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ABSTRACT2

Mental disorders (MD) are among the top most demanding challenges in world-wide health.3
According to the World Health Organization, the burden of MDs continues to grow with significant4
impact on health and major social and human rights. A large number of MDs exhibit pathological5
rhythms, which serve as the disorders characteristic biomarkers. These rhythms are the targets6
for neurostimulation techniques. Open-loop neurostimulation employs stimulation protocols,7
which are rather independent of the patients health and brain state in the moment of treatment.8
Most alternative closed-loop stimulation protocols consider real-time brain activity observations9
but appear as adaptive open-loop protocols, where e.g. pre-defined stimulation sets in if10
observations fulfil pre-defined criteria. The present theoretical work proposes a fully-adaptive11
closed-loop neurostimulation setup, that tunes the brain activities power spectral density (PSD)12
according to a user-defined PSD. The utilized brain model is non-parametric and estimated from13
the observations via magnitude fitting in a pre-stimulus setup phase. Moreover, the algorithm14
takes into account possible conduction delays in the feedback connection between observation15
and stimulation electrode. All involved features are illustrated on pathological α- and γ-rhythms16
known from psychosis. To this end, we simulate numerically a linear neural population brain17
model and a non-linear cortico-thalamic feedback loop model recently derived to explain brain18
activity in psychosis.19

Keywords: neurostimulation, closed-loop, control, real-time, delay, EEG20

1 INTRODUCTION

Electrical neurostimulation is an old human idea, and has been a well-established therapy for mental21
disorders for few decades. Caius Plinius during Antiquity and Scribonius Largus, who lived in the first22
century AD, proposed respectively contacts with the Electric ray (Torpedo Fish) for the treatment of post-23
partum pain and severe headaches. In the 19th century, electrical stimulation was commonly prescribed by24
neurologists for nervous disease (Edel and Caroli, 1987). Today, various electrical stimulation techniques25
exist to modulate neuronal systems and novel techniques for an optimal clinical treatment of a specific26
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pathology gain more and more attention. They could be used as an additional therapeutic lever or as27
an alternative to pharmacological medication, thus representing a hope for pharmaco-resistant forms of28
disease.29

Brain oscillations result from coordinated electrical neuronal tissues activity within and between30
structures and networks. Implicated in various neural processes, such as perception, attention and31
cognition, their disruption yields pathological rhythms, which reflect abnormal activity of the implicated32
brain network, notably at the cellular and molecular level (Basar, 2013). These pathological rhythms33
serve as good biomarkers for neuropathologies. For instance, neurophysiological studies have revealed34
that a large number of mental disorders exhibit pathological rhythms, which do not occur in healthy35
patients Schulman et al. (2011). Neurostimulation techniques have identified such pathological rhythms36
as good stimulation targets for the treatment of brain oscillatory disorders. Neurostimulation induces37
electric currents in neuronal tissue. Depending on the stimulation protocol, i.e. the temporal stimulation38
current shape, its duration and pause and the number of repetitions, neurostimulation can lead to neural39
plasticity effects or to pacemaker-like brain stimulation, respectively.40

For example, Deep Brain Stimulation (DBS) is an invasive technique and proposed for patients suffering41
from severe pharmaco-resistant Parkinson’s disease (PD) or obsessive-compulsive disorders. In PD42
patients aberrant hypersynchronicity and hyperactivity in the β-frequency band (12-30 Hz) of the basal43
ganglia-thalamocortical network can be addressed by the pharmacological medication (e.g. Levodopa) or44
DBS. The conventional DBS protocols focus on the subthalamic nucleus or globus pallidus stimulation45

continuously at a temporally constant frequency about 130 Hz. The suppression of the pathological46
beta oscillations was correlated with improving motor symptoms (Kühn et al., 2008). Recent47
techniques (Fleming et al., 2020; Hosain et al., 2014) propose to apply an adaptive closed-loop stimulation48
protocol based on observed intracranial brain activity. In addition to this intracranial neurostimulation49
technique, transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) are non-50
invasive neuromodulation approaches in which, respectively, a low electrical current and a magnetic field51
are applied to the cortical tissues. The TES current modalities include direct currents (tDCS), i.e. constant52
currents, alternating current (tACS), i.e. typically oscillatory currents, and random noise-shape currents53
(tRNS), which typically includes frequencies above the β-frequency band. It was shown that tDCS can54
improve cognitive performance in healthy subjects (Brunelin et al., 2012) and patients (Stagg et al.,55
2018) and it is applied as a therapeutic means to target brain network dysfunctions, such as Attention-56
Deficit/Hyperactivity Disorder (Nejati et al., 2020) and major depressive disorder (Bennabi and Haffen,57
2018).58

Although the neurostimulation techniques mentioned above may permit to alleviate mental disorder59
patients from symptoms, the success rate of these treatments is still limited (Nasr et al., 2022). This60
underperformance results from non-optimal choices of the stimulation protocol originating from the lack61
of understanding of the underlying neural response to stimulations and the non-patient specific stimulation62
protocol. In other words, typically the stimulation protocol (including size, duration, repetition cycle of the63
stimulation signal) is open-loop, i.e. pre-defined without taking into account the current brain/health state64
of the patient (Paulus, 2011). This non-optimal approach is inferior to so-called closed-loop techniques,65
which adapt to the patients current brain/health state. Such an adaptive, or closed-loop, approach has66
been introduced for intracranial (Prosky et al., 2021; Stanslaski et al., 2022; Hartshorn and Jobst, 2018)67
and transcranial stimulation (Tervo et al., 2022). Recently proposed closed-loop methods are adaptive68
in the sense that a pre-defined stimulation signal is applied when observed brain activity fulfills certain69
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criteria, such as passing an amplitude or power threshold. While this adaptive approach improves existing70
open-loop methods, the pre-defined stimulation signal may still be non-optimally chosen.71

We propose to estimate a stimulation signal on the basis of observed brain activity. The target stimulation72
signal is not pre-defined as in the open-loop setting but computed according to a pre-defined target spectral73
power distribution of the brain activity. To our best knowledge, this focus on a target brain activity spectral74
distribution has not been proposed before in a closed-loop neurostimulation setup. We argue that it is75
the natural choice for a closed-loop optimization in the presence of pathological rhythms: typically the76
pathology is identified by an abnormal power in a certain frequency band and the closed-loop control aims77
to modify this power value in such a way that the final brain activity power spectral distribution resembles78
the distribution of a healthy subject. This approach implies the hypothesis that modifying the observed79
pathological brain rhythms of a patient to resemble brain rhythms of a healthy subject renders the patients80
brain state and improves the patients health situation. This assumption was motivated by the impressive81
improving impact of DBS in psychiatric disorders (Holtzheimer and Mayberg, 2011).82

