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ANALYSIS OF THE SMOOTHLY AMNESIA-REINFORCED

MULTIDIMENSIONAL ELEPHANT RANDOM WALK

JIAMING CHEN AND LUCILE LAULIN

Abstract. In this work, we discuss the smoothly amnesia-reinforced multidimensional elephant

random walk (MARW). The scaling limit of the MARW is shown to exist in the diffusive, critical

and superdiffusive regimes. We also establish the almost sure convergence in all of the three

regimes. The quadratic strong law is displayed in the diffusive regime as well as in the critical

regime. The mean square convergence towards a non-Gaussian random variable is established

in the superdiffusive regime. Similar results for the barycenter process are also derived. Finally,

the last two Sections are devoted to a discussion of the convergence velocity of the mean square

displacement and the Cramér moderate deviations.
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1. Introduction

The study of reinforced processes and reinforced random walks has known a growing interest

over the last decades. In particular, random walks on graphs, or more precisely edge [37] or vertex

[39] reinforced random walks, have been the subject of a great number of contributions, see also

[1, 12, 27] and the references therein. The insight of introducing reinforcement mechanisms to

stochastic processes has also shed light on more applied models. In [30], the adaptive strategy of

an agent who plays a two-armed bandit machine was described as a self-reinforced random walk.

The philosophy of stochastic reinforcement has also been discussed in the topics of evolutionary

ecology [4] and machine learning theory [17]. Another manifestation of reinforced Pólya urn models

on financial economics can be found in [35]. We also refer the readers to [38] for a comprehensive

and extensive survey on the subject.

The Elephant Random Walk (ERW) is a discrete-time random walk, introduced by Schütz and

Trimper [40] in 2004. It was referred to as the ERW in allusion to the traditional saying that

elephants can always remember anywhere they have been. As it was pointed out [12] by Bertoin
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(a) Diffusive regime (b) Critical regime (c) Superdiffusive regime

Figure 1. The two-dimensional ERW with amnesia (in blue) and its barycenter
(in red).

who relied on Kürsten’s work [29], the ERW is a special case of step-reinforced random walk. In

fact, the ERW is reinforced because its behavior is influenced by its past : the ERW may have

a tendency to do the same thing over and over, or on the contrary, it may try to compensate its

previous steps. This different types of behavior, here-called regimes, are ruled by the memory

parameter p and it is well-known that the ERW shows three regimes of behavior and that the

critical value is p = 3/4.

The ERW in dimension d = 1 has received a lot of attention from mathematicians and physicists

over the last two decades. The almost sure convergence and the asymptotic normality of the

position of the ERW were established in the diffusive regime p < 3/4 and the critical regime

p = 3/4, see [3, 9, 16] and the references therein. In the superdiffusive regime p > 3/4, Bercu

[5] proved that the limit of the position of the ERW is not Gaussian and Kubota and Takei [28]

showed that the fluctuation of the ERW around this limit is Gaussian. To obtain those asymptotics,

various approaches have been followed : Baur and Bertoin [3] went with the connection to Pólya-

type urns while martingales were used by Bercu [5] and Coletti et al. [16] and the construction of

random trees with Bernoulli percolation have been explicited by Kürsten [29] and Businger [13].

Other quantities of interest regarding the ERW have been studied. For example, Fan et al.

[20] provided the Cramer moderate deviations associated with the ERW in dimension 1 and, more

recently, Hayashi et al. [26] studied the rate of quadratic mean displacement.

Bercu and Laulin [9] introduced the multidimensional ERW (MERW), where d ≥ 1, and estab-

lished the natural extensions of the results [5] in dimension d = 1. Then, they investigated the

center of mass of the MERW [8]. In both papers, they extensively used a martingale approach.

Bertenghi [10] made use of the connection to Pólya-type urns in order to establish functional

results for the MERW.

Finally, the ERW with changing memory has also been introduced. The ERW with linearly

reinforced memory has been studied by Baur [1] via the urn approach, and Laulin [31] using

martingales. Gut and Stadmüller [25] proposed an amnesic ERW where the elephant could stop

and only remember the first (and second) step it tooks. They also investigated the case where

the elephant only remembered a fixed or time-evolving portion of its past (recent or distant)

[24]. In the recent work [32], Laulin introduced smooth amnesia to the memory of the ERW and

established the asymptotic behavior of this new process.

The idea of our paper is to generalise the work [32] in dimension 1 to the dimension d ≥ 1.

In other words, we introduce smooth amnesia to the memory of the multidimensional elephant

random walk.



MULTIDIMENSIONAL AMNESIA-REINFORCED ELEPHANT RANDOM WALK 3

Our paper is organized as follows. In Section 2, we introduce the basic setting of the elephant

random walk (Sn)n∈N placed under an amnesia reinforcement mechanism, which is controlled

by the memory sequence (βn)n∈N. This type of multidimensional reinforced random walked is

named as the multidimensional amnesia-reinforced elephant random walk (MARW). Similar to

the ERW with the amnesia reinforcement, the MARW also admits a martingale structure, which

is discussed in Section 2. Unlike the usual ERW, the additional amnesia-reinforcement induces

two discrete-time martingales, instead of a single martingale, which are strongly correlated in a

nontrivial fashion. Such strong correlation of martingales will eventually pose some computational

difficulties when we analyze the limiting behavior of the MARW in Section 4. For instance, when

we compute the pointwise limit and the scaling limit of (Sn)n∈N in the diffusive regime, the two

strongly correlated martingales have to be dealt with separately, see [8, 31, 32] for the same

methodology.

