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Abstract  

To reduce herbicide use, different avenues of biological weed regulation are currently investigated. 

Among these, weed seed predation by carabid beetles appears promising. Though observed in different 

cropping systems and conditions in fields, there was to date no demonstration that this process actually 

influences weed dynamics over time and reduces weed harmfulness for crop production. Consequently, 

the objective of the present paper was to (1) model the impact of cropping system, field margin and 

pedoclimate on weed seed predation by carabids to complete the FLORSYS model, which simulates weed 

dynamics and crop production from cropping systems, soil and weather, (2) evaluate whether including 

seed predation is needed to correctly predict weed dynamics in different cropping systems, (3) which 

components of the seed predation submodel are the most influential. The new seed-predation submodel 

calculates the daily predation rate for each weed species from seed traits, weather data, canopy state 

variables and management operations. In FLORSYS, this predation rate is applied to the newly shed weed 

seeds on the soil surface. The equations and parameters were based on past publications from our team 

and other literature. Then, simulations were run with FLORSYS over 13 years, with and without the seed 

predation submodel, using weather data and management operations from 10 fields from the INRAE 

Dijon-Epoisses experimental station. The resulting output in terms of weed and crop state variables 

(plant density, biomass, seed bank, yield) were compared to measurements from the 10 fields, showing 

that including weed seed predation in the simulations improved the model's prediction quality, by 

reducing the overestimation in weed-variable predictions. Finally, a sensitivity analysis to the 

components of the predation submodel was run, by repeating the simulations after successively 

switching off individual components of the submodel. This showed that daily incident radiation, light 

interception by plant canopy, harvest, carabid reproduction and daily temperature had the most influence 

on seed predation rates. The simulations showed that weed seed predation by carabids can indeed 

contribute to managing weeds, by reducing field infestation and improving crop yields, but with large 

variations among crops. However, to determine which cropping systems and field margins favour 

weed seed predation enough to noticeably contribute to biological weed regulation, a larger 

diversity of cropping systems and weather series needs to be explored by simulation.  

 

Keywords. Biological regulation; agroecological weed management; mechanistic model; model 

validation; sensitivity analysis; weed seed predation 
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1 Introduction 

Agriculture is currently undergoing a major overhaul, aiming to reduce the use of synthetic inputs, 

among which pesticides (Jacquet et al., 2022). This is a particular challenge for managing weeds, which 

are today the most damaging pest for arable crop production (Oerke, 2006). To do so, integrated weed 

management aims to replace a single simple and highly efficient weed control technique (i.e., herbicides) 

by combinations of many, partially efficient, highly interacting and mostly preventive techniques 

(Liebman and Gallandt, 1997; Munier-Jolain et al., 2008).  

More recently, agroecological research has demonstrated that mobilizing beneficial biotic interactions 

could contribute to regulating weeds (Petit et al., 2018). The predation of weed seeds by seed-eating 

organisms could be an interesting candidate as it is a widespread process in arable agriculture (Davis et 

al., 2011; Sarabi, 2019). Amongst the many seed predators in temperate arable cropping systems, 

carabid beetles are often key players (Kjellsson, 1985; Cromar et al., 1999a; Honek et al., 2003; Honek 

et al., 2005). Experiments with a predator exclusion modality indicated that seed predation by 

invertebrates can reduce weed emergence by up to 40%, and weed biomass by up to 80% in cover crops 

(Blubaugh and Kaplan, 2016). Besides, the dynamics of the soil weed seedbank from one year to the 

next was shown to be affected by carabid seed predator abundance, at national and European scales 

(Bohan et al., 2011; Carbonne et al., 2020).  

The predation of individual weed species by carabids is first determined by the feeding preferences of 

the carabids (Honek et al., 2007; Petit et al., 2014). Carabid activity and the resulting weed seed 

predation depend on the in-field habitat quality, e.g., soil texture, pH and moisture, crop canopy density 

and structure, temperature, available food sources or presence of competitors (Lovei and Sunderland, 

1996; Holland and Luff, 2000). The presence of field margins, i.e., linear semi-natural habitats that 

define the edge of fields (Marshall and Moonen, 2002), can also enhance the diversity and activity of 

carabids. Margins such as grass strips and flower strips were shown to increase the in-field abundance 

and fitness of seed-eating carabids (Lys and Nentwig, 1992; Zangger et al., 1994; Labruyère et al., 2016) 

and thus possibly enhance weed seed predation. Carabid activity and weed seed predation are also 

strongly affected by in-field management (Table 1): for instance, seed predation tends to be higher in 

fields under reduced tillage regimes or pesticide use. Consequently, seed predation and weed dynamics 

each respond to many interacting abiotic and management factors, and it is thus difficult to disentangle 

the highly variable seed predation among the many other factors affecting weed communities in the long 

term. 

This is the reason why several teams proposed models that synthesized the existing knowledge of 

environmental factors and management techniques on seed predation, and the latter's possible effects on 

weed dynamics (Westerman et al., 2003b; Davis et al., 2004; Westerman et al., 2005; Westerman et al., 

2006; Daouti et al., 2022). However, none of these models includes sufficient weed and crop species, 

life-cycle processes and management techniques to actually simulate the impact of cropping systems on 

weed dynamics, let alone the consequences for crop production or biodiversity. Conversely, there are 

numerous weed dynamics models in the literature (Chantre and González-Andújar, 2020) but none of 

them includes weed seed predation.  

The objective of the present paper was to (1) model the impact of cropping system, field margin and 

pedoclimate on weed seed predation by carabids to complete the comprehensive FLORSYS model, which 

simulates weed dynamics and crop production from cropping systems, soil and weather (Colbach et al., 

2021), (2) evaluate whether including seed predation is needed to correctly predict weed dynamics in 

different cropping systems, (3) which components of the seed predation submodel are the most 

influential. The new weed seed predation sub-model calculates the daily predation rate by carabids on 

the seed rain for 32 weed species from seed traits, weather data, canopy state variables, management 

operations and the presence and distance to field margins. We considered here omnivore and granivore 

species, as both groups consume weed seeds (Frei et al., 2019) and greatly contribute to weed seed 

predation (Jonason et al., 2013; Trichard et al., 2013).  
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2 Material and methods 

2.1 The existing FLORSYS model 

FLORSYS (Gardarin et al., 2012; Munier-Jolain et al., 2013; Colbach et al., 2014b; Munier-Jolain et al., 

2014; Mézière et al., 2015; Colbach et al., 2021; Pointurier et al., 2021) is a virtual field on which 

cropping systems can be experimented with a large range of virtual measurements of crop, weed and 

environmental state variables. The following sections summarize its main characteristics, more details 

can be found in section A in supplementary material online. 

2.1.1 Weed and crop life cycle 
The input variables of FLORSYS consist of (1) a description of the simulated field (daily weather, latitude 

and soil characteristics); (2) all the crops and management operations in the field, with dates, tools and 

options; and (3) the initial weed seed bank. The input variables influence the annual life cycle of annual 

weeds and crops, with a daily time-step. Pre-emergence stages (surviving, dormant and germinating 

seeds, emerging seedlings) are driven by soil structure, temperature and water potential, distinguishing 

30 1-cm-thick soil layers from soil surface down to 30 cm depth. Post-emergence processes (e.g. 

photosynthesis, respiration, growth, shade response) are driven by light availability and air temperature. 

At plant maturity, weed seeds are added to the surface layer of the soil seed bank; crop seeds are 

harvested to determine crop yield. Crop-weed competition was considered for light only in the present 

FLORSYS version. The model is currently parameterized for 32 frequent and contrasting annual weed 

species (see complete list in section A.4 online) and 33 crop species. 

2.1.2 Effect of cultural techniques 
Life-cycle processes depend on the dates, options and tools of management techniques (tillage, sowing, 

herbicides, mechanical weeding, mowing, harvesting etc.), in interaction with weather and soil 

conditions on the day the operations are carried out. For instance, weed plant survival probabilities are 

calculated deterministically depending on management operations, biophysical environment as well as 

weed morphology and stage; the actual survival of each plant is determined stochastically by comparing 

this probability to a random probability.  

2.1.3 Indicators of weed impact on crop production 
FLORSYS simulates crop yield as well as a set of indicators assessing weed impacts on crop production 

and biodiversity (Mézière et al., 2015) (for details see section A.6 online). The present study used crop 

yield, field infestation by weed biomass during crop growth, wild plant biodiversity (weed species 

richness and evenness) and weed-based food resources for farmland birds and domestic bees to evaluate 

cropping systems.  

2.1.4 Domain of validity 
FLORSYS was previously evaluated with independent field data on short and long-term weed dynamics 

at French national scale, over a large range of existing arable cropping systems. It showed that crop 

yields, daily weed species densities and, particularly, densities averaged over the years were generally 

well predicted and ranked as long as a corrective function was added to keep weeds from flowering 

during winter at more southern latitudes (Colbach et al., 2016; Pointurier et al., 2021). However, weed 

seed densities in surface layers tended to be overestimated if fields had been untilled for several years 

(Colbach et al., 2006). 

 

 

2.2 Modelling weed seed predation by carabids 

2.2.1 Data origin 
The new seed-predation submodel calculates the daily predation rate for each weed species from seed 

traits, weather data, canopy state variables and management operations (Figure 1). In FLORSYS, this 

predation rate is applied to the newly shed weed seeds on the soil surface. The necessary functions were 
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based on past publications from our team as well as other literature on (1) weed seed predation rates 

measured every two weeks from May to September in fields with seed cards (Capsella bursa-pastoris 

L. and Viola arvensis L.) (section 2.2.2), (2) seed predation rates and/or carabid activity-density 

measured in fields during the days or weeks following management operations (e.g., tillage, pesticides) 

(section 2.2.3), (3) seed predation rates and/or carabid activity-density monitored during several years 

after fields were converted to no-till (section 2.2.4), (4) weed seed predation rates measured with seed 

cards (Capsella bursa-pastoris L. and Viola arvensis L.) along transects perpendicular to field edges, 

bordered by different field margins (section 2.2.5), (5) which weed seeds were preferentially eaten by 

carabids in seed choice experiments in field experiments (section 2.2.6). 