Technically, the proposed method aims to reshape the spectral distribution of observed data, such as83
electroencephalographic data (EEG). For illustration, we consider pathological brain rhythms observed84
in psychosis in the α- (Howells et al., 2018) and γ-band (Leicht et al., 2015). Our method relies on85
the extraction and the filtering in real-time of the brain resting state activity signal, using the EEG and86
an estimated brain response model. The underlying brain model is fully non-parametric and estimated87
from observed resting state EEG. Moreover, we consider the fact that the closed-loop feedback exhibits88
a certain conduction delay between measurement and stimulation. This conduction delay results from the89
transmission delay in the hardware and the numerical computation time of the stimulation signal. Very90
first estimates of this delay time are in the range of few tens of milliseconds (Private communication,91
Isope, 2020), i.e. in the range of EEG signal time scales. Consequently, the present feedback delay in92
real-world systems may affect the methods performance. To our best knowledge, the present study is the93
first considering delays in closed-loop neurostimulation systems.94

The remaining article is organized as follows : Section 2 presents the neurostimulation setup and the95
closed-loop circuit studied in the rest of this paper. Then, we propose a model-based controller design to96
apply desired modifications to the observed activity signal. Subsequently, we propose a model estimation97
method to extract the brain input response model needed for the controller design. Later, we address98
the problem of the closed-loop delay by designing an additional system to approximate the future values99
of the observations. Finally, we present two brain models, which illustrate and validate the proposed100
method. Then, Section 3 presents the simulation results of our circuits, including the accuracy of the101
model estimation step and the delay compensation. Lastly, in section 4, we discuss the results of the102
method presented in the paper compared to the state of the art, mention limitations and pinpoint some103
perspectives and possible experimental tests.104

2 MATERIAL AND METHODS

2.1 Neurostimulation setup105

We build a theoretical plant as a circuit containing a stimulation element and an observation element,106
both connected to the model brain system under study. In real practice, the stimulation element107
corresponds to the neurostimulation device, such as a TES system or a TMS coil. In contrast, the108
observation element may represent electro-/magneto-encephalographic electrodes (in the following called109
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EEG) or electrodes observing Local Field Potential. We define the time-dependent functions u : R → R110
and y : R → R as the input stimulation current and the output EEG signal, respectively.111

If no input current is applied, the output is a non-zero stochastic signal y0 corresponding to the measured112
resting state EEG activity and a non-zero neurostimulation current alters the output signal as a linear113
response. This alteration is caused by a change in the brain activity in response to the neurostimulation114
input and a direct measurement of the input current. The latter is undesirable as it is not correlated with115
brain dynamics but only with neurostimulation and measurement devices. In the following, we assume116
that observations include brain dynamics correlated output only while direct current measurements are117
filtered out. A method to remove the direct current measurement from the EEG signal is discussed in118
Section 4.119

Then, we define the plant P as the system that takes u as its input and generates an output y which is120
equal to y0 when no input is applied. By modeling the dynamics of P , our goal is a neurostimulation121
signal u that causes predetermined changes in the spectral power amplitude of the output signal y. In our122
case, the goal is to increase the activity in the alpha band (8 − 12Hz) and decrease the activity in the123
gamma band (25− 55Hz).124

2.2 Linear time invariant model125

We assume that the observed output response to a small neurostimulation input u is linear and time-126
invariant (LTI). This assumption is supported by multiple results across literature (Liu et al., 2010;127
Popivanov et al., 1996; Kim and Ching, 2016). Thus, there is an underlying LTI system G that produces an128
output yu for any given input u. For this system, we can define a function g : R → R, which is the output129
produced by the plant input response system G in response to a unit impulse signal δ(t). This function g130
is also called the unit impulse response of G and we have131

yu(t) = g(t) ∗ u(t) :=
∫ +∞

−∞
g(t′)u(t− t′)dt′.

with time t and ∗ denotes the convolution over time. It leads to the total plant output132

y(t) = y0(t) + yu(t) = y0(t) + g(t) ∗ u(t). (1)

With this choice of model, the contribution of the neurostimulation response to the total output is purely133
additive, allowing us to focus the analysis on G, which represents the neurostimulation response part of134
the plant system. We also see that y0, the resting state activity, contains the stochastic part of the output,135
while yu can be predicted for any known input signal u if we have a model for the system G. A method to136
estimate the plant input response model G is presented in section 2.4.137

2.3 Closed-loop control138

In this section, we suppose that the function g is known. The estimation of g will be the aim of section139
2.4.140

To close the loop, we generate the plant input signal u as the output of a linear controller K in response
to the plant output y

u(t) = k(t) ∗ y(t),
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Figure 1. Closed-loop neurostimulation circuit

where k : R → R is the unit impulse response of the controller K. We can now rewrite Eq. (1) as141

y(t) = y0(t) + g(t) ∗ k(t) ∗ y(t). (2)

Here, we assume that no delay between observation and stimulation application is present. We will relax142
this condition in section 2.5. To solve Eq. (2), we apply the Laplace transform defined for each time-143
dependent function x : R → R by144

X(s) = L{x(t)}(s) :=
∫ +∞

0−
x(t)e−stdt, (3)

Thus, we define Y : C → C, Y0 : C → C, G : C → C and K : C → C as the Laplace transforms of
respectively y, y0, g and k, allowing us to write Eq. (2) as

Y (s) = Y0(s) +G(s)K(s)Y (s).

Hence145

Y (s) =
1

1−G(s)K(s)
Y0(s). (4)

We now have an equation for the closed-loop output in function of the resting state activity. A block146
diagram of the closed-loop circuit is shown in Fig. 1. Hence to design the frequency distribution of y we147
tune the frequency distribution of the transfer function K of the controller K148

Controller synthesis149

Our closed-loop setup aims to tune the observation power spectrum, or equivalently, the choice of150
Y (s) subjected to the resting state Y0(s). To this end, we define a linear filter H with transfer function151
H : C → C and152

Y (s) = Y0(s) +H(s)Y0(s). (5)

Specifically, we intend to restore the physiological state of the brain, e.g. of a schizophrenic patient as153
our motivation, with an observed EEG presenting low alpha activity and high gamma activity. The chosen154
filter H is a weighted double bandpass filter with positive weight in the α-frequency band to increase α-155
power and negative weights in the γ-band to decrease the systems γ-activity. The filter’s transfer function156
is defined as157
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parameter description value

f1 α-band natural frequency 10ms
B1 α-band width 4Hz
c1 α-band weight 1.0
f2 γ-band natural frequency 40ms
B2 γ-band width 30Hz
c2 γ-band weight -0.5

Table 1. Parameter set of the filter H. The frequency parameters are chosen based on the alpha
frequency range (8-12Hz) and the gamma frequency range (25-55Hz) in an EEG. The weighting
parameters c1 and c2, respectively positive and negative, corresponding to the choice to increase the
alpha activity and decrease the gamma activity.

H(s) = c1
2πB1s

s2 + 2πB1s+ (2πf1)2
+ c2

2πB2s

s2 + 2πB2s+ (2πf2)2
.