As a courtesy to our readers, we give a preview of some of our main results, whose proofs will

be deferred to Theorem 4.1, Theorem 4.2, and Theorem 4.3. In the diffusive regime, we have the

almost sure convergence,
1

n
Sn → 0 as n → ∞ P− a.s.

Another logarithmic scaling to the MARW yields the quadratic strong law,

1

log n

n∑
k=1

SkS
T
k

k2
→ C(p, (βn)n∈N) ·

1

d
Id as n → ∞ P-a.s.

where the constant C(p, (βn)n∈N) > 0 depends only on the parameter p and the control sequence

(βn)n∈N of the amnesia-reinforcement. Using square-root scaling factor, we observe that the

MARW also admits a scaling limit in the diffusive regime, or convergence in distribution, in the

Skorokhod space D(R+) of càdlàg functions, in the sense that(
1√
n
S⌊nt⌋, t ≥ 0

)
=⇒

(
Wt, t ≥ 0

)
where (Wt)t≥0 is a continuous Rd-valued centered Gaussian process such that W0 = 0 and with

covariance structure given in (4.6).

It is also of interest to look at the barycenter process (Gn)n∈N of the MARW. Its definition as

well as its limiting behavior are discussed in Section 5. Similar to the discussion of the MARW,

we obtain its pointwise convergence, quadratic strong law, and its scaling limit. In particular,

Theorem 5.5 states that the barycenter process admits a scaling limit at the diffusive regime, or

convergence in distribution, in the Skorokhod space D([0, 1]) of càdlàg functions, such that(
1√
n
G⌊nt⌋, t ≥ 0

)
=⇒

( 1∫
0

Wtr dr, t ≥ 0

)
where (Wt)t≥0 is a continuous Rd-valued centered Gaussian process defined in Theorem 4.3 with

its covariance structure defined in (4.6).

A natural question to ask is how fast the limiting Theorems in Section 4 are carried on. Section

6 provides a quantitative estimate on the mean square convergence velocity of the pointwise limit,

quadratic strong law, and the scaling limit of the MARW. It should be possible to derive similar

convergence velocity to the barycenter process, which is not computed in this work. In Section

7, we end this work with a discussion on the Cramér moderate deviations of the MARW in the

diffusive and critical regimes. As a preview of our result in this Section, let (ϑn)n∈N ⊆ R be a

non-decreasing sequence so that ϑn/
√
n → 0 as n → ∞, and wn the sequence with asymptotic
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behavior described in Lemma A.1. Take any non-empty Borel set B ⊆ Rd, then we have

− inf
x∈intB

1

2
∥x∥2 ≤ lim inf

n→∞
ϑ−2
n logP

(
anµnSn

ϑn
√
wn

∈ B

)
≤ lim sup

n→∞
ϑ−2
n logP

(
anµnSn

ϑn
√
wn

∈ B

)
≤ − inf

x∈clB

1

2
∥x∥2,

(1.1)

where intB and clB denote the interior and the closure of B ⊆ Rd, respectively. This is the

Cramér moderate deviations for the MARW in the diffusive and critical regimes.

Moreover, we chose to postpone some technicalities regarding the analysis of the random walk

to the Appendix A. That way, the reader can focus on the main Theorems and the ideas of their

proofs. However, some analogous technicalities are displayed in the proof of the Theorems on the

barycenter such that the reader can also have a complete overview of the work needed.

Other probabilistic aspects of interest to the MARW include the statistical inference and an

analysis on the Fisher information, see [7], as well as the Wasserstein distance of the reinforced

random walk, see [21]. Perturbations of the amnesia intensity and its stability for the MARW is

also of independent interest. A similar topic for another type of stochastic process, the Schramn-

Loewner evolution, has been considered in [2, 15]. The transience and recurrence property of the

MARW remains unknown, to the best of our knowledge. Readers are referred to [11, 20] for an

exposition on the ERW without the amnesia reinforcement mechanism.

2. The amnesia-reinforced elephant random walk

To begin with, let us properly introduce the MARW. It is the natural extension to higher

dimensions of the one-dimensional MARW, defined in [31]. For an arbitrarily given dimension

d ≥ 1, let (Sn)n∈N be a (reinforced) random walk on Zd starting from the origin at time n = 0,

i.e. S0 = 0. At time n = 1, the reinforced random walk moves to one of the 2d nearest-neighbors

with equal probability 1/2d. After that, at time n ≥ 1, the reinforced random walk chooses at

random an integer 1 ≤ k ≤ n among the past times and performs the same step with probabily p,

or goes in any of the 2d− 1 other directions with probability (1− p)/(2d− 1). This random walk

possesses the amnesia property, in the sense that it remembers its most recent past steps better

than its remote past steps. Colloquially, this random walk has higher probability to choose its

recent steps than its earlier steps.

