halsde-00193019

P. Lopez, P. Forterre, and H. Philippe, The Root of the Tree of Life in the Light of the Covarion Model, Journal of Molecular Evolution, vol.49, issue.4, pp.496-508, 1999.
DOI : 10.1007/PL00006572

I. Ruiz-trillo, M. Riutort, D. T. Littlewood, E. A. Herniou, and J. Baguna, Acoel Flatworms: Earliest Extant Bilaterian Metazoans, Not Members of Platyhelminthes, Science, vol.283, issue.5409, pp.1919-1923, 1999.
DOI : 10.1126/science.283.5409.1919

H. Brinkmann and H. Philippe, Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies, Molecular Biology and Evolution, vol.16, issue.6, pp.817-825, 1999.
DOI : 10.1093/oxfordjournals.molbev.a026166

J. G. Burleigh and S. Mathews, Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life, American Journal of Botany, vol.91, issue.10, pp.1599-1613, 2004.
DOI : 10.3732/ajb.91.10.1599

D. Pisani, Identifying and Removing Fast-Evolving Sites Using Compatibility Analysis: An Example from the Arthropoda, Systematic Biology, vol.53, issue.6, pp.978-989, 2004.
DOI : 10.1080/10635150490888877

M. M. Miyamoto and W. M. Fitch, Testing Species Phylogenies and Phylogenetic Methods with Congruence, Systematic Biology, vol.44, issue.1, pp.64-76, 1995.
DOI : 10.1093/sysbio/44.1.64

E. A. Herniou, Use of Whole Genome Sequence Data To Infer Baculovirus Phylogeny, Journal of Virology, vol.75, issue.17, pp.8117-8126, 2001.
DOI : 10.1128/JVI.75.17.8117-8126.2001

C. S. Riesenfeld, P. D. Schloss, J. Handelsman, and . Metagenomics, Metagenomics: Genomic Analysis of Microbial Communities, Annual Review of Genetics, vol.38, issue.1, pp.525-552, 2004.
DOI : 10.1146/annurev.genet.38.072902.091216

H. Philippe, A. Chenuil, and A. Adoutte, Can the cambrian explosion be inferred through molecular phylogeny, pp.15-25, 1994.

T. Dobzhansky, Nothing in Biology Makes Sense except in the Light of Evolution, The American Biology Teacher, vol.35, issue.3, pp.125-129, 1973.
DOI : 10.2307/4444260

N. Saitou and M. Nei, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol, vol.4, pp.406-425, 1987.

A. Rzhetsky and M. Nei, Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference, Journal of Molecular Evolution, vol.18, issue.4, pp.367-375, 1992.
DOI : 10.1007/BF00161174

J. Felsenstein, Evolutionary trees from DNA sequences: A maximum likelihood approach, Journal of Molecular Evolution, vol.24, issue.6, pp.368-76, 1981.
DOI : 10.1007/BF01734359

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-552, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

Z. Yang, Maximum-likelihood models for combined analyses of multiple sequence data, Journal of Molecular Evolution, vol.44, issue.5, pp.587-596, 1996.
DOI : 10.1007/BF02352289

T. Pupko, D. Huchon, Y. Cao, N. Okada, and M. Hasegawa, Combining Multiple Data Sets in a Likelihood Analysis: Which Models are the Best?, Molecular Biology and Evolution, vol.19, issue.12, pp.2294-2307, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004053

M. S. Springer, H. M. Amrine, A. Burk, and M. J. Stanhope, Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition

D. L. Swofford and . Paup-*, Phylogenetic Analysis Using Parsimony and other methods, 2002.

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

H. Philippe and P. Lopez, On the conservation of protein sequences in evolution, Trends in Biochemical Sciences, vol.26, issue.7, pp.414-416, 2001.
DOI : 10.1016/S0968-0004(01)01877-1

P. J. Lockhart, A. W. Larkum, M. Steel, P. J. Waddell, and D. Penny, Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis., Proc. Natl. Acad. Sci. USA 93, pp.1930-1934, 1996.
DOI : 10.1073/pnas.93.5.1930

H. Philippe and A. Germot, Phylogeny of Eukaryotes Based on Ribosomal RNA: Long-Branch Attraction and Models of Sequence Evolution, Molecular Biology and Evolution, vol.17, issue.5, pp.830-834, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026362

Y. Inagaki, E. Susko, N. M. Fast, and A. J. Roger, Covarion Shifts Cause a Long-Branch Attraction Artifact That Unites Microsporidia and Archaebacteria in EF-1?? Phylogenies, Molecular Biology and Evolution, vol.21, issue.7, pp.1340-1349, 2004.
DOI : 10.1093/molbev/msh130

H. Kishino, T. Miyata, and M. Hasegawa, Maximum likelihood inference of protein phylogeny and the origin of chloroplasts, Journal of Molecular Evolution, vol.82, issue.2, pp.151-160, 1990.
DOI : 10.1007/BF02109483

C. J. Douady, F. Delsuc, Y. Boucher, W. F. Doolittle, and E. J. Douzery, Comparison of Bayesian and Maximum Likelihood Bootstrap Measures of Phylogenetic Reliability, Molecular Biology and Evolution, vol.20, issue.2, pp.248-254, 2003.
DOI : 10.1093/molbev/msg042

URL : https://hal.archives-ouvertes.fr/halsde-00192997

D. J. Taylor and W. H. Piel, An Assessment of Accuracy, Error, and Conflict with Support Values from Genome-Scale Phylogenetic Data, Molecular Biology and Evolution, vol.21, issue.8, pp.1534-1537, 2004.
DOI : 10.1093/molbev/msh156

J. P. Huelsenbeck and B. Rannala, Frequentist Properties of Bayesian Posterior Probabilities of Phylogenetic Trees Under Simple and Complex Substitution Models, Systematic Biology, vol.53, issue.6
DOI : 10.1080/10635150490522629

A. R. Lemmon and E. C. Moriarty, The Importance of Proper Model Assumption in Bayesian Phylogenetics, Systematic Biology, vol.53, issue.2, pp.265-277, 2004.
DOI : 10.1080/10635150490423520

K. Strimmer and A. Von-haeseler, Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies, Molecular Biology and Evolution, vol.13, issue.7, pp.964-969, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025664

U. Roshan, B. M. Moret, T. L. Williams, and T. Warnow, Rec-I-DCM3: a fast algorithmic technique for reconstructing large phylogenetic trees, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004., 2004.
DOI : 10.1109/CSB.2004.1332422

J. A. Cavender and J. Felsenstein, Invariants of phylogenies in a simple case with discrete states, Journal of Classification, vol.39, issue.1, pp.57-71, 1987.
DOI : 10.1007/BF01890075

G. Lecointre, H. Philippe, H. L. Le, and H. Le-guyader, How Many Nucleotides Are Required to Resolve a Phylogenetic Problem? The Use of a New Statistical Method Applicable to Available Sequences, Molecular Phylogenetics and Evolution, vol.3, issue.4, pp.292-309, 1994.
DOI : 10.1006/mpev.1994.1037