The exact parameters of H are shown in table 1.158

We can synthesize the closed-loop controller K, by combining equations (4) and (5) and solving for K159
as160

1

1−G(s)K(s)
Y0(s) = Y0(s) +H(s)Y0(s)

K(s) =
H(s)

(1 +H(s))G(s)
. (6)

Therefore, if we know the plant input response transfer function G, we can find that desired controller161
transfer function K by Eq. (6). Once the transfer function is obtained, we can use it to find a corresponding162
state-space representation (Hespanha, 2018) for time domain simulations.163

2.4 Model estimation164

The design of our closed-loop controller requires estimating the plant input response system G, which165
in practice includes the brain dynamics, the neurostimulation device and the observation device. Our166
approach includes the estimation of G directly from observed brain activity, such as EEG of the patient.167
This ensure that the estimated plant model will be as close as possible to the real brain dynamics in the168
corresponding experimental conditions. To this end, we first need to find a way to measure the plant input169
response without also measuring the plant resting state activity. This is not trivial since the observed signal170
is the sum of the resting state activity and the stimulation response.171

Signal extraction172

Let us consider an open-loop setup with an arbitrary input u applied to the plant, which generates the173
output described by Eq. (1). In this equation, we only know u and y, and want to estimate the impulse174
response g. The problem is that we cannot observe y0 only during the stimulation. Hence, based on175
previous data recordings, we need to find a way to predict the dynamics of y0 during the stimulation.176
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First, we provide the following standard definitions that are important in the subsequent discussion. For177
any time domain signal x : R → R, we denote the Fourier transform by178

x̂(f) = F{x(t)}(f) :=
∫ ∞

−∞
x(t)e−2πiftdt. (7)

We define α0 : R → R and αu : R → R such as α0(t) = y0(t) − ȳ0 and αu(t) = yu(t) − ȳu where ȳ,179
ȳ0 and ȳu are respectively the ensemble means of y, y0 and yu.180

181

We assume that y0 is a wide-sense-stationary (WSS) random process, i.e. its mean and variance do182
not depend on time. According to the Wiener-Khinchin theorem (Khintchine, 1934; Gardiner, 2004), the183
autocorrelation function of a wide-sense-stationary random process has a spectral decomposition given184
by the power spectrum of that process185

Syy(f) = |α̂(f)|2,

where α̂ : R → C is the Fourier transform of α(t) = y(t) − ȳ ∈ R and Syy : R → R+ is the spectral186
density of y.187

Then, we can write Eq. (1) as

ȳ + α(t) = ȳ0 + α0(t) + ȳu + αu(t),

where ȳ = ȳ0 + ȳu. The equation then simplifies to

α(t) = α0(t) + αu(t).

By application of the Fourier transform, we obtain

α̂(f) = α̂0(f) + α̂u(f)

and
|α̂(f)|2 = |α̂0(f)|2 + |α̂u(f)|2 + 2Re[α̂0(f)α̂u(f)

∗].

In the following, we compute the ensemble average of each term of this equation. Since α and αu are188
two independent processes sampled at different times and ⟨α̂0⟩ = ⟨α̂u⟩ = 0.189

Hence190

⟨2Re(α̂0(f)α̂u(f)
∗)⟩ = 2Re[⟨α̂0(f)α̂u(f)

∗⟩] = 0.

Here and in the following, ⟨·⟩ denotes the ensemble average. We point out that although Eq. (8) does hold191
when considering the ensemble average of the signals, fluctuations around 0 still remain in Eq. (8) for192
finite ensemble number of finite time signals.193

Nevertheless, this yields194

⟨|α̂u(f)|2⟩ = ⟨|α̂(f)|2⟩ − ⟨|α̂0(f)|2⟩. (8)
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Using Eq. (1), we can express α̂u in terms of the input impulse response g and the input u195

α̂u(f) = F{yu(t)− ȳu}(f)
= F{g(t) ∗ [u(t)− ū]}(f)
= ĝ(f)F{u(t)− ū}(f) .

(9)

This equation permits to estimate the transfer function ĝ, see Section 3.196

To express the transfer function ĝ in Laplace space, we use the fact that a unit impulse response function
is non-zero only for positive time values t. Hence, based on equations (3) and (7), for s = 2πif , we can
write the Laplace transform G as

G(2πif) =

∫ +∞

0−
g(t)e−2πiftdt =

∫ +∞

−∞
g(t)e−2πiftdt = ĝ(f).

We now need a method to generate a LTI system with a transfer function that matches the magnitude197
data computed with the formula. This is achieved by the magnitude vector fitting algorithm.198

Magnitude vector fitting199

Our goal is now to find a transfer function G corresponding the magnitude data |ĝ(f)|2. For this purpose,200
we use a variant of the vector fitting algorithm design to work even with only the magnitude data. This201
method is called magnitude vector fitting (De Tommasi et al., 2010).202

It allows to fit a passive LTI system to data by fitting the model transfer function. The system is203
synthesized such that the mean square error between the magnitude data sample and the transfer function204
evaluated at the same frequency points is minimized. De Tommasi et al. (2010) show that the transfer205
function of the fitted model reproduces both the magnitude and the phase shift of the original transfer206
function, although the fitting has been performed using sampled magnitude data only.207

By minimizing the mean square error, the algorithm ensures that the transfer function of the fitted208
model accurately matches the original model as represented by the reconstructed gain data. Furthermore,209
to assess the accuracy of the reconstruction, we also compare the fitted model to the transfer function210
of the linearized brain model used for the simulation. This allows to double-check the validity of the211
reconstructed magnitude and also to verify if the reconstructed phase fits the phase of the original model212
as closely as possible cf. Fig 3C,D.213

2.5 Delay compensation214

Realistic feedback loops exhibit conduction delays between the moment of observation and feedback215
stimulation. Reasons for such delays are finite conduction speeds in cables, electronic switches, interfaces216
and delays caused by the controller device to compute numerically adapted stimuli. In systems with large217
time scales, such as controlled mechanical devices on the centimeter or larger scale, such delays may be218
negligible. Conversely biological systems such as the brain evolve on a millisecond scale and conduction219
delays may play an important role. Preliminary estimation of input and output devices of desktop220
computers have revealed an approximate delay of ∼ 10ms. By virtue of such delays, it is important221
to take them into account in the closed-loop between the moment of observation and stimulation.222
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The different sources of delay can be represented as plant input and output delays. Since the controller223
K is LTI, the input and output delays can be concatenated into one single plant input delay. Hence, in our224
setup, we model the delay as an input delay τ in the system G, modifying y(t) = g(t) ∗ u(t) in Eq. (1) to225
y(t) = g(t) ∗u(t− τ). The Smith predictor (Smith, 1959) (Morari and Zafiriou, 1989) is a known method226
to compensate such delay times. However, in the present problem, this approach allows controlling a227
limited frequency band only (see Fig. 7A)). Consequently, it was necessary to invent another method.228
Since the plant input u is generated by the controller K, we modify the controller to compensate the delay.229
To this end, the new controller K is chosen to estimate the future value of u instead of the present value.230
A method to apply this controller modification is presented in Section 3.2.231

2.6 Brain models232

Our closed-loop control method works for any LTI brain model. Furthermore, we want to show that233
it also produces good results on non-linear brain models, for which the neurostimulation input response234
behaves closely to an LTI system, when the input is sufficiently small. To this end, we present two models235
used to test our method. The first one is a linear neural population model of cortical activity, and the236
second one is a non-linear cortico-thalamic neural population model with cortico-thalamic delay.237