From a mathematical perspective, the position of this reinforced random walk at time n+1 ≥ 1

is given by

Sn+1 = Sn +Xn+1

with Xn+1 being defined as the step of this random walk at time n+ 1, satisfying

Xn+1 = An+1Xβn+1 .

Here An+1 is a random d× d matrix given by

P(An = +Id) = p,

and, for all 1 ≤ k ≤ d− 1,

P(An = −Id) = P(An = +Jk
d ) = P(An = −Jk

d ) =
1− p

2d− 1

where Id is the identity matrix of order d, Id = (δi,j)d and Jd = C(0, 1, 0, . . . , 0) is the circulant

matrix of order d such that J = (δi+1,j)d. It is easy to observe that the fixed permutation matrix

Jd satisfied Jd
d = Id. The distribution of the memory βn of the reinforced random walk is such
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that the probability of choosing a fixed past time k ∈ N decays approximately with rate kβ/nβ+1,

where β ≥ 0 is the amnesia parameter.

(a) n = 10 (b) n = 100

Figure 2. Evolution of the distribution of the memory β depending on the value
of β and the time.

To be precise, this random walk chooses βn+1 according to

P
(
βn+1 = k

)
=

(β + 1)Γ(β + k)Γ(n)

Γ(k)Γ(β + n+ 1)
=

β + 1

n
· µk

µn+1
for all 1 ≤ k ≤ n,

where

µn =

n−1∏
k=1

(
1 +

β

k

)
=

Γ(β + n)

Γ(n)Γ(β + 1)
. (2.1)

(a) d = 1 (b) d = 2 (c) d = 3 (d) d = 10

Figure 3. Competition between the dimension and the amnesia.

Figure 3 aims to give a better understanding on how amnesia affects the MARW in various

dimensions. The horizontal axis corresponds to p (from 0 to 1) and the vertical axis corresponds to

β (from 0 to 10, arbitrary chosen). The diffusive regime, ie. when p < 4dβ+2d+1
4d(β+1) or a < 1− 1

2(β+1) ,

is in blue while the superdiffusive regime is in red, see Lemma A.1 for the definition of the regimes.

One can observe that when the amnesia parameter β grows, the superdiffusive regime tends to be

less represented. It should also be noted that when the dimension grows the superdiffusive regime

is more important. Hence, the amnesia is somehow leading the MARW to a behavior closer to

the one in dimension 1. When β vanishes, i.e. β = 0, the MARW reduces to the multidimensional

elephant random walk (MERW) introduced in [9].

The two random variables An and βn are constructed to be conditionally independent. At each

time n, define the σ-algebra Fn = σ(X1, . . . , Xn). Then (Fn)n∈N is a discrete-time filtration to

which the MARW is clearly adapted.
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Since An and βn are conditionally independent, we clearly have

E
[
Xn+1|Fn

]
= E

[
An

]
E
[
Xβn+1

|Fn

]
=

2dp− 1

2d− 1
E
[ n∑
k=1

Xk1{βn+1=k}|Fn

]
=

2dp− 1

2d− 1
· β + 1

nµn+1

n∑
k=1

µkXk.
(2.2)

We further denote

a =
2dp− 1

2d− 1
and Yn =

n∑
k=1

µkXk (2.3)

such that

E
[
Yn+1|Fn

]
=

(
1 +

a(β + 1)

n

)
Yn = γnYn

with γn = 1 + a(β + 1)/n. Hereafter, for each n ≥ 1, let

an =

n−1∏
k=1

γ−1
k =

Γ(n)Γ(a(β + 1) + 1)

Γ(a(β + 1) + n)
and wn =

n∑
k=1

(akµk)
2. (2.4)

From a Gamma function estimate, also see in [31], we have that

na(β+1)an → Γ(a(β + 1) + 1) as n → ∞ (2.5)

and

n−βµn → Γ(β + 1)−1 as n → ∞. (2.6)

3. A correlated martingale approach

Define the following two Rd-valued processes by

Mn = anYn and Nn = Sn +
a(β + 1)

β − a(β + 1)
µ−1
n Yn. (3.1)

Proposition 3.1. The Rd-valued processes (Mn)n∈N and (Nn)n∈N defined in (3.1) are locally

square-integrable martingales adapted to (Fn)n∈N.

Proof. Since, both Mn and Nn are finite sums for each n ≥ 1, the square-integrability and adapt-

ness are immediate. By (2.3) and (2.4), we have

E
[
Mn+1|Fn

]
= anγ

−1
n Yn + anµnγ

−1
n E

[
Xn+1|Fn

]
= anYn.

And by (2.2), we have

E
[
Nn+1|Fn

]
= E

[
Sn+1 +

a(β + 1)

β − a(β + 1)
µ−1
n+1Yn+1|Fn

]
= Sn +

a(β + 1)

β − a(β + 1)
µ−1
n Yn.

Hence the assertion is verified. □

Notice that via introducing the martingales (Mn)n∈N and (Nn)n∈N, we can write Sn as

Sn = Nn − a(β + 1)

β − a(β + 1)
(anµn)

−1Mn. (3.2)

This writing is the key on which rely all of our analysis and our martingale approach.