2.2.2 Seasonal seed predation 
In the model, seed predation by adult carabids is only possible in the model between 1 March and 1 

October, if the daily mean temperature is above the minimum requirement for carabid activity and below 

the maximum acceptable temperature, and if there is some incident radiation above the canopy and some 

protective canopy reducing light incidence on soil surface (equation [1] in Table A.1.A). If the daily 

temperature is inside the acceptable range, the efficient daily temperature is calculated as the difference 

with the minimum needed temperature, relatively to the range of acceptable temperatures [2]. 

The potential seed predation rate as a function of season inside these framework conditions was derived 

from Petit et al. (2014) who monitored Capsella bursa-pastoris L. and Viola arvensis seed predation 

every 2 weeks from mid-May to October 2009 in three wheat fields at the INRAE Dijon-Époisses 

experimental station (47°36’12’’N,4°35’32’’E). Twenty seeds of each of the two weed species were 

glued onto 5  14 cm predation cards and placed on soil surface for one week under cages preventing 

access to vertebrate predators. There were ten measurement sessions, five during the wheat growing 

season and five after wheat harvest. During the time the fields were monitored, there were no 

management operations other than the crop harvest. 

The predation rate (seeds/seeds) of each session n was calculated as sessionPredRaten = 1 – (number of 

remaining seedsn / number of initial seedsn). This was transformed into a daily predation rate 

corresponding to day d midway between two consecutive sessions: dailyPredRated = (sessionPredRaten 

– sessionPredRaten-1) / (onsetDaten – onsetDaten-1), with dates in Julian days and d = (onsetDaten + 

onsetDaten-1) / 2. 

The daily predation rate was analysed with a linear model (after logn-transformation of output and most 

inputs) as a function of five variables, with the lme function of R {R Core Team, 2021 #18159}. The 

daily efficient temperature (see [2] in Table A.1) accounts for the carabids' thermal requirements (Saska 

et al., 2013; Noroozi et al., 2016) and was calculated from the daily mean temperature recorded on the 

experimental station. Incident radiation and the proportion of radiation intercepted by the crop canopy 

were used as proxies for canopy density as denser canopies protect carabids and increase predation 

(Gallandt et al., 2005; Heggenstaller et al., 2006; Meiss et al., 2010). Temperature and incident radiation 

were provided by the local weather station via the INRAE platform CLIMATIK, managed by the 

AgroClim laboratory of Avignon, France, https://intranet.inrae.fr/climatik/). The radiation intercepted 

by the canopy was estimated with FLORSYS, using weather records and field history to mimic the 

experimental fields in silico (details in section B.1 online). The time until or since the emergence of 

carabids reproducing in autumn [3] translates the drop in predation in late spring, when spring-

reproducing carabids are dying and autumn-reproducing carabids have not yet emerged (Petit et al., 

2014). Finally, the time since wheat harvest reflects the time needed by the carabids to return after the 

disturbance due to the harvest operation (Petit et al., 2014).  

2.2.3 Short-term effect of disturbances due to management operations 
The short-term effect of disturbances resulting from management techniques was based on the Ingrish 

& Bahn's framework to quantify resilience (Ingrisch and Bahn, 2018), with two parameters (section 

B.2.1 online): the maximum impact of the disturbance is the reduction in seed predation relative to an 

undisturbed field and the recovery time needed for the predation to bounce back to the level of an 

undisturbed field  (Figure 2.A). A literature analysis allowed choosing the relevant techniques to include 

in the model and to estimate parameter values (Table 1). We preferred studies reporting weed seed 

https://intranet.inrae.fr/climatik/
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predation response to disturbance, but we also used studies on the effect of disturbance on activity-

density or mortality of carabids as a proxy of weed seed predation. The maximum impact was estimated 

as the variation in seed predation rates (or their proxy) in the days immediately after the disturbance 

relatively to the pre-disturbance level. The duration effect was estimated from studies monitoring 

predation (or its proxy) over a few weeks after the disturbance at the most, to avoid confusion with other 

factors. 

Tillage and insecticides present the most straightforward adverse impact on seed predation, by directly 

killing carabid larvae and adults, by making the adults flee out of the field, and/or by rendering the field 

habitat unfavourable (Holland and Luff, 2000; Thorbek and Bilde, 2004; Kulkarni et al., 2015). 

Inverting tillage such as mouldboard ploughing is more disturbing than non-inverting tillage, regardless 

of its depth. Conversely, mechanical weeding does not seem to disturb carabids sufficiently to affect 

seed predation (Holland and Luff, 2000), even though carabid activity/density or abundance can be 

reduced (Navntoft et al., 2016). Consequently, only the effects of tillage and insecticides were 

introduced into the model. The model distinguishes mouldboard ploughing and other inverting tools 

from superficial tillage, but considers insecticides regardless of the applied dosage or active ingredient. 

Indeed, many publications do not give this information but simply report an overall negative effect on 

seed prediction (e.g., Trichard et al., 2013). 

Herbicides and fungicides do not increase the toxicity of the environment (Brust, 1990; Zhang et al., 

1998; Holland and Luff, 2000) and several studies observed no impact on carabids (Table 1). The rare 

reports on reduced seed predation or carabids are most likely due to indirect effects, e.g., a reduction in 

canopy density (denser canopies protect carabids, Gallandt et al., 2005; Heggenstaller et al., 2006; Meiss 

et al., 2010). This canopy effect might also explain the reported increase in seed predation with increased 

fertilisation (Kromp, 1999). Consequently, no direct disturbance effect of these techniques was 

introduced into the model; any indirect effects via their impact on canopy density are already simulated 

by the existing FLORSYS version (section 2.1). 

Finally, mowing was also reported to reduce seed predation (Table 1). This operation is similar to a 

harvest operation and was considered as such in the predation submodel. 

2.2.4 Cumulative effect of no-till 
A principle similar to Ingrish & Bahn's framework was used to include the beneficial effect of 

continuous no till on seed predation reported in literature (Table 1). One parameter reflects the number 

of years during which seed predation increases after the field was switched to continuous no-till. The 

other is the seed predation rate after that time relatively to the predation rate in a tilled field. Both 

parameters were estimated from literature reports (Cromar et al., 1999b; Menalled et al., 2007; Trichard 

et al., 2014; Petit et al., 2017). 

2.2.5 Effect of field margins along field edges 
The effect of field margins, i.e., neighbouring semi-natural linear features, on in-field on seed predation 

was estimated from Petit et al. (submitted). In that study, seed predation rates were observed on seed 

cards with either Poa annua or Viola arvensis, at distances ranging from 4 to 50 m along 216 transects 

perpendicular to the field edges. Field edges were bordered by different types of field margins, or by 

roads or fields. 

 

The P. annua data was used to determine the shape of the effect of distance to the field edge. These data 

were balanced insofar as in each of the 15 survey fields, four transects with and without linear features 

were monitored in May and June 2018. This reduced the risk of confounding effects of distance vs 

weather or field history. A bell-shaped non-linear equation was fitted to the predation rate y 

(seeds/seeds) vs distance (m) to the field edge: 

eq. 1. If y < maxDistInf 

then y = K  (1 + AFM  x + BFM  x²) 
else y = K  

with AFM = −BFM  maxDistInf 
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       BFM = −4  maxEffectFM / maxDistInf ² 
K (seeds/seeds) is the average seed predation rate observed in transects without field margins, 

maxDistInf (m) is the maximum distance at which a field margin influences seed predation along a 

transect, and maxEffectFM (seeds/seeds) is the maximum effect of a field margin on seed predation on 

a transect perpendicular to that margin relatively to seed predation on a transect without a neighbouring 

field margin. The bell-shaped curve accounts for the fact that carabids do not like to stay close to the 

field edge where there is little protective canopy and that above a certain distance, the field-margin effect 

becomes negligible compared to the field-history effect. The non-linear equation was fitted with PROC 

NLIN (Gauss method) of SAS (version 9.4, SAS Institute Inc., Cary, NC, USA, 2002-2012). 

 

The P. annua data only included two types of field margins, mostly grass strips and a few woody 

margins. So, to estimate the effect of the different types of field margins, the complete data set of 216 

transects was used in an analysis of variance. There, log10-transformed predation rates (after adding a 

0.001 constant to account for nil values) were analysed as a function of field-margin type as well as 

tillage type, pesticide presence, weed species, year (as a factor) and log10-transformed distance to field 

edge, using PROC GLM of SAS. Backward selection was applied to sequentially eliminate non-

significant input variables (with p=0.05).  

2.2.6 Carabid seed choice 
Weed species were ranked according to the food preference of carabids observed in field trials. These 

were set up in two winter wheat fields in Côte-d'Or, France (47°36’12’’N,4°35’32’’E) in 2011 (Trichard, 

2014). One field was managed conventionally, the other had remained untilled for four years. Six 

sessions were carried out between May and September, where seed cards with seeds from 26 weed 

species were left for 7 days. The species were chosen to be contrasted in terms of seed traits related to 

carabid food preference, i.e., seed length (Lundgren and Rosentrater, 2007), mass (Honek et al., 2003) 
and lipid content (Westerman et al., 2003a; Ali and Willenborg, 2021). 