2.6.1 Linear brain model238

We describe neural population activity with a noise-driven linear model Hutt (2013). The model is239

composed of two pairs of interacting excitatory and inhibitory populations. Here we have V
(1,2)
e,i : R →240

R, representing the mean activity of the associated population, where V
(1,2)
e and V

(1,2)
i correspond241

respectively to excitatory and inhibitory populations. Each population is driven by noise ξ1,2 : R → R242
and the external input u : R → R, according to the following differential equations:243



τe,1
dVe

(1)(t)
dt = (−1 +N11)V

(1)
e (t)−N11V

(1)
i (t) + b1u(t) + ξ1(t),

τi,1
dVi

(1)(t)
dt = N21V

(1)
e (t) + (−1−N21)V

(1)
i (t) + b2u(t),

τe,2
dVe

(2)(t)
dt = (−1 +N12)V

(2)
e (t)−N12V

(2)
i (t) + b3u(t) + ξ2(t),

τi,2
dVi

(2)(t)
dt = N22V

(2)
e (t) + (−1−N22)V

(2)
i (t) + b4u(t),

(10)

where the noise ξ1,2 is uncorrelated Gaussian distributed with zero mean and variance κ21,2 = 10−7,244
and the stimulation u is weighted by the coupling constants bi > 0 of the corresponding population.245
In addition, τ(e,i),(1,2) are the synaptic time constants of the populations, and constants Nij > 0 are246
interaction gains of the respective population. Table 2 provides the parameters employed in subsequent247
simulations.248

The observed output
y(t) = V

(1)
e (t)− V

(1)
i (t) + V

(2)
e (t)− V

(2)
i (t)

is a sum of the effective field potential V (j)
e − V

(j)
i of both populations j = 1, 2, cf. Fig. 7 (top panels).249

The simulation of the linear brain model in time domain is done using the library control of python.250
The numerical integration is computed thanks to matrix exponential (Van Loan, 1978), with a simulation251
sampling time of 1ms.252
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parameter description value

τe,1,2 exc. synaptic time constant 5ms
τi,1,2 inhib. synaptic time constant 20ms
N11 first exc. linear coefficient 1.15
N21 first inhib. linear coefficient 0.63
N12 second exc. linear coefficient 2.52
N22 second inhib. linear coefficient 6.6
N number of neurons 1000
κ21,2 noises variances 10−4/N
b1,2 input coupling constants 0.18
b3,4 input coupling constants 0.14

Table 2. Parameter set of model (10). The choice of parameter is partially based on the paper in which
it was developed (see Hutt (2013)).

2.6.2 Cortico-thalamic brain model253

A different model considers the cortico-thalamic feedback circuit (Riedinger and Hutt, 2022). It254
describes the cortex layers I-III and the cortico-thalamic loop between cortical layers IV-VI, the thalamic255
relay cell population and the reticular structure. The cortical layer I-III exhibits mean activity of excitatory256
cells v and inhibitory cells w. Similarly, layer IV-VIs exhibits the mean activity Ve and Vi and thalamic257
relay cell populations the mean activity Vth,e and Vth,i. Moreover, the reticular structure has the mean258
activity Vret. The fibers between the cortex and thalamus and the cortex and reticular structure exhibit a259
finite conduction delay τ (Riedinger and Hutt, 2022; Hashemi et al., 2015). The 7-dimensional dynamical260
system of the brain state x = (v, w, Ve, Vi, Vth,e, Vth,i, Vret) ∈ R7 obeys261 {

ẋ(t) = F(x(t),x(t− τ)) + ξ(t) +Bu(t),
y(t) = Cx(t),

(11)

where the superscript t denotes transposition, F ∈ R7 is a nonlinear vector function, B ∈ R7×1262
is the input coupling matrix and C ∈ R1×7 is the observation matrix. We mention that B =263
(b1, b2, b3, b4, 0, 0, 0)

t, bi > 0, i.e. only the cortical layers are stimulated with weights bi. The observation264
y captures the activity of the cortical excitatory populations (Riedinger and Hutt, 2022; Nunez and265
Srinivasan, 2006) with C = (c1, 0, c3, 0, 0, 0, 0), ci > 0. For more details, please see the Appendix.266

The time domain simulations of the cortico-thalamic model is done by numerical integration using267
the fourth-order Runge-Kutta method implemented by the scipy library in python with a maximum268
simulation time step of 1 ms. The signal produced by this cortico-thalamic brain model is shown in Fig. 2.269

3 RESULTS

The present work addresses two major problems in closed-loop control: the correct model choice of270
the systems dynamics and the present conduction delay. The subsequent sections propose solutions for271
both problems and illustrate them in some detail by applying them to the linear brain activity model from272
section 2.6.1. The final section demonstrates the closed feedback loop for the cortico-thalamic brain model273
from Section 2.6.2.274
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Figure 2. Resting state activity computed from the cortico-thalamic brain model. Left: Observation
time series in a certain time window. Right: Power spectral density of the observation time series.

3.1 Model estimation275

Equations (8) and 9 permit to express the magnitude of ĝ(f) in terms of the spectral densities of276
observable signals277

|ĝ(f)|2|F{u(t)− ū}(f)|2 = |α̂(f)|2 − |α̂0(f)|2

|ĝ(f)|2Suu(f) = Syy(f)− Sy0y0(f)

|ĝ(f)|2 =
Syy(f)− Sy0y0(f)

Suu(f)
.

(12)

The spectral density functions Sy0y0 and Syy may be estimated numerically from output data before and278
during a stimulation with a known chosen stimulation function u. The estimation may be performed by279
applying conventional methods, such as the Welch method (Welch, 1967). These estimations provide the280
magnitude of the transfer function |ĝ| by utilizing Eq. (12). In detail, at first, we considered the linear281
model (10) and injected a white noise current into the plant gaining the system’s response signal together282
with the resting state activity, cf. Fig. 3A. The subsequent estimation of Syy(f), Sy0y0(f) and Suu(f)283
(see Fig. 3B) from the data permitted to compute the brain input response model ĝ(f) by Eq. (12). We284
observe a very good accordance of the original model response function and its estimation in magnitude285
(see Fig. 3C) and phase (see Fig. 3D).286

The remaining error in the estimated model compared to the original model depends on the amplitude287
of the driving noise ξ, cf. Fig. 4. High driving noise can also cause the magnitude vector fitting algorithm288
not to converge, leading to a non-minimal mean-square error between the fitted and the original models289
when evaluated at the frequency sample points used for the algorithm.290

This problem can be solved by increasing the amplitude of the input current u that we inject in the plant,291
which decreases the contribution of the rest state driving noise ξ to the output signal relative to the input292
current. Although the remaining dominant input current is also noisy, its value at any time or frequency is293
known, meaning that it is canceled out in the ratio Syy

Suu
in Eq. (12). This effectively leads to lower noise in294

the transfer function magnitude data extracted with Eq. (12). The limitation is then set by the maximum295
amplitude of the current we are allowed to inject into the brain in a given neurostimulation setup. Indeed,296
the amplitude of the current is limited both for safety reasons that are beyond the scope of this paper and297
because of the assumption of linearity on which our method is based and which requires small currents.298
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Figure 3. The magnitude vector fitting algorithm successfully reconstructs the transfer function G
from magnitude-only data. A) Time series of the resting state activity (blue), the input signal (green) and
the stimulation response (red). B) Spectral densities of the simulated input signal (green), the resting state
activity (blue) and the stimulation response (red). The input signal is a white noise with chosen standard
deviation 0.005. C) Reconstructed gain |ĝ| of the plant input response. The fitted model (dashed cyan)
accurately matches the original model (black). The red curve is the raw data used for fitting, computed
from the spectral density data in panel A) using Eq. (12). D) Reconstructed phase of the plant input
response ĝ
.

