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Abstract—While often used in embedded systems, neural
networks can be costly in terms of memory and execution time.
Reducing the precision used in neural networks can be beneficial
in terms of performance and energy consumption. After having
applied a floating-point auto-tuning tool, PROMISE, on various
neural networks, we obtained versions using lower precision
while keeping a required accuracy on the results. In this article,
we present results regarding the memory and computation time
gains obtained thanks to reduced precision, using vectorized and
non-vectorized code. We also show the impact on the execution
time of PROMISE of the parallelization of the Delta Debug
algorithm it implements.

Index Terms—Precision, Neural
Floating-Point, Stochastic Arithmetic

Networks, Auto-Tuning,

I. INTRODUCTION

Neural Networks (NNs) are nowadays widely used and
becoming larger and larger. Their requirements in terms of
resource can be a problem when used in a critical situation,
such as in embedded systems with limited power and memory.
Therefore, it can be beneficial to optimise the numerical
formats used in a neural network. To do so, we use the auto-
tuning tool PROMISE! [1]. From a given neural network and
a required accuracy on its results, PROMISE provides a mixed
precision program. In this article, we show the impact of mixed
or reduced precision on memory usage and execution time
in programs provided by PROMISE. We also show how the
execution time of the PROMISE tool itself can be reduced
thanks to parallelization.

Because reduced or mixed precision offers advantages in
terms of execution time, memory usage, and energy consump-
tion, multiple mixed precision algorithms have been proposed,
especially in linear algebra, as shown in the survey [2].
Designing such mixed precision algorithms requires a good
knowledge of the computation involved.

Besides, precision auto-tuning tools aim at providing a
mixed precision version of a program that satisfies accuracy
requirements, whatever the implemented algorithms. In [3]
a benchmark suite of programs is introduced for mixed
precision computing analysis. Moreover the authors present
the performance of various precision auto-tuning algorithms
such as combinational (used in FloatSmith [4]), compositional
(used in FloatSmith [4]), Delta Debug (introduced in [5],
used in Precimonious [6] and PROMISE [1]), hierarchical
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(used in CRAFT-HPC [7]), hierarchical-compositional (used in
FloatSmith [4]) and a Genetic Search Algorithm (GA) (used in
AMPT-GA [8]). The Delta Debug algorithm requires multiple
executions of the user program to provide a suitable type
configuration. To determine if a configuration is successful,
various tests can be implemented. In PROMISE, that relies
on rounding error estimation, the requirement is the result
accuracy. The test in Precimonious is based on both a reference
result computed in the highest precision and the execution time
of the program obtained.

The contributions of this article are briefly described below.

¢ The memory consumption in the programs generated by
PROMISE is analyzed, the type configurations in these
programs depending on the required result accuracy.

o The execution time of the codes provided by PROMISE
in mixed or reduced precision is analyzed. The executions
with different type configurations are compared. Versions
with and without SIMD vectorization are considered.

« To improve the performance of the search for a suitable
type configuration, a parallel version of the Delta Debug
algorithm is introduced in PROMISE. Its benefits on the
execution time of PROMISE are analyzed.

Experiments are carried out on various neural networks in-
cluding classification ones.

The outline of this article is as follows. Section II is a
preliminary recall of the methodology described in [9] for
the precision auto-tuning of neural networks. Sections III
and IV analyse benefits in terms of respectively memory and
execution time in the programs provided by PROMISE. Then
Section V shows the performance gain in the PROMISE tool
itself thanks to parallelization. Finally, concluding remarks and
perspectives are given in Section VI.

II. PRECISION AUTO-TUNING OF NEURAL NETWORKS
USING PROMISE

PROMISE (PRecision OptiMISE) is an auto-tuning tool
which aims at reducing the precision of the variables in a given
program. From an initial C/C++ code and a required accuracy
on the result, it returns a mixed precision code, lowering the
precision of the different variables while keeping a result that
satisfies the accuracy constraint. To do so, some variables are
declared as custom typed variables that PROMISE recognizes.
PROMISE considers tweaking their precisions. Different vari-
ables can be forced to have the same precision by giving them
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Fig. 1: Creation of subsets by PROMISE. Subsets with single
(resp. double) precision variables are represented in grey (resp.
white).

the same custom type. It may be useful to avoid compilation
errors or casts of variables.

