Handedness, homicide and negative frequency-dependent selection
Charlotte Faurie, Michel Raymond

To cite this version:

HAL Id: halsde-00184678
https://hal.archives-ouvertes.fr/halsde-00184678
Submitted on 31 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Handedness, homicide and negative frequency-dependent selection

Charlotte Faurie and Michel Raymond

Genetics of Adaptation, Institute of Evolutionary Sciences (UMR CNRS 5554), University Montpellier II, CC 065, 34095 Montpellier cedex S, France

Humans exhibit hand preference for most manual activities in which they are specialized. Right- and left-handers have coexisted at least since the Upper Palaeolithic, and left-handers are in the minority in all human populations. The persistence of the polymorphism of handedness is a puzzle because this trait is substantially heritable and several fitness costs are associated with left-handedness. Some countervailing benefit is required to maintain the polymorphism. Left-handers may have a frequency-dependent advantage in fights—the advantage being greater when their frequency is lower. Sports data from Western societies are consistent with this prediction. Here, we show that the frequency of left-handers is strongly and positively correlated with the rate of homicides across traditional societies. It ranges from 3% in the most pacificist societies, to 27% in the most violent and warlike. This finding is consistent with a frequency-dependent selection mechanism maintaining left-handedness in these societies.

Keywords: evolution; violence; fighting; frequency-dependent selection; handedness; Homo

1. INTRODUCTION

Right- and left-handers have coexisted at least since the Upper Palaeolithic (Faurie & Raymond 2004), and left-handers are in the minority in all human populations (Raymond & Pontier 2004). The persistence of the polymorphism of handedness requires an explanation because this trait is substantially heritable (McManus 1991; Sicotte et al. 1999; McKeever 2000; Francks et al. 2002), and several fitness costs are associated with left-handedness (Coren & Halpern 1991; McManus & Bryden 1991; Aggleton et al. 1993; Gangestad & Yeo 1997). Some countervailing benefit necessarily exists, maintaining the polymorphism.

Left-handers have an advantage in sports involving dual confrontations, such as fencing, tennis and baseball (pitchers/batters), but not in non-interactive sports, such as gymnastics (Raymond et al. 1996; Grouios et al. 2000). This advantage is frequency-dependent: left-handers have an advantage when they are uncommon, as both left- and right-handers are less familiar with this category of competitor. Detailed analyses of cricket and baseball have, indeed, concluded that the frequency of left-handers in these sports is best explained by a negative frequency-dependent selection mechanism (Goldstein & Young 1996; Brooks et al. 2004).

From an ethnological perspective, interactive sports in Western societies are special cases of fights, with strict rules, including in particular the prohibition of killing or intentionally wounding the opponent. The frequency-dependent advantage of left-handers in sports might, thus, have a wider interpretation in the general context of aggressive interactions and wars in humans. If this is true, then the advantage of being left-handed should be greater in a more violent context, which should result in a higher frequency of left-handers. Without any other selection pressure, the resulting equilibrium should be a 1:1 ratio of right-/left-handers. This has never been observed in any population, owing to costs associated with left-handedness (Coren & Halpern 1991; Aggleton et al. 1993; Gangestad & Yeo 1997). The existence of these costs is well established, although their origin, probably related to a distinct organisation of the brain, remains unclear (McManus & Bryden 1991). In any given society, the observed prevalence of left-handedness should, therefore, be a balance between its cost and its advantage in fights. As levels of male–male aggression vary cross-culturally (Daly & Wilson 1988), we expect to find a positive correlation between the frequency of left-handers and the level of violence across populations (if the cost of left-handedness is constant). The case of Western and westernized cultures needs to be considered cautiously: the level of violence has dramatically changed, as well as the type of violence (predominant use of long-range and powerful weapons, which probably do not offer a particular advantage to left-handers). Hence, the above prediction should preferably be tested in traditional societies.