3.2 Delay compensation299

Delay compensation is achieved by adding another LTI system at the output of the controller K cf.300
Fig. 5, whose purpose is to reproduce the transfer function of a negative delay. We call this system the301
predictor ϕ.302

However, perfectly reproducing the transfer function of a negative delay would be impossible since the303
associated time-domain system would then be a perfect predictor, which is a non-causal, i.e. un-physical,304
system. Nonetheless, we can build a causal and stable system that behaves almost like a perfect predictor,305
however only in the frequency ranges of interest.306

The numerical implementation of the controller necessitates discretization in time. Consequently, it is307
reasonable to choose the predictor design as a discrete-time system, meaning that for any input signal at308
xt : R → R at an instant t ∈ R, it approximately predicts the future signal xt+∆t where ∆t ∈ R is the309
sampling time chosen when building the predictor. Since x is a discrete sequence, its transfer function is310
obtained using the Z-transform, defined as311

X(z) = Z{xn∆t}(z) :=
∞∑
n=0

xn∆tz
−n,
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Figure 4. The magnitude vector fitting algorithm’s performances depend on the amplitude ratio
of the stimulation current and the driving noise. Each row correspond to a different signal-to-noise
ratios (SNR), computed as the ratio between the mean input coupling strength and the mean noise standard
deviation. The transfer function magnitude data (red dots) are then used to synthesize a plant model via the
magnitude vector fitting algorithm. The left (right) column corresponds to the transfer function magnitude
(transfer function phase). We see that the noise levels in the transfer function magnitudes are higher for
stronger brain-driving noise. The fitted model is coded in dashed cyan and deviates more from the original
model for higher noise levels.

with z ∈ C and X : C → C. Then the transfer function Φ : C → C of a negative delay of one step312
∆t applied to x would simply be Φ(z) = z, the Z-transform of a one-step delay. However, this choice313
would be non-causal, which is not implementable numerically in time. Nevertheless, to obtain a stable314
and implementable system with a transfer function as close as possible to z, we chose the ansatz315

Φ(z0) =
b0z0 + b1
z0 − a

= z0, (13)

for a fixed value z = z0 and where a ∈ R is the pole of the system and b0 ∈ R and b1 ∈ R are the316
polynomial coefficients of the numerator of Φ. This equation corresponds to the transfer function of a317
discrete LTI system with exactly one pole and one zero, which is the closest form of a proper rational318
function to the identity function of z in the sense that it has only one more pole. We add the additional319
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Figure 5. Closed-loop neurostimulation circuit with predictor

constraints that |a| < 1, since this is the necessary and sufficient condition for the discrete predictor ϕ to320
be stable.321

We choose to reformulate this problem by setting a as a free parameter. This way, we can select any a

between −1 and 1, and the remaining parameters are found by solving the linear equation b0z0 + b1 =
z0(z0 − a), where z ∈ C is a chosen complex frequency point at which we want this equation to hold.
Since there are two unknowns, we can write a second equation in which we want the derivative of each
side of the equation also to be equal, yielding b0 = 2z0−a. By replacing b0 in the first equation, we obtain

z0(2z0 − a) + b1 = z0(z0 − a)

b1 = −z20 .

In the z-domain, the zero frequency corresponds to z0 = 1. We choose to solve this equation for this point,322
hence we can replace a, b0 and b1 in Eq. (13) which yields323

Φ(z) =
(2− a)z − 1

z − a
. (14)

This transfer function can then be converted to an associated state-space representation and used for324
time domain simulations with a sampling time ∆t. The output of this system will then be yt ≈ ut+∆t325
for any input signal ut. Simulating delays greater than the system sampling time is simply achieved by326
concatenating multiple times this predictor system. Here the delay has to be a multiple of the sampling327
time. This predictor can then be appended to the output of the digital controller K.328

To avoid closed-loop instability, we must limit the amplitude of the feedback signal computed from the329
controller input signal. This amplitude is determined by the three systems G, H and K. Since G is defined330
by the system under study and H is the chosen filter defining the desired modifications in the frequency331
distribution of the observed signal, ϕ (or equivalently parameter a) is the only degree of freedom. Figure 6332
shows the region of closed-loop stability as a function of the predictor pole a and the delay.333

Because the predictor has a gain that is still slightly greater than one in the frequency ranges of interest,334
we reduce the weights of the filter H to compensate for the excess gain at the α and γ-peaks. To do this,335
we simply divide the weight of each band by the magnitude of the predictor system evaluated at the band’s336
natural frequency. This reduces the errors in the closed-loop transfer function in the α and γ-ranges.337

Figure 7(B) shows results combining the model estimation by vector fitting and the delay compensation.338
The proposed closed-loop control yields an increase in α-power and a decrease in γ-power according339
to the employed target filter H. The application of a conventional reference signal control and Smith340
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Figure 6. The predictor pole location affects the closed-loop stability. The magnitude of the pole
with the highest magnitude in the closed-loop transfer function parameterizes the stability of the closed-
loop. Indeed, if this value is less than 0 dB, then all the poles of the closed-loop transfer function have a
magnitude less than 0 dB, meaning that the system is stable. The system is unstable otherwise. Here the
full curve, the dashed curve and the dotted curve correspond to predictors for delays of 3 ms, 5 ms and 10
ms, respectively. The higher the delay is, the lower is the size of the region of closed-loop stability for a.

predictor for delay compensation (Fig. 7(A)) does not yield a reduction of higher γ-frequency activity.341
This can also be seen in Fig. 7(bottom panel), showing that the proposed scheme adapts much better to342
the target gain function than the reference signal control scheme. Generally, both methods fail to adapt343
well to very high-frequencies (details not shown).344

3.2.1 Accuracy345

3.2.2 Stability346

As discussed earlier, delay compensation can destabilize the closed-loop system depending on the347
parameters of its components. However, if the correct predictor pole is chosen based on Fig. 6, the348
closed-loop will remain stable. These values are computed under the assumption that there are no model349
estimation errors. If we take into account the inaccuracies in the fitted brain model compared to the original350
brain model, extra gain can add up in the feedback signal, introducing again the risk of destabilizing the351
closed-loop. This is trickier to solve, as we assume here that in a real experimental setup that, it is very352
difficult to reduce these remaining errors further by the method proposed. Hence the solution is either to353
simply reduce the amplitude of the spectral density modification that we want to apply by reducing the354
amplitude of the transfer function of filter H, or to reduce the amplitude of the predictor ⊕ reducing its355
accuracy and possibly increasing delay errors. In any case, the inaccuracies in the estimated brain model356
create errors in the closed-loop transfer function regardless of the delay.357