 
The 26 species used in the experiment did not cover the 32 weed species currently included in FLORSYS. 

Consequently, multivariate analyses were used to link the species seed predation averaged over the two 

fields and the six predation sessions to seed traits, i.e., seed length and width, mass, coat thickness and 

lipid content. First, a Principal Component Analysis followed by Hierarchical Clustering on Principal 

Components of the FactoMineR package (Lê et al., 2008)) of R (R Core Team, 2021) was used to cluster 

the weed species into groups, based on their predation rates and seed traits. Then, the observed predation 

rates were analysed as a function of seed traits in interaction with species cluster, using the lm() function 

of R. Several models were tested, each testing two traits; the final model was taken from among the 

models with significant cluster  trait interactions, choosing the one with the highest R² and seed effects 

consistent with literature. 

 

To estimate the predation rate of a weed species that was not used in the experiment, a Factorial 

Discriminant Analysis (with the lda() function of the Mass package of R) was used to predict to which 

cluster the new species most likely belongs, based on its seed traits. Then, the previous linear regression 

was used to calculate the seed predation rate from the species cluster membership and its seed traits. 

Finally, the seed predation rates of all species were readjusted to ensure that the average of the rates of 

V. arvensis and C. bursa-pastoris (i.e., the two species used in section 2.2.2) was 1. 

 

Last, we accounted for the fact that the in-field seed consumption of individual weed species increases 

when the probability of carabids encountering this weed species increases, i.e., when seed availability 

(density) of that particular seed species increases (Diehl et al., 2012; Kulkarni et al., 2017b; Carbonne 

et al., 2019). Indeed, field and lab observations concur that carabids consume seeds that are not 

necessarily their most preferred ones in order to limit the energy spent on foraging and/or that they are 

less selective in specific situations, e.g., to reduce the risk of being predated by other organisms 

(Blubaugh et al., 2017; Charalabidis et al., 2017). To reflect this, seed predation rate of individual weed 

species derived from seed traits was corrected by adding a function that causes carabids to prefer 

abundant seeds over rare seeds. 
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2.3 Model evaluation and sensitivity analysis 

2.3.1 Principle  
Simulations of cropping systems were performed with FLORSYS to (1) evaluate how much the new 

predation submodel improved prediction quality, by running simulations with or without the new 

predation submodel, and comparing the results to independent field observations (section 2.3.2), and 

(2) identify which components of the predation submodel influenced the prediction quality the most, by 

running sequential simulations where individual submodel components were switched off and then 

assessing how much prediction quality was affected (section 2.4).  

2.3.2 Data origin 
Data of ten cropping systems from the INRAE experimental station of Dijon-Époisses from 1999 to 

2012 were simulated as described in Colbach et al. (2016) (section C online). They vary from herbicide-

intensive to herbicide-free, with various rotations, tillage strategies and use of mechanical weeding. 

Initial weed seedbank (for 32 weed species) and soil characteristics given as inputs in the model were 

measured on soil samples taken in the fields. Weather data were obtained from the INRAE weather 

station (via the CLIMATIK platform).  

 

Aboveground plant biomass, weed plant density, weed seed bank and crop yield were monitored in all 

ten fields during the 13 years of the trial. Plant density and aboveground biomass were measured in 

several quadrats per field several times a year, and weed seed bank was measured on ten soil samples 

every two years. As weed seed predation was not measured, we could not directly evaluate the prediction 

quality of the new submodel in our model. Instead, we checked whether including seed predation 

improved the prediction quality of crop and weed variables by FLORSYS.  

2.3.3 Model evaluation 
Each cropping system was repeated 10 times with the same inputs to take into account the stochastic 

effects of FLORSYS. Two series were run, with the initial FLORSYS version and then again, after 

including the seed predation submodel. In total, 2 series  10 cropping systems  10 repetitions = 200 

simulation runs were carried out, each over 13 years. The simulated field sample was 6  4 m² and the 

actual field was simulated as an infinite repetition of this basic pattern to avoid edge effects.  

 

Simulated aboveground plant biomass, weed plant density, weed seed bank and crop yield were 

compared to measurements from the ten fields, either analysed (1) at the species scale or (2) at the 

community scale, i.e., they were summed over all species. The prediction quality of the model was 

estimated with various complementary criteria described by Colbach et al. (Colbach et al., 2016; 

Pointurier et al., 2021): 

 

The prediction bias is the mean of residuals (the difference between simulated and observed values from 

different fields, years and species) relatively to the range of variation of observations (equations in 

section C.4 online) and determines whether the model systematically under- or overestimated variables. 

The relative root square of the mean squared error (RRMSEP) evaluates the relative prediction error of 

the model. It was calculated relatively to the standard-deviation of observed values (Coucheney et al., 

2015; Colbach et al., 2016), and corrected for variability in observations (i.e., variability due to 

measurement errors) and in simulations (i.e., variability due to model stochasticity) (Wallach, 2006). If 

MSEP is small or smaller than the variability in observations or simulations, the difference between 

observed and simulated values is mostly due to observation error and/or model stochasticity, 

respectively. 

 

The ability of the model to rank cropping systems and weed species correctly was calculated as the 

maximum between the modelling efficiency, the Pearson and the Spearman correlation coefficients 

between observations and predictions. Coefficients close to 1 indicate that the variables are well 

predicted by the model in terms of absolute values, relative values (i.e., differences between values) and 

ranks, respectively. 
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The three criteria (relative bias, RRMSEP and proportion of correctly predicted observation) were 

calculated from data averaged over the rotation (i.e., over all simulated values or measurements per 

cropping system) to check the model's ability to compare cropping systems. To assess how well the 

model predicts outputs on a given day, the criteria were calculated from data averaged per day (i.e. 

averaged over quadrats, samples and repetitions), except for daily weed density and biomass. For these 

two outputs, the proportion of correctly predicted observations was the proportion of observations inside 

the simulated 90%-confidence interval obtained over the 10 repetitions. This criterion was preferred 

over the three first evaluation criteria, because the latter are considerably deteriorated by a delay of a 

few days in the simulations vs the observations (or vice-versa), whereas such delays do not affect the 

prediction quality of the weed dynamics over the years (Colbach et al., 2016). 

 

All the evaluation criteria were also calculated from simulations with FLORSYS before the seed predation 

submodel was introduced in order to study how much the new submodel improved FLORSYS predictions. 

 

2.4 Sensitivity analysis to submodel components 

To determine how much each factor of the seed-predation submodel influenced its outcome, the same 

principle as in the previous section 2.3.3 was used. In addition to simulation series with predation 

submodel run in the previous section, 10 further series were run and their outcome compared to the same 

field observations. In each of these series, one of the submodel factor (e.g., light interception by crop 

canopy, ploughing, weed seed density) was excluded, by skipping the step in the model code. This 

approach was preferred to a conventional sensitivity analysis where parameters are made to vary because 

some effects work without parameters (e.g., the seed density effect). 

 

Two additional series were run, where grass strips were placed around each field, even though in reality, 

there were no field margins surrounding these fields. In one of these series, the least well estimated 

parameter was halved, i.e., the maximum distance maxDistInf at which the field margin influences in-

field predation. The aim was to assess how much field margins would change prediction outputs. 

 

Finally, the effect of switching off submodel components (10 simulation series) or adding field margins 

along field edges (2 series) on crop yield as well as weed impacts on crop production and biodiversity 

(section 2.1.3) was assessed. The predictions errors in weed (weed density, biomass, seed bank) and 

crop variables (crop yield, biomass) obtained with the 12 alternative series were compared to the error 

obtained with the complete model. Moreover, annual predation rate, weed-impact indicators and crop 

yield with the complete model and the alternative series were compared with analyses of variance as a 

function of series, cropping system, years since simulation onset as well as double interaction, using the 

lm(), Anova(,type=3) and eta_squared() functions of R {R Core Team, 2021 #18159}. This was 

followed by comparison of means with least-difference tests with lsmean(). 

3 Results 

3.1 The seed predation submodel 

Each day during a simulation, the total seed predation rate is calculated from environmental conditions 

and management operations (sections 3.1.1 to 3.1.4). Then, predation rates per weed species are 

deduced, from carabid seed preference and weed seed density (section 3.1.5). Finally, the number of 

predated seeds are calculated and the unpredated seeds added to the soil seed bank (section 3.1.6). The 

detailed equations are listed in Table A.1 in the appendix at the end of the present manuscript. Parameter 

values and their origin are summarized in Table A.2. 

3.1.1 Seasonal seed predation rate 
When the photo-thermal and seasonal conditions for predation are met during the simulation [1], the 

total daily potential predation rate (over all weed species) is calculated [5]. This rate increases with 

efficient daily temperature Teffd and the proportion of radiation intercepted by the canopy  (1 - 
PARsol)

B with B > 0, with the radiation PARsol arriving on soil surface provided by the light 
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interception submodel of FLORSYS), it decreases with the daily available radiation (PARd with C < 0). 

At harvest, predation is divided by nearly 2 (Figure 2.A), and then increases again during 

recoveryTimeHarvest =18 days after harvest (timeHarvest with D>0 in [5] and calculated as days since 

harvest with a maximum of recoveryTimeHarvest days in [4]). The shape of this effect is similar to the 

framework used for the effect of other disturbances (Figure 2.B), albeit with a slightly less linear 

recovery (Figure 2.A) using a recovery rate (i.e., parameter D) rather than a maximum impact parameter.  

 

Seed predation also decreases during recoveryTimeEmerge = 15 days prior to the emergence of autumn-

reproducing carabids (with a reduction of nearly 20%) and then increases again during the 

recoveryTimeEmerge after this key date (Figure 2.B). This results from the effect of the number of days 

to and since timeemerge with E>0 [5]. 