Moreover, the asymptotic behavior of (Mn)n∈N is closely related to wn defined in (2.4). In fact,

we have the following asymptotic result, which states the three regimes of the MARW.

Lemma 3.1. In the diffusive regime when p < 4dβ+2d+1
4d(β+1) or a < 1− 1

2(β+1) , we have

wn

n1−2(a(β+1)−β)
→ l(β) as n → ∞ (3.3)
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with

l(β) =
1

1 + 2(β − a(β + 1))

(
Γ(a(β + 1) + 1)

Γ(β + 1)

)2

.

In the critical regime when p = 4dβ+2d+1
4d(β+1) or a = 1− 1

2(β+1) , we have

wn

log n
→
(
Γ(β + 1 + 1

2 )

Γ(β + 1)

)2

as n → ∞. (3.4)

In the superdiffusive regime when p > 4dβ+2d+1
4d(β+1) or a > 1− 1

2(β+1) , we have

wn →
∞∑
k=1

(
Γ(a(β + 1) + 1)Γ(β + k)

Γ(a(β + 1) + k)Γ(β + 1)

)2

< ∞ as n → ∞. (3.5)

In order to investigate the asymptotic behavior of (Sn)n∈N, we first introduce an arbitrarily

fixed test non-zero vector u ∈ Rd and we define

Mn(u) = uTMn and Nn(u) = uTNn for each n ∈ N.

It is then clear that (Mn(u))n∈N (Nn(u))n∈N are real-valued locally square-integrable martingales

for each fixed u ∈ Rd. We further infer that (Sn(u))n∈N satisfies an equation analogous to (3.2). In

this setting, we have reduced the multidimensional martingales to real-valued martingales without

loss of generality. This technique greatly simplifies our martingale analysis. From now on, we fix

the test vector u ∈ Rd and we introduce the two-dimensional martingale (Ln(u))n∈N defined as

Ln(u) =

(
Nn(u)

Mn(u)

)
for each n ∈ N. (3.6)

Denote the martingale increment ϵn+1 = Yn+1 − γnYn for each n. Then (ϵn)n∈N satisfies the

martingale difference relation E[ϵn+1|Fn] = 0. We obtain that

∆Ln+1(u) = Ln+1(u)− Ln(u) =

(
Sn+1(u)− Sn(u) +

a(β+1)
β−a(β+1)

(
µ−1
n+1Yn+1(u)− µ−1

n Yn(u)
)

an+1Yn+1(u)− anYn(u)

)

=

(
βµ−1

n+1

β−a(β+1)

(
µn+1Xn+1(u)− (γn − 1)Yn(u)

)
an+1ϵn+1(u)

)

=

(
βµ−1

n+1

β−a(β+1)

an+1

)
ϵn+1(u).

(3.7)

4. Scaling limit and convergence

In this section, we discuss the scaling limit as well as the almost sure convergence in the

diffusive, critical and the superdiffusive regimes, depending on the value of p with respect to

(4dβ+2d+1)/(4d(β+1)). We also give the quadratic strong law in the diffusive regime as well as

in the critical regime. Afterwards, the mean square convergence is established in the superdiffusive

regime.

4.1. The diffusive regime.

Theorem 4.1. We have the almost sure convergence

1

n
Sn → 0 as n → ∞ P-a.s.
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Proof. We have from [18, Theorem 4.3.15] again that, for all γ > 0,

∥Mn∥2

λmax⟨M⟩n
= o
((

log Tr⟨M⟩n
)1+γ) P-a.s. (4.1)

From equation (A.9) and the fact that λmax⟨M⟩n ≤ Tr⟨M⟩n ≤ wn, we get

∥Mn∥2 = o
(
wn

(
logwn

)1+γ) P-a.s. (4.2)

By (3.3), we observe

∥Mn∥2 = o
(
n1−2(a(β+1)−β)

(
log n

)1+γ) P-a.s.
Since Mn = anYn, we have from equations (2.5) and (2.6)

∥Yn∥2

(nµn+1)2
= o
(
n−1

(
log n

)1+γ) P-a.s.

which implies
Yn

nµn+1
→ 0 as n → ∞ P-a.s.

By (A.10) and [18, Theorem 4.3.15] again, we find that

∥Nn∥2 = o
(
n
(
log n

)1+γ) P-a.s. (4.3)

Moreover, we obtain from equation (3.2)

1

n2

∥∥∥∥Sn +
a(β + 1)

(β − a(β + 1))µn+1
Yn

∥∥∥∥2 = o
(
n−1

(
log n

)1+γ) P-a.s.

Hence, we conclude that

Sn

n
+

a(β + 1)

β − a(β + 1)
· Yn

nµn+1
→ 0 as n → ∞ P-a.s.

and the proof is complete. □

Theorem 4.2. We have the quadratic strong law

1

log n

n∑
k=1

SkS
T
k

k2
→ 2β + 1− a

(1− a)(1− 2(a(β + 1)− β))
· 1
d
Id as n → ∞ P-a.s.

Proof. We will check that all the conditions of [32, Theorem A.3] are satisfied, see also [14, 41].