3.3 Application to cortico-thalamic circuit model358

To extend the analysis to a biologically more realistic model, we employed a nonlinear cortico-359
thalamic brain model (cf. section 2.6.2). Fitting a linear transfer function to the brain model activity as360
described above, we found a good accordance of fitted and original model as can be seen in Fig. 9A),B).361
Small deviations in the gain and the phase resulted from the internal delay in the brain model and its362
non-linearity. Indeed, the magnitude vector fitting algorithm does not reproduce this delay but instead363
synthesizes a linear system that has no delay but still approximates well the transfer function of the original364
model. Nonetheless, the non-linearity of this model can also decrease the accuracy of the fitting, as we365
are trying to represent a non-linear input response model by a linear one. However, this effect is only seen366
when the current is large enough for the non-linear part of the response to be significant.367
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Figure 7. Model-based closed-loop neurostimulation with delay compensation successfully
decreases gamma activity while reference signal-based control with Smith predictor fails. A)
Simulation data of the reference signal-based control design with Smith predictor. B) Simulation data
of the model-based control design with delay compensation. The upper panels show the time series of
the resting state activity signal y0 (blue) and the closed-loop output signal y (red) and the input current u
(green). The amplitude of the stimulation current is much larger for reference signal-based control than for
model-based control. The center panels show spectral densities of the resting state activity signal y0 (blue),
the closed-loop output signal y (red) and the input current u (green). The activity is increased in the alpha
range and decreased in the gamma range for model-based control, however, is increased everywhere for
reference signal-based control. The spectral density of the input current is again much larger for reference
signal-based control than for model-based control. The lower panels show the spectral density gain from
y0 to y of the closed-loop systems. The dashed red curve is computed from the closed-loop transfer
function and the black curve is the target curve computed from the transfer function 1 + H(s). We see
that the implemented closed-loop applies the correct modifications in alpha and gamma ranges for model-
based control but not for reference signal-based control where the error is large for frequencies above the
alpha range. The conduction delay is 5ms and the value of the parameter a in the delay compensation
scheme is chosen to a = 0.55

In fact, the model-based control enhances α-activity and diminishes γ-activity in good accordance to368
the imposed filter H (see Fig. 9C)). This can also be seen in the closed-loop transfer function, which369
corresponds well to the target transfer function (see Fig. 9D)) for small and medium frequencies. The370
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Figure 8. Delay decreases the accuracy of the closed-loop transfer function For uncompensated
delay (dashed blue curve), the closed-loop transfer function significantly deviates from the target transfer
function defined as 1+H(s) (black curve). Delay compensation (dashed red curve) reduces the deviation
from the target transfer function in the α- and γ-frequency range for delays of 3ms and 5ms. However,
the error is still large in the γ-range for a delay of 10ms.

closed-loop transfer function deviates from the target transfer function for large frequencies beyond the371
γ-frequency range. This results from the employed conduction delay.372

To elucidate better the functions of the different elements of the proposed method, we applied a second373
closed-loop setup, where the neurostimulation input was applied to the first three layers of the cortex374
modeled by u and v and to the reticulum modeled by Vret (Fig. 10). In this setting, the response in the375
high-frequency ranges are mainly produced by the cortex, while the response in low-frequency ranges376
originates mainly from the reticulum and the thalamic relay structure, with a gap approximately between377
10Hz and 20Hz. The weak response between 10 Hz and 20 Hz observable cf. Fig. 10A is compensated378
by the controller, which produces a high magnitude stimulation in the closed-loop for these frequencies379
cf. Fig. 10C. The second consequence is the inaccuracy of the closed-loop output in the low-frequency380
ranges, this is caused by the rather long cortico-thalamic internal delay. This delay yields a larger phase381
shift at low-frequencies and originates from the fact that we observe signals in the cortex, but stimulate in382
the reticulum.383

Frontiers 17



T. Wahl et al. Closed-loop neurostimulation

0 20 40 60 80
frequency [Hz]

5

0

m
ag

ni
tu

de
 [d

B]

A)

0 20 40 60 80
frequency [Hz]

50

0

ph
as

e 
[°

]

B)

0 20 40 60
frequency [Hz]

70

60

50

sp
ec

tra
l d

en
sit

y 
[d

B] C)

0 20 40 60 80
frequency [Hz]

5

0

5

ga
in

 [d
B]

D)

Figure 9. Fitted model-based control using the cortico-thalamic brain model successfully
reproduces the target transfer function in the frequency domains of interest. A) Magnitude of the
fitted brain model transfer function (dashed cyan) compared to the magnitude of the original cortico-
thalamic brain model transfer function (black). B) Phase shift of the fitted transfer function (dashed cyan)
compared to the magnitude of the original transfer function (black). C) Spectral densities of the rest state
activity signal (blue), the stimulated brain output (red) and the stimulation signal (green). D) Closed-loop
transfer function (dashed red), compared to the target transfer function 1 +H(s) (black).

4 DISCUSSION

The goal of the proposed method was to design a delayed closed-loop control method to apply defined384
modifications to the spectral distribution of an observed signal, such as EEG or LFP. The presented work385
explicitly describes all the steps needed to build a delayed closed-loop neurostimulation setup to restore386
the physiological brain state of a patient Hebb et al. (2014). Since the controller is modeled as a linear387
time-invariant system, its implementation is lightweight, straightforward, and easily applicable in most388
embedded systems. Applications to a simple neural populations model (Fig. 7) and to a biologically389
plausible cortico-thalamic feedback system (Fig. 9 and 10) demonstrate its elements and their impact on390
the control performance.391

Main contributions392

Model estimation393

We assume resting state activity signal driven by noise, when no neurostimulation is applied. Injecting a394
stimulation creates an additional response that adds to the resting state. Consequently, both the resting state395
signal and response signal can be observed separately in experimental practice and they serve to estimate396
a linear state-space model as outlined in section 3.1. This approach is successful for both simplified linear397
models (cf. Figs. 3,4) and neurophsysiological realistic nonlinear models (cf. Fig. 9). This approximation398
is suitable for nonlinear systems whose dynamics evolve close to a stationary state. Several studies399
have already exposed evidence confirming that the measured brain dynamics behave mostly linearly400
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Figure 10. Reticulum stimulation yields incorrect closed-loop gain in low-frequency ranges. A)
Magnitude of the fitted brain model transfer function (dashed cyan) compared to the magnitude of the
original cortico-thalamic brain model transfer function (black). B) Phase shift of the fitted transfer function
(dashed cyan) compared to the magnitude of the original transfer function (black). C) Spectral densities
of the rest state activity signal (blue), the stimulated brain output (red) and the stimulation signal (green).
D) Closed-loop transfer function (dashed red), compared to the target transfer function 1 +H(s) (black).