PROMISE computes a reference result using the CADNA?
library [10], [11] that enables one to estimate rounding errors
in C/C++ or Fortran codes. CADNA implements Discrete
Stochastic Arithmetic (DSA) [12], a probabilistic method to
control rounding errors. With DSA, each arithmetic operation
is performed three times with a random rounding mode.
Then the accuracy can be estimated from a comparison of
the three results obtained. CADNA introduces new numerical
types named stochastic types. Each stochastic variable contains
three floating-point values and one integer being the exact
number of correct digits. CADNA can print each computed
value with only its exact significant digits estimated thanks
to DSA with a confidence level of 95%. In practice, owing
to operator overloading, the use of CADNA only requires to
change declaration of variables and input/output statements.

PROMISE relies on the Delta Debug algorithm [5] to test
different type configurations, until a suitable one lowering the
precision while satisfying the accuracy requirement is found.
The Delta Debug algorithm does not perform an exhaustive
search: it has a mean complexity of O(nlog(n)) for n
variables. Figure 1 shows how PROMISE creates suitable con-
figurations mixing two types, e.g. single and double precision.
PROMISE can also provide a transformed program mixing
half, single, and double precision variables. Half precision
can be either native on CPUs that support it or emulated
using a library developed by C. Rau®. PROMISE dataflow
is presented in Figure 2. After computing a reference result
in double precision using CADNA, PROMISE tries to lower
the precision of the variables from double to single precision,
then from single to half precision, using twice the Delta Debug
algorithm.

Like in [9], we consider the application of PROMISE on
four different neural networks (NNs) briefly described below:

o Sine: 3 layers, densely-connected interpolation network
approximating the sine function
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e MNIST: 2 layers, densely-connected classification net-
work based on the MNIST database

o CIFAR: 5 layers, convolutional classification network
based on the CIFAR10 database

o Pendulum: 2 layers, densely-connected interpolation net-
work approximating the Lyapunov function of an inverted
pendulum (introduced in [13] and used in [14]).

These NNs are developed in Python using either Keras* or
PyTorchS. For each NN, we save the data (weights and biases
of each layer) of the trained model in HDF5 (Hierarchical
Data Format)®. Then, a Python script reads those data, and
implements the inference phase in a C++ program. The
implementation in C++ allows us to apply PROMISE.

Two different approaches are considered for each NN:
one type per neuron or one type per layer. Both approaches
reduce the precision of the parameters, taking into account
the accuracy required on the output. The approach per layer
leads to a more uniform precision program, because when
one neuron of a layer needs to be in a specific precision, the
whole layer has to be in the same precision. However, this
approach provides a suitable configuration faster than the one
per neuron and can still be useful depending on the application,
for example to obtain a first mixed precision configuration.

As we consider the inference phase, input values are chosen
and provided to the neural network. It has been observed
that with both approaches input values have actually a low
impact on the type configurations obtained. Moreover, because
changing the precision of the input has a low impact on the
configurations obtained, the input remains in double precision
except for the speed gain analysis described in Section IV.

As already pointed out in [9], the results of a classification
network may not require a high accuracy. However, exhaustive
tests have been performed, considering all possible numbers
of correct digits in the results, at most from 1 to 15 in double
precision.

Except if indicated otherwise, the following results have
been obtained on a 2.80 GHz Intel Core i15-8400 CPU having
6 cores with 16 GB RAM.

III. MEMORY GAIN ANALYSIS

To analyse the possible memory gains thanks to mixed pre-
cision, we consider the four different neural networks already
mentioned with the different type configurations obtained with
PROMISE in [9].

A. Methodology

Various tools can analyse memory usage, either the memory
exchanged during the execution or the total memory used by
the program. In our case, a preliminary study using Valgrind’s
Massif tool’ allows us to conclude that the theoretical values
can be considered, i.e. counting the number of half, single and
double precision variables in the program knowing their byte
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Fig. 3: Configurations and memory used for the Sine neural
network with input value 0.5 and one type per neuron

size, instead of running Massif for each configuration. Indeed,
the “useful-heap” values given by Massif are consistent with
the theoretical values. Hence, the following results are the
theoretical values considering the number of half, float and
double precision variables in our program.

B. Results

Figures 3 to 10 present, in the programs provided by
PROMISE for each neural network, both the number of
variables of each type and the memory consumed, depending
on the required accuracy. Figures 3, 5, 7, and 9 (respectively
4, 6, 8, and 10) have been obtained considering one type per
neuron (respectively one type per layer).

As expected, when using lower precision the program
requires less memory. The approach per layer tends to use
more memory, gaps are often observed from one accuracy
to another, because of the configurations obtained with this
approach. Indeed when one variable of a layer needs to be
in higher precision, the whole layer has to pass in higher
precision.