  

When fitted to field data (section 2.2.2), this equation [5] allowed estimating the regression coefficients 

A-B (Table A.2) and predicted the seasonal variation in seed predation observed in the field data (Figure 

2.C). 

3.1.2 Short-term effect of disturbances due to tillage and insecticides 
On the day an inverting tillage occurs in the simulated field, seed predation is divided by 2 (impactInvTill 

= -0.50), and takes recoveryTimeInvTill = 30 days to recover (eq [7] in in Table A.1.A, further details in 

section B.2 online). The same principle was used for non-inverting tillage [9] and insecticide spraying 

[11], except that the impact on predation is smaller (impactothTill = -0.39 and impactInsecticide = -0.43) and 

recovery after non-inverting tillage is faster (recoveryTimeOthTill = 18 days). Except for inverting tillage, 

these effects are lower than the impact of crop harvest. The latter's impact on predation is larger (-0.48, 

(Figure 2.A) and lasts slightly longer (recoveryTimeHarvest = 18 days). 

 

The previous equations describe the direct effect of harvests, tillage and insecticides on seed predation 

rates. Harvest and tillage operations also influence predation rates in the longer term as they destroy or 

damage plants (depending on cutting heights, tillage tools and depths etc, section 2.1.2), thus reducing 

canopy density and seed predation for several weeks via the reduced light interception (section 3.1.1). 

The timing of operations is also crucial, with disturbances during weed seed rain being much more 

influential than earlier or late operations. As a consequence, a given operation type can have very 

different effects, e.g., an autumn maize harvest with its higher cutting bar impacts seed predation less 

than a summer wheat harvest with its lower cutting height. 

3.1.3 Cumulative effect of no till 
Seed predation is higher in continuously untilled fields. This effect is visible after one year and reaches 

its maximum after upgradeTimeNoTill = 4 years (eq [12] in Table A.1.A). In between, the relative seed 

predation rate increases linearly from 1 (no variation if yearsLastTill = 1) to impactNoTill = 1.60 if yearsLastTill 

≥ 4 years. So, continuous no-till can increase seed predation by up to 60 %. 

3.1.4 Effect of semi-natural habitats along field edges 
3.1.4.1 Seed predation as a function of distance to field margins 

The non-linear equation of section 2.2.5 was successfully fitted to the seed predation as a function of 

the distance to the field edge and the absence or presence of a field-margin habitat along that edge 

(Figure 3). The effect of the field margin was visible to approximately 40 m from the field edge 

(maxDistInf = 39.8 m). At half that distance from the field edge, predation was 169% higher if there 

was a grass strip along that edge than there was none (maxEffectFM = 1.69). Unexplained variability 

was large (i.e., R² was only 0.17) because of weather, field history or location were disregarded in this 

analysis. 

 

3.1.4.2 Effect of type of field margins 

The analysis of variance of weed seed predation data in fields bordered by different types of field 

margins showed that grass strips increased seed predation the most (details in section B.4 online). The 

maximum effect maxEffectFM of habitat was estimated for each FM habitat by rescaling the 
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backtransformed coefficients so that the grass-strip coefficient equated maxEffectgrass of Figure 3 and 

that the one for no field margin was nil. Based on this back-transformation, the effect of flower strips 

was 28% lower than the effect of grass strip (maxEffectflower strip = 0.763 compared to the 1.69 of grass 

strip). The effects of mixed strips and woody field margin were decreased even more, by 39% and 45%, 

respectively (maxEffectmixed strip = 0.373, maxEffectwoody =0.182). 

 

3.1.4.3 Formalisation in model 

The current FLORSYS version only accepts rectangular fields for the seed predation submodel. For each 

of the four field edges, the first step is to calculate the parameters AFM and BFM of the equation computing 

the variation in seed predation rate with the distance to the field edge, depending on the type of the field 

margin (if any), as in Figure 3 (eq. [13] in Table A.1.B). 

The effect of a neighbouring field margin then is the integral of eq. [13] from the field edge to the 

opposite field edge, or maxDistInf, whichever is smaller [14]. To obtain the relative effect maxv on 

predation rate, this amount is divided by the field size perpendicular to the field edge. The effect of all 

four field edges is the product of the four maxv values, which is then applied to the seed predation rate 

[15]. 

3.1.5 Carabid seed choice 
3.1.5.1 Seed traits influence carabid preferences for weed seeds 

The Principal Component Analysis of the seed predation rates and seed traits showed that high predation 

rates were the most associated to high seed lipid contents whereas species with long, heavy, thick-coated 

seeds tended to present lower predation rates (Figure 4.A). Based on this analysis, the 26 weed species 

were segregated into four clusters (Figure 4.B). Average seed predation rates ranged from 0.260 

seeds/seeds for cluster 2 to 0.0453 seeds/seeds for cluster 4. Inside each cluster, predation rates varied 

with seed lipid content and seed coat thickness. In the two clusters with respectively the highest and 

lowest predation rates, predation increased with increasing seed lipid content and decreased with 

decreasing seed coat thickness. In the other two clusters, the opposite applied. 

 

To estimate average predation rates for weed species included in FLORSYS but not used in the 

experiments of Figure 4, the cluster membership of the additional species was determined based on their 

seed traits fed to a Factorial Discriminant Analysis using the analysis of Figure 4. Once, the cluster 

membership of a new species was established, the regressions shown in Figure 4.B were used to predict 

its predation rate.  

 

Finally, the observed and estimated seed predation rates were divided by the average predation rate of 

V. arvensis and C. bursa-pastoris ( = (0.284 + 0.038)/2). As a result, the average species-preference 

coefficient of these two species was 1 and all other species were ranked relatively to these two species. 

As a result, among the 32 species currently included in FLORSYS, two, Avena fatua and Mercurialis 

annua, present a zero preference coefficient (see section B.5 online) and are thus never eaten in the 

simulations. Veronica persica has the lowest non-zero coefficient (0.17) and C. bursa-pastoris the 

highest coefficient (1.76), meaning that at identical seed densities, C. bursa-pastoris seeds are 10 times 

more likely to be eaten by carabids than V. persica seeds. 

 

3.1.5.2 Carabids prefer abundant seeds to their favourite seeds 

To calculate the seed-predation for a given weed species, the total seed predation over all species is then 

multiplied by the species-preference coefficient CPs (eq. [17] in Table A.1.C). It is also multiplied by 

the density of seeds produced by the weed species on day d relatively to the total weed seed rain. This 

makes it likelier that carabids concentrate on the most abundant seeds. 

3.1.6 Actual seed predation and return to weed seed bank 
Potentially, the number of seeds of a given species predated on a given day is the product of the species 

seed predation rate and the number of seeds produced on this day by the species (eq. [18] in Table 

A.1.D). However, if the seed rain of the preferred species is too low, or vice-versa, if carabids do not 
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like the most abundant weed seeds, this potential predation does not add up to the predation expected 

for the predation rate over all species finalPredRated. 

 

To correct for this, the potential number of predated seeds of each weed species is multiplied by a 

corrective coefficient [20]. The latter is the ratio of the number of predated seeds summed over all 

species expected from finalPredRated divided by the potential number of predated seeds summed over 

all species [19]. Finally, the number of predated seeds is subtracted from the seed rain before addition 

to the soil seed bank [21]. 

 

3.2 Including weed seed predation improve model prediction quality 

We compared simulations with the new FLORSYS version including the seed predation submodel to 

independent observations from the cropping-system trial to determine the prediction quality and domain 

of validity of the model. This showed that daily weed dynamics were well predicted, both in terms of 

plant density and above-ground biomass (81-85% of observations inside the simulated confidence 

interval, Table 2.A). There was a slight tendency to overestimate weeds (12%). Excluding weed seed 

predation from the simulations did not really change this satisfactory performance. 

 

Weed variables were generally well ranked by FLORSYS in terms of cropping systems and species, with 

56-69% of well-ranked observations (Table 2.B). However, these variables were somewhat 

overestimated, particularly weed biomass (bias = 12-17%), which resulted in large prediction errors (up 

to 121% for plant density). Note though that variability in observation was often so high that prediction 

error could not be estimated (for crop and weed biomass). Including weed seed predation was very 

beneficial, as the overestimation and the prediction greatly increased when predation was excluded (up 

to 858% for weed biomass!). 

 

Crop variables were generally well predicted by FLORSYS, with less bias, and with 68-84% well-ranked 

observations, in terms of cropping systems and species (Table 2.B). Excluding weed seed predation 

reduced crop-yield overestimation (-5%), as there were more and larger weed plants to compete with 

the crop for resources. 

3.3 The key factors for weed seed predation rates 

3.3.1 Not all submodel components influence prediction quality and predation 
rates 

The effect of switching off individual components of the predation submodel or adding field margin was 

not significant or negligible for weed species richness, weed-based food offer as well as crop yield 

(p<0.05 and/or partial relative Eta2 < 0.01 in analyses of variance, section D.1.2 online). Submodel 

components and field margins were actually only really important for annual weed seed predation rates 

(partial relative Eta2 = 0.29). 
 

The model's prediction quality depended on which individual components were switched off in the 

predation submodel (Table 3). Deleting the effects of daily incident radiation (i.e., PARd
C

 in eq. [5] in 

Table A.1) considerably decreased prediction error but it also increased annual predation rates by nearly 

50% compared to the nominal simulation (from 0.50 seeds/seeds to 0.74 seeds/seeds per year). At the 

same time, it divided field infestation by more than four and increased the already overestimated yield 

by 15%. Weed-related biodiversity was also reduced by up to 50%. Conversely, switching off the effect 

of harvesting operations had the exact opposite effects, with a somewhat lesser magnitude (e.g., 

prediction rates decreased by only 40%, compared to the 50% increasing when switching off the 

radiation effect).  