at macroscopic scales (Liu et al., 2010), (Popivanov et al., 1996). Moreover, in the case of the brain401
response to small neurostimulation input, our assumption of the linear brain response is supported by402
results of (Kim and Ching, 2016). The authors of this study measured the controllability Gramian of403
their brain model with nonlinear sigmoid transfer function, similar to the cortico-thalamic brain model404
(Riedinger and Hutt, 2022) used in this paper. If the system exhibits nonlinear dynamics far from any linear405
approximation, such as bistable dynamics and chaotic evolution, the proposed vector fitting technique406
may yield a too large model error and thus instability of the closed-loop feedback. The hypothesis of407
macroscopically linear dynamics has also recently been tested against various nonlinear models (Nozari408
et al., 2020). While that work included fitting methods for both linear and nonlinear brain models, our409
work chose the paradigm of purely frequency domain model fitting with the magnitude vector fitting410
algorithm (De Tommasi et al., 2010) and applied it to the brain input response system, which we could411
isolate thanks to a simple open-loop neurostimulation setup. While models have already been studied in412
application to neurostimulation (Modolo et al., 2011), (Wagner et al., 2014), we propose a straightforward413
black box modeling approach that is directly usable for adaptive closed-loop neurostimulation, and414
is technically applicable easily for each individual patients before any closed-loop neurostimulation415
sessions.416

Delay compensation417

Conduction delays of a few milliseconds in the transmission between observation and stimulation418
may be negligible in systems evolving on time scales of seconds or longer, but may play an important419
role in neural systems. Our study demonstrates that such feedback delays may introduce control errors420
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and we show how these errors can be avoided by a novel delay compensation method (section 3.2).421
Application to the linear model (7) demonstrated its superior performance compared to a conventional422
delay compensation method. Delay compensating systems have already been described in other work423
(Hosseini et al., 2019), (Guo et al., 2004). However, we used a design primarily focused on the correction424
of a gain error in the closed-loop transfer function, whereas the majority of the current research is based425
on time domain criterion and stability enforcement (Ledva et al., 2017), (Sönmez and Ayasun, 2015).426
The methods performance, i.e. how well the total gain function fits to the pre-defined transfer function, is427
good for low-frequencies but weakens for frequencies exceeding a limit frequency. Note that frequency428
domain compensation has also already been achieved, notably via delay equalizers (Podilchak et al.,429
2009). However, this would restrict the frequency range in which the delay is compensated, and create430
additional errors in the surrounding frequencies. Other designs include filters with negative group delays,431
however their applications are limited to band limited input signals (Bukhman and Bukhman, 2004),432
(Voss, 2017). The predictor design we presented also relies on negative group delay, enabling delay433
compensation in a large frequency band, while still being applicable to the brain EEG, which is inherently434
not band limited, because of the noise. Nonetheless, while our predictor design allows to significantly435
decreases the delay errors in the closed-loop transfer function, the delay still imposes a limit on the436
controllable frequency range. The larger the delay, the smaller is this limit frequency. Low performance437
may induce instability in the feedback loop (Mirkin and Palmor, 2005) and thus should be avoided. A438
corresponding stability criteria has been proposed, cf. Fig. 6. Better predictor designs could allow better439
performance of the closed-loop system for larger delays. The improvement of the accuracy of our closed-440
loop neurostimulation setup by building more efficient predictor designs is in progress and we refer the441
reader to future work.442

Limits of our methodology443

Experimental stimulation parameters and safety444

Experimental stimulation protocols have to ensure the subjects safety (Ko, 2021) and thus avoide445
stimulus-induced health risks and complications. For instance, tDCS may be administered for a duration446
of 60 minutes and a maximum current of 4 mA without yielding health risks. However, parameters447
beyond these limits may yield adverse effects in subjects, such as skin lesions similar to burns and mania448
or hypomania in patients with depression (Matsumoto and Ugawa, 2017). The proposed method does449
not limit the stimulation duration per se, but of course the duration can be chosen accordingly without450
constrating the method. The method adapts the systems brain rhythms to the target rhythms very rapidly451
on a time scale of less than a second and hence permits rather short stimulation duration longer than a452
second.453

Moreover, the proposed method does not specify absolute stimulation current magnitude applied. The454
impact of stimulation at certain magnitudes depends heavily on the stimulation type. In tDCS, anodal455
stimulation with positive currents have a different impact as cathodal stimulation with negative currents.456
In addition, currents are thought to have to pass a certain threshold to yield a measurable effect. In457
tACS (Moliadze et al., 2012), stimulating in the α-frequency range large and small magnitudes yield458
excitation and inhibition, respectively, while intermediate magnitudes yield weak effects. Stimulating459
with a range of frequencies, as in tRNS (Potok et al., 2022), a 1mA peak-to-peak amplitude for 10 minutes460
stimulation duration does not yield adverse effects. We conclude that it is not straight-forward to decide461
which stimulation magnitude applied in the presented method would be safe for human subjects, since the462
stimulation signal is neither constant, single frequency oscillation nor random noise. In sum, we argue that463
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a maximum peak-to-peak amplitude of 1mA for few tens of minutes may not yield adverse effects, but464
still may evoke a measurable impact on observations and the brain state. Of course, future experimental465
studies will gain deeper insights.466

Model internal delay467

The internal delay in the brain is not reproducible by the magnitude vector fitting algorithm, which468
relies on the time invariance of the signals. Hence, this will cause errors in the transfer function of the469
fitted model (cf. Fig. 9) that are larger for higher contribution of the delay in the output, cf. Fig. 10. To470
limit this effect, we must minimize the delay between the application of the neurostimulation input and the471
measurement of the response to this input as much as possible by taking into account the delay between472
the different brain regions.473

Estimating the closed-loop delay474

For delay compensation, in this paper, we assumed that we know the conduction delay in the closed-475
loop. However, although it is a single constant parameter, we would need a method to measure it for a476
real closed-loop neurostimulation setup. A straightforward way to do this would be to inject any current477
into the plant and measure the time lag between the moment at which we inject the input current and the478
moment at which we measure the output signal. This estimated delay would then correspond to the total479
closed-loop delay except for the computation delay of the digital controller K. This computation delay can480
be easily measured with the same software used for computation, as it corresponds to the delay needed to481
perform constant-size matrix multiplications. Moreover, several methods have already been developed to482
estimate the conduction delays in linear systems (Schier, 1997), (Dudarenko et al., 2014).483

Direct input current measurements484

One of the main challenges to solve for closed-loop neurostimulation is the elimination of direct485
transmission artifacts from the measured EEG signal (Iturrate et al., 2018). Indeed, when measuring the486
plant output signal, a portion of the measured signal might be a direct measurement of the input current487
without any influence from the brain dynamics. In the ideal case, one intends to minimize the contribution488
of the stimulation input to the observed signal since it would mean that the measured EEG signal does not489
fully correspond to the brain activity. Hence, reading the EEG of the patient would be more difficult for490
the user of our closed-loop setup, and the contribution of the brain dynamics to the closed-loop would be491
smaller. A simple solution to this problem is discussed further below.492

Perspectives493

The control proposed allows to perform accurate frequency shaping of the systems’ activity spectral494
distribution. However, this approach is limited to linear models of the brain stimulation response. This may495
be disadvantageous if the systems dynamics exhibit nonlinear behavior (see e.g. (Hutt and beim Graben,496
2017)) as we want to represent the brain dynamics realistically. Furthermore, in real-case scenarios, we497
would also have to take into account the noise in the acquisition of the signal by the sensor and in the498
application of the input signal by the actuator.499