The condition (H.1) is satisfied thanks to Lemma A.4 while the condition (H.2) directly follows

from Lemma A.5 and the condition (H.4) is exactly the statement of Lemma A.7. Therefore,

1

log
(
detV −1

n

)2 n∑
k=1

(
(detVk)

2 − (detVk+1)
2

(detVk)2

)
VkLk(u)Lk(u)

TV T
k → 1

d
uTuVt=1

as n → ∞ P-a.s. On the one hand, we have from (A.24) that

1

log n

n∑
k=1

(
(detVk)

2 − (detVk+1)
2

(detVk)2

)
VkLk(u)Lk(u)

TV T
k → 2(1− a)(β + 1)

d
uTuVt=1 (4.4)

as n → ∞ P-a.s. On the other hand, by (2.5), (2.6) and (A.24), we have

n

(
(detVn)

2 − (detVn+1)
2

(detVn)2

)
→ 2(1− a)(β + 1) as n → ∞ P-a.s.

Finally, we obtain from (A.17) and (4.4) that

1

log n

n∑
k=1

uTSkS
T
k u

k2
=

1

log n

n∑
k=1

vTVkLk(u)Lk(u)
TV T

k v

k
→ vTVt=1v ·

1

d
uTu (4.5)
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as n → ∞ P-a.s. Since u ∈ Rd is arbitrary, the assertion follows from (4.5). □

Theorem 4.3. The MARW admits a scaling limit at the diffusive regime, or convergence in

distribution, in the Skorokhod space D(R+) of càdlàg functions, in the sense that(
1√
n
S⌊nt⌋, t ≥ 0

)
=⇒

(
Wt, t ≥ 0

)
where (Wt)t≥0 is a continuous Rd-valued centered Gaussian process such that W0 = 0 and with

covariance

E
[
WsW

T
t

]
=

a(β + 1)(1− a) + aβ

(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)
s
( t
s

)a−β(1−a)

· 1
d
Id

+
β

(β(1− a)− a)(1− a)
s · 1

d
Id for all 0 ≤ s ≤ t < ∞.

(4.6)

Proof. We will check that all the conditions of [32, Theorem A.2] are satisfied, see also [14, 41].

The condition (H.1) is satisfied thanks to Lemma A.4 while the condition (H.2) directly follows

from Lemma A.5 and the condition (H.3) is exactly the statement of Lemma A.6. Consequently,

we have the convergence in distribution in the Skorokhod space D(R+) such that(
VnL⌊nt⌋(u), t ≥ 0

)
=⇒

(
Wt(u), t ≥ 0

)
where (Wt(u))t≥0 is a continuous R2-valued centered Gaussian process such that W0 = 0 and with

covariance

E
[
Ws(u)Wt(u)

T
]
=

1

d
uTuVs for all 0 ≤ s ≤ t < ∞.

From (2.5), (2.6), and (3.2), we see that S⌊nt⌋(u) is asymptotically equivalent to

N⌊nt⌋(u) + tβ−a(β+1) a(β + 1)

β − a(β + 1)
(anµn)

−1M⌊nt⌋(u) P-a.s.

Multiplying on the left side by vt = (1, ta(β+1)−β)T , we obtain(
1√
n
S⌊nt⌋(u), t ≥ 0

)
=⇒

(
Wt(u), t ≥ 0

)
with Wt(u) = vTt Wt(u). Hereafter, when 0 ≤ s ≤ t < ∞, we have the covariance

E
[
Ws(u)Wt(u)

T
]
= vTs E

[
Ws(u)Wt(u)

T
]
vt =

1

d
(uTu)vTs Vsvt. (4.7)

Solving (4.7), we have

E
[
WsW

T
t

]
=

1

d
vTs Vsvt for all 0 ≤ s ≤ t < ∞

and the assertion (4.6) is verified. □

4.2. The critical regime.

Theorem 4.4. We have the almost sure convergence

1√
n log n

Sn → 0 as n → ∞ P-a.s.

Proof. We still have (4.1) and (4.2) such that

∥Mn∥2 = o
(
wn

(
logwn

)1+γ)
for all γ > 0 P-a.s.

However, in the critical regime, we have (3.4) rather than (3.3), and

wn

log n
→
(
Γ(β + 1 + 1

2 )

Γ(β + 1)

)2

as n → ∞.



10 JIAMING CHEN AND LUCILE LAULIN

Since (2.5), (2.6), and since Mn = anYn, we observe for all γ > 0 that

∥Yn∥2

n(log n)2µ2
n

= o
(
(log n)−1

(
log log n

)1+γ) P-a.s.

In this regard
Yn√

n log nµn
→ 0 as n → ∞ P-a.s. (4.8)

Similarly, we still have (A.10) and

∥Nn∥2 = o
(
n
(
log n

)1+γ)
for all γ > 0 P-a.s.

Then
∥Nn∥2

n(log n)2
= o
(
(log n)γ−1

)
for all γ ∈ (0, 1) P-a.s.

and therefore
Nn√
n log n

→ 0 as n → ∞ P-a.s.

By (3.2), we can hereafter conclude that

Sn√
n log n

+
a(β + 1)

β − a(β + 1)
· Yn√

n log nµn
→ 0 as n → ∞ P-a.s.