 

More generally, any reduction in simulated prediction rates led to an increase in prediction error, and 

vice-versa. But only three other submodel components were sufficiently influential that switching them 

off influenced seed predation rates significantly. Removing the effects of carabid reproduction timing 

and daily temperature reduced predation rates and increased prediction error whereas the opposite 
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occurred when the effect light interception the canopy was removed. But weed-impact indicators and 

crop yield did not vary significantly for any of these submodel removals. The remaining components of 

Table 3.B had no or only a slight effect on prediction error, and no effect on predation rates, weed impact 

or crop yield.  

3.3.2 Field margins increase weed seed predation and crop yields 
Adding grassy field margins around each field increased predation rates by approximately 20%, slightly 

improved weed species evenness and even increased crop yield by 5% (Table 3.C). Halving the most 

influential parameter driving field-margin effect, i.e., the maximum distance at which the margin 

influences predation, somewhat reduced these beneficial effects but not significantly. 

3.3.3 Cropping system and carabids' preferences were the most influential 
factors 

Total annual predation rates as well as weed-impact indicators and crop yield depended the most on 

cropping systems in interaction with time, with 83% of variability in outputs explained by linear 

regression in average (ranging from 53% for predation rate to 93% for weed-based bee food offer (details 

in section D.1.2 online). Predation rates varied from 0.36 seeds/seeds per year for reduced-tilled sprayed 

A8 to 0.57 for the ploughed unsprayed A1 (section D.2 online), with large variations according to years. 

Predation rates were generally lower for early-harvested crops (varying from 0.39 seeds/seeds per year 

on average in oilseed rape to 0.50 in barley) than for late-harvested crops, ranging from 0.51 seeds/seeds 

per year in sunflower to 0.63 in sugar beet (section D.4 online). 

 

When looking at predation rates simulated for the different weed species, almost all variation was due 

to species effects (94% of variability explained by linear regression was due to the species effect, section 

D.3 online). The cropping system and time explained the rest. Annual predation varied from zero for 

eight weed species, to 0.53 for Alopecurus myosuroides (ALOMY) (Figure 5). The simulated species 

predation rates were only partially correlated to the carabids' species preference in the model (Pearson 

correlation coefficient = 0.51). Indeed, some species highly liked by carabids (e.g., Abuthilon 

theophrasti, ABUTH, the fourth most liked species, section 3.1.5.1) presented a near-zero predation rate 

(Figure 5), simply because they were extremely rare in the simulations. Conversely, a little liked species 

such as Galium aparine (GALAP, the third least liked species) was among the six most predated species 

in the simulation. 

 

3.4 Weed seed predation improves crop production and reduces 
biodiversity 

In average over all 10 cropping systems, 13 years and 10 stochastic repetitions, seed predation decreased 

species richness significantly but only slightly (from 59% of possible species to 57%, Table 3.A). The 

effect took several years to become noticeable, even in the most affected cropping system, and the 

difference between years and crops was more important (Figure 6.A). Predation had no significant effect 

on species evenness in average (Table 3.A). The predation effect depended very much on individual 

crops and years (Figure 6.B). Both bird and bee food offer tended to be slightly lower in the presence of 

seed predation (Table 3.A) even though carabids' species preference is different from birds' and bees' 

preferences (Pearson correlation coefficients = -0.03 and 0.11, respectively). Again, the differences in 

food offer with vs without predation were very small compared to the variations due to crops and years 

(Figure 6.C and D). 

 

The effect of predation on field infestation and crop yield was much more important, with roughly a 

50%-decrease in field infestation and a 7%-increase in yield (Table 3.A). These variations were even 

larger in the cropping systems with the largest impact (Figure 6.E and F), though the effect of crops and 

years remained more influential, even for field infestation. 
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4 Discussion  

4.1 What is new here? 

To date, the new FLORSYS is the only model that simulates weed-flora dynamics as influenced by seed 

predation at a daily time-step, depending on cropping systems in interaction with pedoclimate. At the 

onset, our model was already more complete than other weed dynamics model, in terms of processes, 

species and management techniques (Holst et al., 2007; Chantre and González-Andújar, 2020; Colbach 

et al., 2021). Among the few existing weed seed predation models, Westerman et al's model (Westerman 

et al., 2006) is the closest to our approach though the mechanistic nature of FLORSYS allowed us to go 

more into details. For instance, Westerman et al (2006) included the impact of plant density on seed 

predation rates, which we translated into the proportion of light intercepted by the plant canopy. This 

variable is more precise insofar as it accounts for differences in plant sizes, resulting from stages and/or 

species, as well as indirect effects of management techniques influencing plant timing (e.g., sowing 

dates), location (e.g., sowing densities and patterns), size (e.g., fertilization) or destruction (e.g., harvest, 

mowing, herbicides, tillage, mechanical weeding), in interaction with daily soil and weather conditions. 

 

The mechanistic nature of FLORSYS makes it akin to a virtual experimental field. As such, the present 

simulations represent the first long-term demonstration in contrasting cropping systems that weed seed 

predation by carabids actually influences weed flora dynamics and composition. To date, no such long-

term empirical demonstration in real fields is available because excluding seed predation continuously 

over several years is next to impossible. Our results are, though, in line with annual field experiments 

that demonstrate the impact of seed predation on weed emergence (White et al., 2007; Blubaugh et al., 

2016) and on the replenishment of the weed seed bank from one year to the next (Bohan et al., 2011; 

Carbonne et al., 2020). However, the signal observed in fields remains weak and highly variable and 

conditional to pedoclimatic and management factors. 

 

4.2 Are the results consistent with field observations? 

Another novelty of our modelling approach was that we compared model outputs with independent field 

observations and demonstrated that weed seed predation improved the model's prediction quality in 

terms of weed flora dynamics (section 3.2). To our knowledge, none of the other existing weed seed 

predation models mentioned in section 4.1 was ever evaluated with independent field observations. 

Actually, models are rarely evaluated, particularly weed dynamics models (Holst et al., 2007).  

 

Including weed seed predation in FLORSYS greatly reduced the overestimation of weed flora variables 

observed with earlier FLORSYS versions here and in the more complete original FLORSYS evaluation 

study (Colbach et al., 2016). One of the outcomes of this study was that excluding weed seed predation 

from the model led to overestimated weed variables, particularly important in continuously untilled 

fields, where predation is more important compared to tillage (Table 1). Moreover, the seed predation 

rates simulated here (ranging from 0 to 87%) are consistent with field observations where similar ranges 

of variation were reported (Davis et al., 2011). Including weed seed predation into FLORSYS though 

tended to increase crop-yield overestimation. This most likely results from disregarding plant-plant 

competition for nitrogen and other soil resources in the present model version, something we are 

currently fixing (Moreau et al., 2021). 

 

While the present model evaluation showed that weed seed predation improves the prediction of weed 

flora dynamics, the field data used for the evaluation was not precise enough to evaluate the different 

components of the seed-predation submodel and the associated parameter values. This is particularly 

troubling for those factors whose effects were based on carabid activity/density reported in literature 

rather than on actual seed predation measurements because of insufficient data. Indeed, some field 

studies report no correlation between weed seed predation and carabid activity/density (Mauchline et 

al., 2005; Saska et al., 2008). This was the case for short-term tillage effects (section 3.1.2) or minimum 

temperature for predation (section 3.1.1). However, the sensitivity analysis to submodel component 

found little influence for these factors (section 3.3.1).  
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Other components were modelled from a single experimental study, albeit on seed predation, i.e., the 

carabids' species preference (section 3.1.5.1) or the impact of distance to adjacent field margins (section 

3.1.4.1). The fact that the presence of a grass strip increases weed seed predation up to 40 meters into 

the adjacent field, compared to a situation without a field margin, is though in line with studies on the 

in-field spatial distribution of carabids. Several authors report an increase of carabid activity-density in 

the first few meters from a grass margin and then a decrease with increasing distance into the field 

(Thomas and Marshall, 1999; Saska et al., 2007). The distance up to which such an effect exists depends 

on several characteristics of individual carabid species such as where they reproduce/hibernate, i.e., 

boundary vs. field interior (Saska et al., 2007). This should though not be much of a problem insofar as 

our sensitivity analysis showed that the precise value of distance threshold was not very influential. 

 

Some conclusions from the carabids' species preference are troubling at first glance. For instance, in 

cluster 3 whose seeds are little predated, seed predation rates increased with increasing seed coat 

thickness and decreasing seed lipid content (section 3.1.5.1). Conversely, previous studies reported the 

opposite, i.e., higher predation of thin-coated (Honek et al., 2007) and high-lipid seeds (Trichard, 2014; 

Ali and Willenborg, 2021), which corresponds to what we found for cluster ranking as well as inside the 

most highly predated species cluster. If the conclusions from cluster 3 were erroneous, this should have 

little impact as its predation rates are low anyhow. Moreover, the impact of carabids' preferences in the 

sensitivity analysis was negligible compared to effects of season (incident radiation, carabid 

reproduction) and protection by crop cover (harvest, light interception by canopy). 

 

4.3 What is missing? 

Based on the previous section (4.2), future improvements of the seed predation submodel should focus 

on seasonal and crop-related effects. The hypotheses underlying the seed-predation submodel should 

also be analysed with care and continuously re-evaluated against new knowledge. For instance, the 

model shuts off seed predation on 1 Oct, based on European field reports (Honek et al., 2005) though 

North-American studies observed predation until early November (Heggenstaller et al., 2006). 