The input data is mentioned in the caption of each figure. In
particular, with MNIST NN the input image test_data[61] is
the 62nd test data out of the 10,000 provided by MNIST, and
with CIFAR NN, the input image test_data[386] is the 387th
test data out of the 10,000 provided by CIFARI10. It has been
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Fig. 4: Configurations and memory used for the Sine neural
network with input value 0.5 and one type per layer
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Fig. 5: Configurations and memory used for the MNIST neural
network with input value test_data[61] and one type per neuron

observed that input values have actually a slight impact on the
type distributions and the memory consumption.

As a remark, while the theoretical values are relevant for our
analysis, more memory is actually used by a program because
of the overhead memory associated with every allocation. In
our case it is negligible (~ 1%).
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Fig. 6: Configurations and memory used for the MNIST neural
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Fig. 7: Configurations and memory used for the CIFAR neural
network with input value test_data[386] and one type per
neuron
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Fig. 8: Configurations and memory used for the CIFAR neural
network with input value test_data[386] and one type per layer
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Fig. 9: Configurations and memory used for the Pendulum
neural network with input value (0.5,0.5) and one type per
layer
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Fig. 10: Configurations and memory used for the Pendulum
neural network with input value (0.5,0.5) and one type per
layer

IV. SPEED GAIN ANALYSIS
A. Methodology

We analyse the gain in execution time thanks to mixed
precision in the configurations provided by PROMISE. For this
analysis, in PROMISE we specify that configurations using
single and double precision only must be provided, because
half precision is not available in hardware in the architecture
used in our experiments. We compare the time obtained with
vectorized and non-vectorized codes, as most modern CPUs
support SIMD instructions. To do so, we use OpenMP SIMD
instructions and AVX2 vectorization on the loops that compute
the different matrix-vector products.

For this performance analysis, the type of the input vari-
ables can be changed by PROMISE. Indeed, in our previous
experiments, all input variables were in double precision and
so all the arithmetic operations in the first layer were carried
out in double precision, with possibly costly cast operations
on the weights. Consequently, enabling the tuning of the input
variables is beneficial for the execution time of the programs
provided by PROMISE.

To generate the different configurations with vectorized
code, we modify our translation script from NN model to



C++ program to add the appropriate OpenMP pragmas. We can
then directly apply PROMISE on our vectorized C++ program.
To enable vectorization, we use the flags —fopenmp-simd
—avx2. We also compile with —~O3 option. We measure the
different execution times using C++ time.h library, and con-
sidering the minimum value over 10,000 runs of the program.

Using AVX?2, a vector unit is able to perform 8 operations
in single precision at the same time, but only 4 in double
precision. So a theoretical speedup of 2 should be observed
when changing a vectorized code from double to single
precision.

B. Results

We present here results on MNIST NN. Figures 11 and
12 display the different configurations and their execution
time given the required accuracy with test_data[61] input,
respectively with the approach per neuron and per layer. We
recall that here the type of the input variable can also be
changed.

First, for each configuration, we measure the execution
time of the whole computation, i.e. the time of the main
function in the code. As expected, differences can be observed
between vectorized and non-vectorized codes. Furthermore the
execution time depends on the precision used. As it can be
observed in Figure 12, in the approach per layer, configurations
in uniform precision can be obtained. Indeed, depending on
the required accuracy all variables can be in single or in double
precision. The speedup of a single precision execution w.r.t.
a double precision one is up to 1.60 for non-vectorized codes
and up to 1.86 for vectorized codes. The best speedup obtained
is therefore slightly below the theoretical ratio of 2.

We can also compare mixed precision and double precision
codes. We focus here on the mixed precision configuration
obtained with a required accuracy from 10 to 13 digits and
the approach per neuron (see Figure 11). The speedup of the
mixed precision execution w.r.t. the double precision one is up
to 1.30 for non-vectorized codes and up to 1.41 for vectorized
codes. Nonetheless, if the configuration has a majority of
double precision variables, the speedup can be worse. Indeed,
in this case a significant number of operations are carried out
in double precision and costly cast operations are performed.

When comparing vectorized and non-vectorized code in
Figures 11 and 12, we observe a speedup of up to 1.45.
This ratio is not in accordance with the theoretical speedup
of vectorized codes w.r.t. non-vectorized ones on AVX2 units:
8 in single precision and 4 in double precision. This can be
explained by the fact that a significant part of the code does
not actually benefit from the vectorization. It is notably the
case of the softmax activation function in the last layer, which
computes an exponential using the C++ cmath library.