Combining with (4.8), the assertion is verified. □

Theorem 4.5. We have the quadratic strong law

1

log log n

n∑
k=1

SkS
T
k

(k log k)2
→ (2β + 1)2 · 1

d
Id as n → ∞ P-a.s.

Proof. We will check that all the conditions of [32, Theorem A.3] are satisfied. The condition

(H.1) is satisfied thanks to Lemma A.8 while the condition (H.2) directly follows from Lemma

A.9 and the condition (H.4) is exactly the statement of Lemma A.10. Therefore,

1

log
(
detW−1

n

)2 n∑
k=1

(
(detWk)

2 − (detWk+1)
2

(detWk)2

)
WkLk(u)Lk(u)

TWT
k → 1

d
uTuW (4.9)

as n → ∞ P-a.s. On the one hand, we have from (A.34)

1

log log n

n∑
k=1

(
(detWk)

2 − (detWk+1)
2

(detWk)2

)
WkLk(u)Lk(u)

TWT
k → 1

d
uTuW

as n → ∞ P-a.s. On the other hand, by (2.5), (2.6), and (A.33), we have

n log n

(
(detWk)

2 − (detWk+1)
2

(detWk)2

)
→ (2β + 1)2 as n → ∞ P-a.s.

Then, we obtain from (A.17) and (4.9) that

1

log log n

n∑
k=1

uTSkS
T
k u

(k log k)2
=

1

log log n

n∑
k=1

wTWkLk(u)Lk(u)
TWT

k w

k log k
→ (2β + 1)2

d
uTu (4.10)

as n → ∞ P-a.s. Since u ∈ Rd is arbitrary, the assertion follows from (4.10). □

Theorem 4.6. The MARW admits a scaling limit at the critical regime, or convergence in dis-

tribution, in the Skorokhod space D(R+) of càdlàg functions, in the sense that(
1√

nt log n
S⌊nt⌋, t ≥ 0

)
=⇒

(
(2β + 1)Bt, t ≥ 0

)
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where (Bt)t≥0 is a continuous d-dimensional canonical Brownian motion with covariance

E
[
BsB

T
t

]
= s · 1

d
Id for all 0 ≤ s ≤ t < ∞.

Proof. We will check that all the three conditions of [32, Theorem A.2] are satisfied, see also [42,

Theorem 1]. First of all, by (3.4) and (A.7) we know that

w−1/2
n ⟨M(u)⟩⌊nt⌋w

−1/2
n → t

d
· uTu as n → ∞ P-a.s. (4.11)

Hence the condition (H.1) is satisfied. Notice that

⌊nt⌋∑
k=1

1

wn
E
[
∆Mk(u)

2
1{|∆Mk(u)|≥ϵ

√
wk}|Fk−1

]
≤

⌊nt⌋∑
k=1

(
w⌊nt⌋

wn

)2
1

ϵ2w2
⌊nt⌋

E
[
∆Mk(u)

4|Fk−1

]
, (4.12)

since (2.5), (2.6), and (A.21), we observe that

⌊nt⌋∑
k=1

∣∣∆Mk(u)
4
∣∣ ≤ C1(β)∥u∥4

⌊nt⌋∑
k=1

(akµk)
4 ≤ C2(β)∥u∥4

⌊nt⌋∑
k=1

1

k2
P-a.s. (4.13)

with constants C1(β), C2(β) > 0. Therefore, by (4.12) and (4.13), we have

⌊nt⌋∑
k=1

1

wn
E
[
∆Mk(u)

2
1{|∆Mk(u)|≥ϵ

√
wk}|Fk−1

]
≤ C3(β)∥u∥4 ·

t2

ϵ2
· 1

nt(log nt)2
P-a.s.

Simplifying the above expression, we obtain

⌊nt⌋∑
k=1

1

wn
E
[
∆Mk(u)

2
1{|∆Mk(u)|≥ϵ

√
wk}|Fk−1

]
→ 0 as n → ∞ P-a.s. (4.14)

Then the condition (H.2), or the Lindeberg condition, is satisfied by (4.14). In this particular case

at critical regime, (4.11) implies that the condition (H.3) is satisfied. Hence(
1

√
wn

M⌊nt⌋(u), t ≥ 0

)
=⇒

(
Bt(u), t ≥ 0

)
where (Bt(u))t≥0 is a continuous real-valued centered Gaussian process such that B0(u) = 0 and

with covariance

E
[
Bs(u)Bt(u)

]
=

s

d
· uTu for all 0 ≤ s ≤ t < ∞.

In the critical regime, from (3.2) we can write

S⌊nt⌋(u) = N⌊nt⌋(u) + (2β + 1)
M⌊nt⌋(u)

a⌊nt⌋µ⌊nt⌋
. (4.15)

From (A.8) we know that

⟨N(u)⟩⌊nt⌋

nt log n
→ 0 and

N⌊nt⌋(u)√
nt log n

→ 0 as n → ∞ P-a.s. (4.16)

Using (2.5), (2.6), and (3.4) again, we conclude that(
1√

nt log n
S⌊nt⌋(u), t ≥ 0

)
=⇒

(
(2β + 1)Bt(u), t ≥ 0

)
with

E
[
Bs(u)Bt(u)

]
= s · u

Tu

d
for all 0 ≤ s ≤ t. (4.17)

Solving (4.17), we get

E
[
BsB

T
t

]
= s · 1

d
Id for all 0 ≤ s ≤ t.
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which completes the proof. □

4.3. The superdiffusive regime.

Theorem 4.7. We have the almost sure convergence

1

na(β+1)−β
Sn → Lβ as n → ∞ P-a.s.

where the limiting Lβ is an Rd-valued random variable.