However, weed seed rain is rarely as late in our type of pedoclimates and cropping systems. So, even if 

adult carabids were not already starting to hibernate (Kromp, 1999), delaying the shutoff deadline would 

have little impact in our simulations. This might change if climate change and/or innovative cropping 

systems make weeds reproduce later and/or carabids are active longer.  

 

Similarly, the model assumes that seeds are only predated by adult carabids, as it is widely believed 

most larvae species have mouthparts structure that would not allow seed consumption. Seed 

consumption by larvae would thus be limited to very few species from the Harpalini and Zabrini tribes. 

Indeed, larvae from these tribes were reported to consume weed seeds, at least in lab experiments 

(Hartke et al., 1998; Klimes and Saska, 2010). But in field conditions, these tribes are rarely found in 

captures of seed-eating carabids (Trichard et al., 2013; Carbonne et al., 2020) so larval seed 

consumption would likely have little effect on model outputs. The diet of carabid larvae remains 

however largely undocumented and effort should be devoted to this issue. 

 

The shutoff deadline would also become more influential if carabids predated not only freshly shed 

seeds in the model, but also older seeds on soil surface, including those excavated by tillage. In lab 

experiments, carabids showed no preference for fresh seeds vs seeds that had been previously buried in 

the soil for 6 months (Martinkova et al., 2006). Seed burial might actually facilitate predation via 

chemical and/or physical changes in the seed coat (Martinkova et al., 2006). Buried seeds are partially 

or totally imbibed and were shown to be preferred over dry freshly shed seeds, probably because they 

are more easily detected by carabids through higher emission of olfactory cues (Law and Gallagher, 

2015; Kulkarni et al., 2017a). Buried seeds could thus be consumed by adult carabids should tillage 

tools move these seeds back to the surface, but the proportion of such excavated seeds is actually very 

low across tools and lcoations (Cousens and Moss, 1990; Mead et al., 1998; Colbach et al., 2000; Roger-

Estrade et al., 2001; Colbach et al., 2014a). 
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Some management techniques were highly simplified by the predation submodel because there were 

few data. For instance, the effect of insecticide spraying disregarded dosage and active ingredient. But, 

as the sensitivity analysis to submodel components found little impact even for the more influential 

tillage (section 3.3.1), this should be acceptable, particularly as the model includes the effect of the 

frequency and timing of spraying. Other management techniques were ignored because there were either 

no data or conflicting data. This was for instance the case for mineral and organic fertilizer. However, 

the sensitivity analysis showed that the most influential management effect was related to canopy density 

and that even highly disturbing operations such as inverting tillage were negligible compared to this key 

effect. There should then be no need to add further fertilizer effects other than the indirect effect already 

included in FLORSYS, i.e., the higher plant biomass production in well-fertilized crops (Moreau et al., 

2021). The resulting increase in weed seed predation would be consistent with field observations 

(Kromp, 1999). Conversely, mulching and crop-residue management might be more influential than 

fertilization. These plant residues lead to a more favourable microclimate, with milder temperatures and 

a moister soil (Kromp, 1999). But they were reported to decrease predation rates (Trichard, 2014) as 

they can hinder carabid movement (Cromar et al., 1999a; van der Laat et al., 2015).  

 

The present model focuses on weed seed predation by carabids but there are other types of predators 

(e.g., rodents). But, such predators are more mobile than carabids and depend less on management 

techniques (Cardina and Sparrow, 1996; Winqvist et al., 2011; Roos et al., 2019) or crop canopy 

(Heggenstaller et al., 2006). As the primary objective of FLORSYS is to quantify direct and indirect 

effects of cropping systems on crops and weeds in order to evaluate and design agroecological weed 

management strategies, adding predators that depend little on cropping system would be superfluous. 

The same applies to other processes that potentially affect seed predation but whose correlation is either 

low or unknown, such as the effect of soil microflora on weed seed attractiveness to predators (Saska et 

al., 2022).  

 

4.4 Consequences for agroecological weed management 

The simulations showed that weed seed predation indeed contributes to managing weeds, by reducing 

field infestation, increasing weed-flora evenness and improving crop yields (section 3.4). However, 

predation rates, and the consequences for crop production and biodiversity, varied greatly among the 

tested cropping systems, years and crops. Such variations in predation rates have also been reported 

from field observations (Honek et al., 2003; Westerman et al., 2003b; Gallandt et al., 2005; Labruyère 

et al., 2016) though these could not conclude on predation impacts on crop yields.  

 

To determine which cropping systems and field margins favour weed seed predation enough to 

noticeably contribute to biological weed regulation, a higher diversity of cropping systems needs to 

be explored by simulation. Moreover, the present simulations were run with a single 13-year 

weather series, recorded during the observations for the model evaluation. To better assess the 

potential for biological weed regulation of cropping systems, the latter need to be simulated with 

different weather series. This is essential because the sensitivity analysis showed the key impact of 
incident radiation and, to a lesser degree, daily temperature on predation rates as well as crop yield and 

weed-related biodiversity. 

 

Biological weed regulation by carabids might also be detrimental for biodiversity, particularly weed-

based trophic resources for other fauna. But again, more simulations are needed to conclude in which 

cropping systems, this could be an issue. 

5 Conclusion 

The present paper presented an innovate approach to model the impact of cropping systems and weather 

on weed seed predation by carabids, and the resulting consequences for crop production and 

biodiversity. This demonstrated a key advantage of mechanistic (process-based) models, allowing to 

improve and add functions to existing models such as the FLORSYS model, when needed or when new 

knowledge becomes available. The resulting model was evaluated with independent field observations, 
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which is very rare, particularly for weed dynamics models. The simulations with FLORSYS showed that 

weed seed predation can indeed contribute to managing weeds, by reducing field infestation, increasing 

weed-flora evenness and improving crop yields. However, to determine which cropping systems and 

field margins favour weed seed predation enough to noticeably contribute to biological weed 

regulation, more and more diverse cropping systems and weather series must be explored by 

simulation. These results will be presented in a companion paper (Colbach et al., in prep). 
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8 Illustrations 

Table 1. Main effect of disturbances related to management operations on weed seed predation as well 

as activity, density and/or abundance of carabids. 

Technique 

Decrease in No effect on 

Seed predation 

Carabid activity/density 

or abundance 

Carabid activity/density or 

abundance 

Mouldboard 

ploughing 

(Brust and House, 1988; 

Menalled et al., 2007) 

(Thorbek and Bilde, 

2004; Shearin et al., 

2014) 

 

Deep (> 10 cm) 

non-inverting 

tillage 

(Cromar et al., 1999b) 
(Thorbek and Bilde, 

2004) 
(Shearin et al., 2014) 

Superficial tillage 
(Sanguankeo and Leon, 

2011) 

(Thorbek and Bilde, 

2004) 
 

Mechanical 

weeding 
 (Navntoft et al., 2016) 

(Kromp, 1999; Holland and 

Luff, 2000; Thorbek and 

Bilde, 2004) 

Insecticide 

(Trichard et al., 2013; 

Cutler et al., 2016; 

DiTommaso et al., 2017) 

  

Herbicide 
(Sanguankeo and Leon, 

2011) 

(Zhang et al., 1998; 

Taylor et al., 2006) 

(Brust, 1990; Holland and 

Luff, 2000) 

Fungicide (Trichard et al., 2013)  
(Zhang et al., 1998; Holland 

and Luff, 2000) 

Mowing (Meiss et al., 2010)  (Thorbek and Bilde, 2004) 
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Figure 1. The main daily steps of the weed seed predation submodel to be included in the crop-weed 

dynamics model FLORSYS (Colbach et al., 2021), with Input variables, Species parameters, FLORSYS 

state variables, and submodel state variables and output variables. Mat and Res numbers refer to 

sections of Material & methods and results, respectively. Equation numbers refer to equations in Table 

A.1 (Nathalie Colbach 2023 ). 
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Figure 2. Variation in weed seed predation by carabids due to harvest (A) and emergence of autumn-

emerging carabids (B) in the seed predation submodel, estimated by fitting non-linear equation [5] of 

Table A.1 accounting for these disturbances as well as effects of daily temperature, incident radiation 

and canopy density (C) on seed predation (symbols) monitored in three wheat fields at the INRAE Dijon-

Epoisses experimental station in 2009 (Laurène Perthame 2017 ) 
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 1 

 2 

 3 

 4 
Figure 3. Seed predation rates of Poa annua L. as a function of distance to field edge, depending on the 5 

presence or absence of a grassy field margin along that edge. Symbols and vertical bars show mean and 6 

standard-variation of observed data (N=454), averaged per distance and presence/absence of 7 

intrastructure, lines show non-linear regression fitted to predation as a function of distance and 8 

presence/absence of field margin with PROC NLIN of SAS (R² = 0.17,p<0.0001). Data points for given 9 

distance were slightly shifted to make it easier to distinguish the standard-deviation bars. Data taken 10 

from Petit et al. (submitted) (Nathalie Colbach 2023 ) 11 
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 13 

Figure 4. Carabid preference for weed seeds, depending on seed traits, based on Principal Component 14 

Analysis of seed predation rates recorded by Trichard (2014) and seed traits. A. Seed traits and seed 15 

predation rates. B. Weed species (represented by their EPPO codes, see species names in section B.5 16 

online) and segregated into four clusters (identified by colours and numbers) based on Hierarchical 17 

Classification on Principal Components, with average predation rates (± standard-deviation) per cluster. 18 