Filtering out direct input current measurements500

Filtering out the direct input current measurements is achievable with our setup removing the strictly501
proper system requirement while using the magnitude vector fitting algorithm to measure the brain input502
response. In other words, while fitting the brain input response system, we want the fitted model to be able503
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to contain a direct transmission term corresponding to the direct current measurement. Hence, if the real504
plant input response contains a significant direct transmission term, it will be identified by the magnitude505
vector fitting algorithm when synthesizing the estimated plant input response. The second step is them506
simply to substract the feedtrough term multiplied by the input current to the plant output signal. Thus,507
the remaining part of the signal would only correspond to the brain dynamics.508

Application to multiple inputs multiple outputs plants509

For now, we only focused on plant with a signal input signal and a single output signal. However, in a510
real setup, the EEG measurement is typically composed of multiple channels corresponding to different511
electrodes. This can also be true for the neurostimulation device. For example, with electric current512
stimulation, we can inject multiple signals using multiple electrodes. This can be simply solved by feeding513
a single input to each input channel and summing each output to a single output channel. However, when514
we separate the different channels, we can have more control over each individuals output channels. When515
we have multiple inputs and output, the plant is then a Multiple-Inputs Multiple-Outputs (MIMO) system.516
Everything developed in this paper is generalizable to MIMO systems, with one caveat: when solving517
Eq. (6), a unique solution only exists if the system has as more outputs than it has inputs. The user can518
always ensure this, by using as many neurostimulation input channels than there are EEG output channels.519
In this generalized setup, we can also define the filter H to apply different modifications to each output520
channel.521

Neurostimulation effects on larger time scales522

Our method relies only on the short term dynamics of the brain, using signal feedback and delay523
compensation to produce an adaptive stimulation current and obtain the desired EEG frequency524
distribution. However, more traditional neurostimulation techniques rely on the long term dynamics of525
neural plasticity, which is not modeled in the brain models we use in this paper. Long term brain adaptation526
to neurostimulation could cause the EEG frequency distribution to diverge from the desired frequency527
distribution after several minutes of stimulation. This effect could be compensated either by reiterating528
the model identification step and performing neurostimulation again, or by adjusting the weight of the529
filter H according to the observed changes in real-time. Incorporating the effect of neural plasticity in530
the brain models would allow our method to produce predictable and durable modification to the EEG531
frequency distribution, even after we stop the stimulation.532
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CORTICO-THALAMIC BRAIN MODEL DETAILS

The differential equation system (11) develops as690

τe
dVe(t)

dt
= −Ve(t) + FeTc(Ve(t)− Vi(t)) + FctTth(Vth,e(t)− Vth,i(t)) + FccxSe(v(t)) + µe + Ie + ξe(t) + b1u(t)

τi
dVi(t)

dt
= −Vi(t) + FiTc(Ve(t)− Vi(t)) + µi + Ii + ξi(t) + b2u(t)

τth,e
dVth,e(t)

dt
= −Vth,e(t) + FtcTc(Ve(t− τ)− Vi(t− τ)) + µth,e + ξth,e(t)

τth,i
dVth,i(t)

dt
= −Vth,i(t) + FtrTret(Vret(t)) + µth,i + ξth,i(t)

τret
dVret(t)

dt
= −Vret(t) + FrtTth(Vth,e(t)− Vth,i(t)) + FrcTc(Ve(t− τ)− Vi(t− τ)) + µret + ξret(t)

τce
dv(t)

dt
= −v(t) + FcxSe(v(t))−McxSi(w(t)) +Mcx,thTth(Vth,e(t− τ)− Vth,i(t− τ)) + µce + Ice + ξce(t) + b3u(t)

τci
dw(t)

dt
= −w(t)− FcxSi(w(t)) +McxSe(v(t)) + µci + Ici + ξci(t) + b4u(t)

(15)
where the transfer functions are defined as691

Tm(x) =
1

2

(
1− erf

(
− x√

2σm

))
Sm(x) =

1

2

(
1− erf

(
− x√

2σcm

))
.

(16)

The ξx terms represent the driving noises, which are uncorrelated Gaussian noise defined as

⟨ξx(t)⟩ = 0 , ⟨ξx(t)ξy(t′)⟩ =
Qx

N
δxyδ(t− t′),

with x = e, i, (th, e), (th, i), ret, ce, ci. The variances in Eq. (16) are defined as692

σ2c =
Qe

τe
+

Qi

τi
, σ2th =

Qth,e

τth,e
+

Qth,i

τth,i
, σ2ret =

Qret

τret

σ2ce =
Qce

τce
, σ2ci =

Qci
τci

All the parameters are given in Table 3.693
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parameter description value

τe exc. decay time (infragranular) 10 ms
τi inh. decay time (infragranular) 50 ms
τth,e exc. decay time (relay) 5 ms
τth,i inh. decay time (relay) 30 ms
τret exc. decay time (reticular) 8 ms
τce exc. decay time (supragranular) 5 ms
τci inh. decay time (supragranular) 20 ms
τ cortico-thalamic propagation delay 40 ms
Fe exc. synaptic strength 1.0
Fi inh. synaptic strength 2.0
Fct synaptic strength (relay → cortex) 1.2
Ftc synaptic strength (cortex → relay)) 1.0
Ftr synaptic strength (reticular → relay) 1.0
Frt synaptic strength (relay → reticular) 0.3
Frc synaptic strength (cortex → reticular) 0.6
Fcx synaptic strength (exc. → exc.) 2.18
Mcx synaptic strength (inh. → exc.) 3.88
Fccx synaptic strength (supragranular → infragranular) 0.05
Fcx,th synaptic strength (thalamic relay → supragranular) 0.1
µe exc. noise input (infragranular) 0.1
µi inh. noise input (infragranular) 0.0
µth,e exc. noise input (relay) 1.3
µth,i inh. noise input (realy) 1.0
µret exc. noise input (reticular) 0.0
µce exc. noise input (supragranular) 0.05
µci inh. noise input (supragranular) 0.05
Ie exc. resting input (infragranular) 2.7
Ii inh. resting input (infragranular) 1.7
Ice exc. resting input (supragranular) 1.1
Ici inh. resting input (supragranular) 0.4
Qe exc. input noise variance (infragranular) 3× 10−5

Qi inh. input noise variance (infragranular) 0.001
Qth,e exc. input noise variance (relay) 2.5× 10−6

Qth,i inh. input noise variance (relay) 12.6× 10−6

Qret exc. input noise variance (reticular) 10.9× 10−6

Qce exc. input noise (supragranular) 2× 10−5

Qci inh. input noise (supragranular) 8× 10−5

N number of neurons 1000
b1,2,3,4 input coupling constants 1
c1 observation coefficient (supragranular) 0.3
c3 observation coefficient (infragranular) 1

Table 3. Parameter set of model (15). The choice of parameters is for the most part based on the paper
in which it was developed Riedinger and Hutt (2022).
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