Therefore, we display in Figures 13 and 14 the execution
time of only the matrix-vector products performed in the
code. In this case, we observe a speedup of up to 7.2
when comparing vectorized and non-vectorized codes in single
precision, and a speedup of up to 3.9 in double precision.
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Fig. 11: Configurations and total execution time for MNIST
neural network with test_data[61] input and one type per
neuron
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neural network with test_data[61] input and one type per layer

When comparing single and double precision in vectorized
codes, we have a speedup of up to 2, the theoretical ratio.

In Figure 14 we do not observe any time difference between
the single precision and the double precision execution of
the non-vectorized matrix-vector products. However, Figure 12
exhibits a ratio of up to 1.60 between the double precision and
the single precision execution time of the non-vectorized code.
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This speedup is due to the benefits from using single precision
when declaring and initializing variables (in our case all the
weights and biases). In this part of the code, the speedup of
the single precision execution w.r.t. the double precision one
is actually up to 2, the theoretical ratio.

V. PROMISE PERFORMANCE IMPROVEMENT

While Section IV was analyzing the performance of the
codes generated by PROMISE, this section is dedicated to
the performance improvement of the PROMISE tool itself.
The search for a suitable configuration by the Delta Debug
algorithm requires multiple compilations and executions of
mixed precision versions of the user code. Therefore we
have parallelized the Delta Debug algorithm inside PROMISE.
We use the parallelization described in [15] and the related
implementation in the tool Picire®. This parallelization relies
on Python multiprocessing module that allows one to execute
a function across multiple input values, distributing the data
in different processes in parallel.

As shown in Figure 1, Delta Debug is a multi-level al-
gorithm that passes subsets of variables in lower precision
and determines whether the associated configurations satisfy
the accuracy requirement on the result. The idea of the
parallelization is to test multiple configurations in parallel at
one level of the Delta Debug algorithm. When a configura-
tion matches our requirement, we can stop looping over the
different configurations. The number of configurations to be
tested in parallel can be specified. In our case, we test 6
configurations in parallel, because 6 cores are available on
our machine.

Figures 15 and 16 show the PROMISE runtime for MNIST
and CIFAR using the sequential and the parallel version of the
Delta Debug algorithm. We use here the approach per neuron,
more costly than the one per layer. For MNIST we observe a
speedup of up to 3.2, and for CIFAR a speedup of up to 2.7.

As a remark, for MNIST, if 1 or 2 digits on the result
are required, the sequential algorithm performs better than
the parallel one (see Figure 15). For CIFAR, when 1 digit
is required, the sequential and parallel execution times are

8https://github.com/renatahodovan/picire
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very close (see Figure 16). Indeed the parallel version may
not be satisfactory when requiring low accuracy on the result,
because in this case the Delta Debug algorithm performs only
a few steps and is affected by the parallelization overhead.

VI. CONCLUSION AND PERSPECTIVES

Thanks to the application of auto-tuning on different neural
networks, we have shown that lowering the precision of
floating-point variables can have valuable benefits in terms of
memory consumption and execution time. Significant memory
gains could be deduced from the length of each numeri-
cal format. Indeed, single precision (respectively half preci-
sion) enables one to consume half (respectively four times)
less memory than double precision. For time measurements,
PROMISE has been used in order to generate codes mixing
two precisions (single and double) available in hardware
for our experiments. Using single precision is beneficial for
declaration and initialization of variables, and particularly
advantageous in vectorized parts of the codes. PROMISE



relies on the Delta Debug algorithm that tests multiple type
configurations in the user code. We have shown the impact
of the parallelization of the Delta Debug algorithm on the
execution time of PROMISE.

In the future, we plan to extend to different architectures the
analysis of the impact of mixed precision on performance. The
performance of mixed precision codes provided by PROMISE
could be measured on AVX512 SIMD units. Furthermore
the performance of codes generated by PROMISE possibly
mixing half, single, and double precision could be analysed on
architectures with native half precision, such as some ARM
CPUs or recent GPUs. We also plan to extend PROMISE to
other numerical formats, such as bfloat16.

A challenging perspective consists in proposing algorithms
with a reasonable complexity for floating-point auto-tuning
in arbitrary precision. This would enable one to automatically
generate arbitrary precision codes for architectures such as FP-
GAs (Field Programmable Gate Arrays). Moreover precision
auto-tuning could benefit from research on mixed precision
linear algebra. To reduce the number of variables to be consid-
ered, and consequently improve the performance of precision
auto-tuning, linear algebra kernels could be automatically
replaced by their mixed precision version.
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