To our knowledge, data on both violence and handedness are available in the literature only for three traditional societies. We extended this data set to five other cultures by field studies and a literature search for homicide rates. Despite the problems inherent in the comparative method (e.g. overlooking potentially important group variation), it is a powerful way of searching for patterns in the data. The results presented here should not be systematically biased, as the potential sources of ambiguity in our estimates are most probably unrelated to the frequency of left-handers.
2. METHODS

(a) Frequency of left-handers

(i) Evaluation during field studies

In 2003, the frequency of left-handers was assessed, for machete-use, in the Kreyol people of Dominica. All the inhabitants of the village of Bwa Mawego were interviewed in their native language and indicated whether they preferred to use their left or right hand when using a machete. Information was crosschecked, by observation of spontaneous use, for 15.3% of the subjects. Children under 5 years were excluded from the sample, as handedness is often not stable before this age.

(ii) Literature data

The frequency of left-handers has been assessed for the Ntumu people of Cameroon in 1998 (Carrière & Raymond 2000), for the Dioula-speaking people of Burkina Faso in 2000 and the Baka people of Gabon in 2002 (Faurie et al. 2004). The method was exactly the same for these three field studies as in Dominica, i.e. hand preference was assessed for machete-use, and the entire population of the area (group of villages) was assessed.

The frequency of left-handers was assessed for the Inuit people, and for the Eipo people (Irian Jaya, New Guinea), through the observation of spontaneous manual activities from photographs taken during anthropological field studies. For the Inuit people, we used hand preference for the knife. The photographs were taken in Greenland, Alaska and Canada, by several anthropologists, between 1892 and 1971 (for details, see Faurie et al. 2004). For the Eipo people, the photographs were taken by the anthropologist Wulf Schiefenhövel between 1974 and 1980. The method considered adult men’s hand preference for bow shooting (for details, see Faurie et al. 2004). Therefore, we studied the relationship between hand preference for bow shooting and hand preference for knife use in a sample of 66 French adult men, to perform a correction on the estimated frequency of left-handers. In this sample, 35.3% of left-handers for bow shooting prefer to use the knife with their right hand, and 4.1% of right-handers for bow shooting prefer to use the knife with their left hand. Consequently, assuming that the relationship between these two measures of handedness is similar for Eipo and French men, the resulting estimation of the frequency of left-handers for knife use among Eipo men was compiled in the cross-cultural comparison.

The frequencies of ‘non-right-handers’ for hammer-use in the middle Jimi valley in the Western Highlands of Papua New Guinea, and for general unimanual tool-use in the Yanomamo people of Venezuela, were obtained from the studies of Connolly & Bishop (1992) and Marchant et al. (1995), respectively.

(b) Homicide rate

(i) Evaluation during field studies

Homicide rates (number of adult homicides per 1000 individuals per year) were evaluated for the Dioula-speaking people in Burkina Faso (mainly Sambala, Bobo and Mossi villages), the Baka people in Gabon and the Kreyol people in Dominica during field studies in 2000, 2002 and 2003, respectively. Initially, information on all homicides that occurred in the area during the past 50 years was recorded by interviewing older individuals and key informants. Every account was cross-checked with different informants. Secondly, official police statistics were consulted, when available (Baka and Kreyol people); in this case, we averaged the values estimated from recall data and from police records. The population sizes were obtained from complete census data from our fieldwork, or provided by collaborators (Kreyol people; Flinn & England 1997).

(c) Literature data

For the four other populations, homicide rates were calculated on the basis of the following information available in the literature. We restricted our sources to those providing estimates over at least 40 years and for a population of at least 500 inhabitants.

For the Ntumu people, two homicides were reported over 50 years (before 1998) (Carrière & Raymond 2000). The population size was obtained from a complete census (Bley et al. 1999). In 12 Yanomamo villages, 282 homicides have occurred over 50 years (before 1987) (Chagnon 1988; also providing the population size). For the Inuit people, the only suitable quantitative evaluation available was seven homicides reported over 84 years (before 1968) (Robert-Lamblin 1997; also providing the population size). As no quantitative information was available for the Jimi valley (Western Highlands, Papua New Guinea), although they are described as warlike (Grobaton 1991), we averaged the homicide rates for five geographically and culturally similar groups in the same area when evaluated over more than 40 years (Gebusi: Knauff 1987; Goila: Knauff 1987; Nahum: Bercovitch 1989; Kunimaipa: McArthur 1961; Etoro: Kelly 1993).