Equations show linear regressions (R² = 0.83) linking seed predation rates y to seed coat thickness ct 19 

and seed lipid content lc in each cluster (Laurène Perthame ) 20 

 21 

 22 

 23 

Lipid content

Width

Mass

Coat thickness

Length

Predation rate

A B

0.108  0.0966

0.0453  0.01180.0610  0.239

0.260  0.0161
y = 0.82 + 195ct – 0.78lc

3

1

2

4

y = 26 - 44ct + 0.059lc

y = 5.97 – 2.33ct + 0.0135lc y = 7.25 + 24.2ct – 2.61lc
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Table 2. FLORSYS ability to predict weed dynamics and to rank cropping systems and weed species 24 

asses by comparing simulations to observations from a 12-year cropping system trial in Burgundy. Crop 25 

and weed variables are given per species or at the community scale (summed over all simulated species). 26 

Values in italics shows variations compared to simulations without the weed seed predation submodel. 27 

 28 

A. Daily weed dynamics 29 

Variable 

Daily dynamicsx 

Correct Over-estimated Under-estimated 

With 
predation 

Variation† if 

no predation 

With 
predation 

Variation† if 

no predation 

With 
predation 

Variation† if 

no predation 

Weed biomass 
(aboveground) 
(g m-²) 

0.81 -0.01 0.12 +0.01 0.07 -0.01 

Weed plant 
density             
(plants m-²) 

0.85 0 0.12 +0.01 0.03 0 

 30 

 31 

B. Annual and multiannual crop and weed variables 32 

Variable 

Relative bias (%) § 
Relative prediction error 

(%)$ 

Proportion of correctly predicted 
observations 

Proportion & 
In terms 

of# 
With 

predation 
Variation† if 

no predation 

With 
predation 

Variation† if 

no predation 

With 
predation 

Variation† if 

no predation 

Crop yield (t ha-1) 12% -5% 126% -3% 0.84 -0.01 
Absolute 
values 

Crop biomass  
(g m-²) 

-1% 0% ~0 0% 0.68 -0.04 Rank 

Weed seed bank 
at a given date 

17% +5% 74% +5% 0.56 +0.01 Rank 

Multiannual weed 
biomass  

16% +14% ~0 +858% 0.69 -0.01 Rank 

Multiannual weed 
plant density  

12% +5% 121% +20% 0.60 0 Rank 

x Proportion of observations inside the simulated confidence interval. Colours: from red (0) to green (1) for the first column, 33 
from green (0) to red (1) for the two other columns.  34 
† Coloured from red (deterioration in prediction quality when disregarding weed seed predation in simulations) to green 35 
(improvement in prediction quality). 36 
§ Relatively to the range of variation of observations ½[max-min observed values]. Colours: from green (0%) to red (|50%|), 37 
grey (too much variability in observations to conclude).  38 
$ Corrected for variability in observations and in simulations, relatively to the standard deviation of observations. Colours: red 39 
(bad, > 120%), yellow (satisfactory, 60-90%), light green (good, 30-60%), green (very good, < 30%) and grey (too much 40 
variability in observations to conclude), with thresholds based on Colbach et al (2016).  41 
& Maximum of the modelling efficiency, the Pearson and the Spearman correlation coefficients. Colours: from red (0) to green 42 
(1).  43 
# Cells were coloured from yellow for the worst case (model only ranks situations correctly) to green (model also predicts 44 
absolute values correctly). 45 
 46 
 47 
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 48 

Table 3. Sensitivity analysis of model prediction quality and model outputs to the components of the weed seed predation submodel. Columns for predation rate, weed-impact indicators and crop yield show ls-means calculated 49 

after analyses of variance; means of a given column followed by the same letter are not significantly different at p=0.05 (in grey those that are not different from the nominal predation scenario). Cells were coloured from white 50 

(0) to red (highest variation in absolute values) for the prediction bias, from red (lowest value) through yellow to green (highest value) for indicators, except field infestation coloured vice-versa. In each subsection, the scenarios 51 

were sorted with increasing total predation rate. Additional results in section D.1 in supplementary material online.  52 

Scenario 

Variation in 
prediction 
error (weed 
density over 

rotation) 

Annual 
predation 

rate 
(seeds/seeds 

per year) 

Wild plant biodiversity 
Food offer (no unit) 

for…… 

Field 
infestation 

(t/ha) 
Crop yield 

(MJ/ha) 

Species 
richness 

[0,1]§ 

Species 
evenness  

[0, 1]$ 

Birds 
Domestic 

bees 

A. Including weed seed predation submodel 

No predation 
See Table 2 

None 0.59 d 0.27 a 2.22 b 0.18 e 1.30 f 118 916 a 

Predation 0.50 de 0.57 bc 0.28 abc 2.09 b 0.14 bc 0.86 bcd 127 222 ab 

B. Predation submodel without the effect of … 

Harvest 11% 
v
s
 e

rr
o
r 

o
b
s
e
rv

e
d
 w

it
h
 

c
o
m

p
le

te
 p

re
d
a

ti
o

n
 

s
u
b
m

o
d

e
l 

0.31 a 0.59 de 0.28 abcd 2.2 b 0.17 ef 1.10 g 121 230 ab 

Carabid reproduction 3% 0.41 b 0.58 cde 0.28 abcd 2.14 b 0.15 de 0.96 ef 124 362 abc 

Daily temperature 2% 0.44 c 0.58 cde 0.27 abc 2.15 b 0.14 bcd 0.99 fg 124 236 abc 

Weed seed density -5% 0.49 d 0.56 b 0.27 ab 2.07 b 0.13 bc 0.85 de 127 481 abcd 

No till 0% 0.49 de 0.58 bcde 0.29 abcde 2.11 b 0.14 cd 0.89 def 126 340 abcd 

Non-inverting tillage 1% 0.50 de 0.58 cde 0.29 bcde 2.10 b 0.14 cd 0.85 def 127 040 abcd 

Inverting tillage 1% 0.50 de 0.58 bcd 0.28 abcd 2.11 b 0.14 bcd 0.84 cde 127 831 bcd 

Species preference of carabids 1% 0.52 e 0.58 bcd 0.28 abcd 2.12 b 0.15 cd 0.85 cde 127 469 abcd 

Light interception by canopy -2% 0.57 f 0.58 bcd 0.30 de 2.09 b 0.14 bcd 0.82 cd 127 501 abcd 

Daily incident radiation -41% 0.74 h 0.53 a 0.43 f 1.74 a 0.07 a 0.20 a 146 030 e 

C. Adding field margins around each simulated field 

Grassland Not tested as no 
margins in trial 

0.61 g 0.57 bc 0.31 e 1.99 ab 0.13 b 0.59 b 134 374 d 

Grassland with½ maxDistInf 0.56 f 0.57 bc 0.29 cde 2.05 b 0.13 bc 0.72 bc 130 365 cd 
§ Number of species present / maximum possible number of weeds species. 53 
$ Pielou's index of species evenness, with 1 = all species present the same abundance, 0 = one dominant species 54 

 55 
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 56 
Figure 5. Annual seed predation rates per weed species averaged over all cropping systems, years and stochastic repetitions, simulated with FLORSYS. Weed species are listed with their EPPO codes, Latin names are in section 57 

A.2 in supplementary material online (Nathalie Colbach 2023 ) 58 

 59 



Perthame et al (2023) Modelling weed seed predation …. Eur J Agron 

29 

 

 60 

 61 

 62 
Figure 6. Effect of weed seed predation on crop yield and weed-impact indicators simulated with 63 

FLORSYS. For each indicator, the cropping system with the largest difference between simulations with 64 

(green dots) and without predation (red squares) was shown. Grey shades show 90%-confidence 65 

intervals resulting from stochastic repetitions. Crop names show crop succession (with spring/summer 66 

crops in lower case). Y-axes were scaled to either the maximum possible value (A, B) or the 99%-67 

percentile of values overall systems and repetitions (C-F) (Nathalie Colbach 2023 ) 68 

 69 
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9 Appendix 72 

Table A.1. Algorithm and equations of the weed seed predation submodel of FLORSYS, running for each day d. Submodel state variables are in black, parameters are in italic 73 

blue, inputs are in bold purple, state variables provided by other FLORSYS submodels are in green, and the outputs of the predation submodel are in bold red. 74 

Eq. Objective Equations Explanations 

A. Calculate the daily total predation rate from field history and weather, irrespective of species 

[1] 

Photo-thermal and 

seasonal conditions for 

predation 

If d in [1 Mar, 1 Oct] 

and Tmin < Td < Tmax 

and PARd > 0 

and 1-PARsold > 0 

then predd = yes 

else predd = no 

Tmin and Tmax (°C): min and max temperatures for 

predation 

Td (°C): daily mean (air) temperature 

PARd (MJ/cm2/jour): incident photosynthetically active 

radiation above canopy 

PARsold (MJ/MJ): proportion of PARd arriving on soil 

surface 

predd (yes or no): is predation possible today? 