Remark 4.1. In fact, from Theorem 4.8 below, we will see the random vector Lβ is non-degenerate.

Proof. From (3.5) and (A.7), in the superdiffusive regime, we have

Tr⟨M⟩n ≤ wn ≤
∞∑
k=1

(
Γ(a(β + 1) + 1)Γ(β + k)

Γ(a(β + 1) + k)Γ(β + 1)

)2

< ∞ for all n ∈ N.

By [18, Theorem 4.3.15], this leads to

Mn → M as n → ∞ P-a.s. with M =

∞∑
k=1

akϵk.

By (3.1), Mn = anYn, and by (2.5), we observe that

Yn

na(β+1)
→ 1

Γ(a(β + 1) + 1)
M as n → ∞ P-a.s. (4.18)

Moreover, equations (4.3) still holds and, as 2a(β + 1) > 2β + 1 in the superdiffusive regime, we

find that

1

n2(a(β+1)−β)

∥∥∥∥Sn +
a(β + 1)

(β − a(β + 1))µn+1
Yn

∥∥∥∥2 = o
(
n−(1−2a(β+1)+2β)

(
log n

)1+γ) P-a.s.

Thanks to (2.6), we obtain

Sn

na(β+1)−β
+

a(β + 1)

β − a(β + 1)
· Γ(β + 1)Yn

na(β+1)
→ 0 as n → ∞ P-a.s. (4.19)

Combining (4.18), it yields

Sn

na(β+1)−β
→ Lβ as n → ∞ P-a.s.

where

Lβ =
a(β + 1)

a(β + 1)− β
· Γ(β + 1)

Γ(a(β + 1) + 1)
M (4.20)

and the assertion follows. □

Theorem 4.8. We have the following mean square convergence

E
[∥∥∥∥ 1

na(β+1)−β
Sn − Lβ

∥∥∥∥2]→ 0 as n → ∞. (4.21)

Proof. For each test vector u ∈ Rd, we have

E
[
Mn(u)

2
]
= E

[
⟨M(u)⟩n

]
≤ 1

d
wnu

Tu for all n ∈ N.

From (3.5), we obtain

sup
n≥1

E
[
Mn(u)

2
]
< ∞

which implies that (Mn(u))n∈N is a martingale bounded in L2. Therefore

E
[
|Mn(u)−M(u)|2

]
→ 0 as n → ∞. (4.22)
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Moreover, on the one hand (4.22) together with (4.18) implies that

E
[∣∣∣∣ 1

na(β+1)
Yn(u)− Y (u)

∣∣∣∣2]→ 0 as n → ∞. (4.23)

On the other hand, from (A.8) we know that

E
[
Nn(u)

2
]
= E

[
⟨N(u)⟩n

]
≤ 1

d

(
β

β − a(β + 1)

)2

nuTu for all n ∈ N.

Since a(β + 1) > β + 1
2 in the superdiffusive regime, we have

E
[∣∣∣∣ 1

na(β+1)−β
Nn(u)

∣∣∣∣2]→ 0 as n → ∞. (4.24)

The proof is complete by combining (4.23) and (4.24). □

Remark 4.2. The expected value of Lβ is

E
[
Lβ

]
= 0 (4.25)

whereas its quadratic deviation is

E
[
LβL

T
β

]
=

(
a(β + 1)

β − a(β + 1)

)2
Γ(β + 1)2Γ(2(a− 1)(β + 1) + 1)

Γ((2a− 1)(β + 1) + 1)2
· 1
d
Id. (4.26)

Theorem 4.9. The MARW admits a scaling limit at the superdiffusive regime, or convergence in

distribution, in the Skorokhod space D(R+) of càdlàg functions, in the sense that(
1

na(β+1)−β
S⌊nt⌋, t ≥ 0

)
=⇒

(
Qt, t ≥ 0

)
(4.27)

with the limiting Qt = ta(β+1)−βLβ for all t ≥ 0.

Proof. For all t ≥ 0 and from (4.19), we observe that

S⌊nt⌋

⌊nt⌋a(β+1)−β
+

a(β + 1)

β − a(β + 1)
·

Y⌊nt⌋

⌊nt⌋a(β+1)
→ 0 as n → ∞ P-a.s.

which implies
1

na(β+1)−β
Sn → ta(β+1)−βLβ as n → ∞ P-a.s. (4.28)

The P-a.s. convergence in (4.28)holds in all finite-dimensional distributions which characterizes

the Skorokhod space topology. Hence, we have (4.27) and the assertion is verified. □

5. Scaling limit of the barycenter process

The study of the scaling limit of the MARW (Sn)n∈N gives us some information on its asymptotic

behavior. Nonetheless, to understand its pathwise geometric features, we need to discuss its

barycenter, or center of mass process. Such topics have been raised and discussed in [36, 43]. In

this Section, we turn our attention to the above-mentioned barycenter process (Gn)n∈N defined

by

Gn :=
1

n

n∑
k=1

Sk (5.1)

Our work contains the discussion on the scaling limit and the almost sure convergence in the

diffusive, critical and superdiffusive regimes. The quadratic strong law in the diffusive and crit-

ical regimes is also discussed while the mean square convergence in the superdiffusive regime is

established.
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5.1. Almost sure convergence. The barycenter process was discussed in [8] for the elephant

random walk in dimension d, which is a special case of the process we study here when β = 0. We

first begin with the almost sure convergence.