3. RESULTS AND DISCUSSION

The results are summarized in table 1. The frequency of left-handers and homicide rate are significantly and positively correlated (Spearman’s correlation coefficient $\rho = 0.83$, $p = 0.01$, two-sided; figure 1). Thus, this result strongly supports the fighting hypothesis. More generally, it points to the importance of violence in understanding the evolution of handedness in humans.

Nevertheless, alternative hypotheses should be considered. Firstly, the cost associated with left-handedness was measured in Western societies, and could vary across cultures. If this variation is independent of the level of violence, it represents a nuisance variable and not a confounding one. The observed pattern could have a different interpretation only if the cost is inversely proportional to violence. Although this possibility cannot be formally excluded, there is no theoretical basis, and no empirical evidence, to assume or support such a relation. Secondly, owing to the higher prevalence of left-handedness in males (Annett 1985), and to the correlation between severity of conflicts and excess of males in the population (Mesquida & Wiener 1999), there could be an indirect relation between left-handedness and violence. This effect would, however, be proportional to the sex difference in left-handedness, which is generally less than 5% (Annett 1985), and, therefore, could not account for the large variation of left-handedness frequencies observed in our dataset (almost 24%). Finally, homicide rates are probably underestimated, owing to the dubiousness of recall data (e.g. some homicides may be concealed as accidents). As the underestimation might be culture-dependent, it represents another nuisance variable. Our test is, thus, conservative, and the finding of a significant positive correlation between homicide rates and left-handedness frequencies, despite several nuisance parameters, suggests an even stronger relation.

Fights may have important consequences for social status and reproductive value, even when not leading to death (Hill 1984; Chagnon 1988; Archer et al. 1995).
Thus, homicide rate, which includes cases of capital punishment, executions and multi-male raids, is probably not the best estimator of the prevalence of one-to-one fights (Knauft 1987; Kelly 1993), where left-handers have a frequency-dependent advantage. A truthful estimation of the strength of the selection pressure, related to fighting, would be worthwhile in understanding the polymorphism of handedness.

In Western societies, no adequate information is available on possible recent variations in the frequency of left-handers. Firstly, for our purposes, information on the particular case of writing handedness is not relevant: the increase in left-handed writers during the twentieth century is probably explained by the decrease in the practice of forcing a child to switch writing hand from the left to the right (Porac et al. 1980). The frequency of left-handedness for other tasks may not have changed. Secondly, retrospective studies, based on works of art (Coren & Porac 1977), are irrelevant because the conventional—and often religious—artistic representation of a lateralized human has no necessary link, in this respect, with a real individual (Needham 1973). Owing to the recent historical changes in types of violence, the frequency of left-handers in Western societies may not yet have reached equilibrium. In addition, the importance of fighting in these societies is not clearly established. It is possible that other advantages are associated with left-handedness. Therefore, the costs and benefits need to be quantified to predict future trends in the evolution of the polymorphism of handedness in human populations.

We thank the people of the Bobo-Dioulasso (Burkina Faso), the Woleu-Ntem (Gabon) and the Bwa Mawego (Dominica) regions, whose hospitality and insight added enjoyment to this research. Research assistants H. N. Andou, E. Durand, A. Ouattara Boureima are also thanked for their enthusiasm and care, A. Alvergne, S. Billiard, S. Carrie`re, M. Flinn, E. Gazave, B. Girard, S. Le Bomin and W. Schiefenhövel for their cooperation on this project, and V. Durand and R. Thornhill for useful information and valuable suggestions. Research was supported by the CNRS, the University Montpellier II, and a grant from the Leakey Foundation. This is contribution 2004-051 of the Institut des Sciences de l’Evolution de Montpellier (UMR CNRS 5554).

REFERENCES