[2] Efficient temperature 

If Tmin < Td < Tmax 

then Teffd =(Td - Tmin) / (Tmax - Tmin) 

else Teffd = 0 

Teffd (°C): daily efficient temperature for predation 

[3] 

Time since and until 

emergence of carabids 

with autumnal 

reproduction 

timeemerge = |d – demergence| 

If timeemerge = 0  

then timeemerge = 1 

If timeemerge > recoveryTimeEmerge 

then timeemerge = recoveryTimeEmerge 

timeemerge (days): time since carabid emergence in spring 

demergence (Julian day): date of carabid emergence in spring 

recoveryTimeEmerge (days): duration of emergence effect 

[4] 
Time since last harvest 

(or mowing) 

timeHarvest = d – dHarvest + 1 

If timeHarvest > recoveryTimeHarvest 

then timeHarvest = recoveryTimeHarvest 

timeHarvest (days): time since last harvest 

dHarvest (Julian day): date of last harvest 

recoveryTimeHarvest (days): duration of harvest effect 

[5] 
Potential daily predation 

rate 

If predd = yes 

then potpredRate
d
  

      = eA ∙ Teffd ∙ (1 - PARsol)
B ∙ PARd

C ∙ eD∙timeHarvest  ∙ timeemerge

E
  

else potPredRated = 0 

potPredRated (seeds/seeds): daily potential predation 

rate 

A, B, C, D, E: parameters for the impact of daily 

temperature, shading by canopy, incident light, harvest 

and carabid emergence 

[6] 
Time since last inverting 

tillage 
timeInvTill = d – dInvTill + 1 

timeInvTill (days): time since last inverting tillage 

dInvTill (Julian day): date of last inverting tillage 

[7] 
Effect of inverting tillage 

on predation rate 

If timeInvTill < recoveryTimeInvTill 

then predRated  = potPredRated 

∙ (1 + impact
InvTill

∙ (1 −
timeInvTill

recoveryTime
InvTill

) 

recoveryTimeInvTill (days): duration of effect of inverting 

tillage 

predRated (seeds/seeds): predation rate after inverting 

tillage (if any) 
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Eq. Objective Equations Explanations 

else predRated = potPredRated impactInvTill (seeds/seeds): maximum effect of inverting 

tillage 

[8] 
Time since last non-

inverting tillage 
timeOthTill = d – dOthTill + 1 

timeOthTill (days): time since last non-inverting tillage 

dOthTill (Julian day): date of last non-inverting tillage 

[9] 
Effect of non-inverting 

tillage on predation rate 

If timeOthTill < recoveryTimeOthTill 

then predRate'd = PredRated  

∙ (1 + impact
OthTill

∙ (1 −
timeOthTill 

recoveryTime
OthTill

))  

else predRate'd = PredRated 

recoveryTimeOthTill (days): duration of effect of non-

inverting tillage 

impactothTill (seeds/seeds): maximum effect of non-

inverting tillage 

predRate'd (seeds/seeds): predation rate after non-

inverting tillage (if any) 

[10] 
Time since last 

insecticide spraying 
timeinsecticide = d – dinsecticide + 1 

timeinsecticide (days): time since last insecticide spraying 

dinsecticide (Julian day): date of last insecticide spraying 

[11] 
Effect of insecticide on 

predation rate 

If timeinsecticide < recoveryTimeInsecticide 

then predRate''d = PredRate'd  

∙ (1 + impact
Insecticidel

∙ (1 −
timeinsecticide 

recoveryTime
Insecticidel

))  

else predRate''d = PredRate'd 

recoveryTimeInsecticide (days): duration of effect of 

insecticide  

impactInsecticide (seeds/seeds): maximum effect of 

insecticide spraying 

predRate''d (seeds/seeds): predation rate after insectide 

spraying (if any) 

[12] 
Cumulative effect of no 

till 

If yearsLastTill > upgradeTimeNoTill 

then predRate'''d = (1 + impactNoTill) predRate''d 
else if yearsLastTill ≤ 1 

then predRate'''d = predRate''d 
else predRate'''d = predRate''d 

 (1 +
impactNoTill∙(yearsLastTill−1)

upgradeTimeNoTill−1
) 

yearsLastTill (years): years since last tillage operation 

upgradeTimeNoTill (years): years needed to reach to 

maximum impact of continuous no till 

impactNoTill (seeds/seeds): maximum impact of continuous 

no till 

B. Effect of a field margin along the field edges on daily seed predation rate 

[13] 

Effect of distance to field 

margin and type of field 

margin  

BFM = −4  maxEffectFM / maxDistInf 2 

AFM = −BFM  maxDistInf  

f(x, FMv) = AFM  x + BFM  x2 

maxDistInf (m): maximum at which there is an effect of a 

field margin on predation  

maxEffectFM (seeds/seeds): maximum additional 

predation observed at maxDistInf from field margin FM 

(grass, flower, or woody strip), with 0 if no margin (i.e., 

road, neighbour field) 

AFM and BFM (seedsseeds-1m-1): parameters depending on 

type FM of field margin 

x (m): (perpendicular) distance from field edge 
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Eq. Objective Equations Explanations 

[14] 
Effect of a given field 

margin 

maxv = min(maxDistInf, fieldLengthv) 

effectFMv = 1 

 + ∫ f(x, FMv)
maxv

x=0
fieldLength

v
⁄  

fieldLengthv (m): length of field perpendicular to vertix 

v 

maxv (m): distance over which the function f is integrated 

effectFMv (seeds/seeds): effect of field margin along field 

vertix v relatively to a vertix without field margin (control 

= 1) 

[15] 

Effect of all field 

margins surrounding the 

simulated field 

finalPredRated = predRate'''d  ∏ effectFMv
𝑁𝑉
𝑣=1  

if finalPredRated > 1 

then finalPredRated = 1 

finalPredRated (seeds/seeds): final seed predation rate 

over all species 

C. Effect of seed density and predator preference on daily species predation rate 

[16] 
Carabid weed-species 

preference 
CPs = f(weed seed traits, section 3.1.5.1) CPs (no unit): Relative carabid preference for species s  

[17] Species predation rate 

speciesPredRateds = finalPredRated  CPs 

NSeedsds/∑ NSeedsdi
NS
i=1  

If speciesPredRateds > 1 

then speciesPredRateds = 1 

speciesPredRateds (seeds/seeds): seed predation rate of 

species s 

Nseedsds(seed/m²): Number of seeds produced by 

species s 

NS; number of weed species 

D. Actual seed predation and return to weed seed bank 

[18] 
Potentially predated 

seeds per species 
NpredSeedsds = speciesPredRateds  Nseedsds 

NpredSeedsds (seeds/m²): potential number of predated 

seeds of species s 

[19] 

Correct for insufficient 

seed rain of preferred 

species and/or carabid 

dislike of abundant seeds 

corrCoeffd = finalPredRated   

∑NSeedsdi

NS

i=1

/ ∑NpredSeeds
di

NS

𝑖=1

 

corrCoeffd (seeds/seeds): coefficient for readjusting the 

number of predated seeds to fit the total seed predation 

rate  

[20] 
Actually predated seeds 

per species 
NpredSeeds'ds = corrCoeffd  NpredSeedsds 

NpredSeeds'ds (seeds/m²): final number of predated 

seeds of species s 

[21] 
Return to weed seed 

bank 
NSBds l=0 = NSBd-1 s l=0 + Nseedsds - NpredSeeds'ds 

NSBdsl (seeds/m²): number of seeds of species s in soil 

layer l of weed seed bank 
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Table A.2. Valeur des paramètres du modèle. Ces paramètres ont été estimés à partir de tests statistiques ou de la littérature (source)  77 

Parameter Meaning Unit Value Source 

eA Increase in predation rate due to daily temperature °C-1 2.39 

Fitting a linear mixed model to 

data from Petit et al. (2014) 

B Increase in predation rate due to shading by canopy no unit 0.293 

C Reduction in predation rate due to incident light no unit -0.175 

D Recovery of predation rate with time after harvest disturbance days-1 0.0358 

E 
Recovery of predation rate with time after carabid emergence 

as well as drop in predation with time until carabid emergence 
no unit 0.0751 

CPs Relative carabid preference for species s no unit 

Section B.5 in supplementary material online 

(PCA, clustering, linear regressions, data from 

Trichard (2014)) 

demergence Emergence date in spring of autumn-reproducing carabids Julian day 144 (24 May) (Petit et al., 2014) 

impactInsecticide  Maximum impact of insecticide spraying on predation rate seeds  seeds-1 -0.43 (Cutler et al., 2016) 

impactInvTill Maximum impact of inverting tillage on predation rate seeds  seeds-1 -0.50 (Thorbek and Bilde, 2004; 

Shearin et al., 2014) impactOthTill Maximum impact of non-inverting tillage on predation rate seeds  seeds-1 -0.39 

impactNoTill  Maximum impact of continuous no-till on predation rate seeds  seeds-1 +0.60 

(Cromar et al., 1999b; 

Menalled et al., 2007; Trichard 

et al., 2013) 

maxDistInf 
Distance to field edge over which seed predation is influenced 

by an adjacent field margin 
m 39.8 Figure 3 

maxEffectFM 
Maximum additional seed predation in field 

adjacent to field margin FM 

Grass 

Flower 

Woody 
seeds  seeds-1 

1.691 

0.763 

0.182 

Section B.4 in supplementary 

material online 

recoveryTimeEmerge 
Time before and after carabid emergence during which 

predation is reduced 
days 15 Fitting a linear mixed model to 

data from Petit et al. (2014) 
recoveryTimeHarvest Time after harvest during which predation is reduced days 18 

recoveryTimeInsecticide 
Time after insecticide spraying during which predation is 

reduced 
days 30 

(Holland and Luff, 2000; 

Kulkarni et al., 2015) 

recoveryTimeInvTill Time after inverting tillage during which predation is reduced days 30 

(Thorbek and Bilde, 2004) 
recoveryTimeOthTill 

Time after non-inverting tillage during which predation is 

reduced 
days 18 

upgradeTimeNoTill  
Time needed to reach to maximum beneficial impact of 

continuous no till on weed seed predation 
years 4 (Petit et al., 2017) 
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Parameter Meaning Unit Value Source 

Tmax Maximum temperature for predation °C 35 
(Saska et al., 2013; Noroozi et 

al., 2016) 

Tmin Minimum temperature for predation °C 5 (Saska et al., 2013) 
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