Theorem 5.1. We have the almost sure convergence, in the diffusive regime,

1

n
Gn → 0 as n → ∞ P-a.s. (5.2)

while in the critical regime,

1√
n log n

Gn → 0 as n → ∞ P-a.s. (5.3)

and, in the superdiffusive regime,

1

na(β+1)−β
Gn → 1

1 + a(β + 1)− β
Lβ as n → ∞ P-a.s. (5.4)

where Lβ was characterized in Theorems 4.7 and 4.2.

Proof. In the diffusive regime, from (5.1) we observe that

1

n
Gn =

n∑
k=1

k

n2
· 1
k
Sk =

n∑
k=1

1

k
Ska

′
n,k with a′n,k =

k

n2
.

Since
∑n

k=1 a
′
n,k ≤ 1 for all n ∈ N and the almost sure convergence in Theorem 4.1, from Lemma

A.12 we can conclude that

1

n
Gn =

n∑
k=1

1

k
Ska

′
n,k → 0 as n → ∞ P-a.s.

such that (5.2) is verified. In the critical regime, we have from (5.1) that

1√
n log n

Gn =
1

n3/2 log n

n∑
k=1

Sk =

n∑
k=1

1√
k log k

Ska
′′
n,k with a′′n,k =

k1/2 log k

n3/2 log n
.

Since
∑n

k=1 a
′′
n,k ≤ 1 for all n ∈ N and the almost sure convergence in Theorem 4.4 holds, we get

from Lemma A.12 hat

1√
n log n

Gn =
n∑

k=1

1√
k log k

Ska
′′
n,k → 0 as n → ∞ P-a.s.

and we obtain (5.3). Finally, in the superdiffusive regime, we also get from (5.1) that

1

na(β+1)−β
Gn =

1

n1+a(β+1)−β

n∑
k=1

Sn =

n∑
k=1

1

ka(β+1)−β
Ska

′′′
n,k with a′′′n,k =

ka(β+1)−β

n1+a(β+1)−β
.

Since
n∑

k=1

a′′′n,k → 1

1 + a(β + 1)− β
as n → ∞

by a simple calculation, and because of the almost sure convergence in Theorem 4.7, we can

conclude using Lemma A.13

1

na(β+1)−β
Gn → 1

1 + a(β + 1)− β
Lβ as n → ∞ P-a.s.

and (5.4) is verified. □

5.2. Quadratic strong law.
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Theorem 5.2. In the diffusive regime, we have the quadratic strong law

1

log n

n∑
k=1

GkG
T
k

k2
→ 4I(a, β) · 1

d
Id as n → ∞ P-a.s.

where I(a, β) is given explicitly

I(a, β) =
1

Γ(a(β + 1) + 1)2Γ(β + 1)2
· 2a2(1− a)(β + 1)3

3(β − a(β + 1))2(1− a(β + 1) + β)
.

Proof. We will check that all the three conditions of [32, Theorem A.2] are satisfied. Looking back

to (5.1), we observe that

Gn =
1

n

n∑
k=1

Nk − 1

n

a(β + 1)

β − a(β + 1)

n∑
k=1

1

akµk
Mk =

1

n

n∑
k=1

Nk − 1

n

a(β + 1)

β − a(β + 1)

n∑
k=1

1

akµk

k∑
l=1

alϵl.

Then, changing the order of summation, we have

Gn =
1

n

n∑
k=1

Nk − 1

n

a(β + 1)

β − a(β + 1)

n∑
k=1

akϵk

n∑
l=k

1

alϵl

=
1

n

n∑
k=1

Nk − 1

n

a(β + 1)

β − a(β + 1)

n∑
k=1

ak(δn − δk−1)ϵk

where we define δn =
∑n

k=1(akµk)
−1 for all n ∈ N. Moreover, we denote

Zn =

n∑
k=1

Nk − a(β + 1)

β − a(β + 1)

n∑
k=1

akδk−1ϵk.

such that we have

Gn =
1

n
Zn − δn

n
· a(β + 1)

β − a(β + 1)

n∑
k=1

akϵk =
1

n

(
Zn − a(β + 1)

β − a(β + 1)
δnMn

)
.

For a fixed text vector u ∈ Rd, we define

Hn(u) =

(
Zn(u)

Mn(u)

)
for all n ∈ N. (5.5)

which implies

∆Hn(u) = Hn+1(u)−Hn(u) =

(
Nn+1(u)ϵn+1(u)

−1 − a(β+1)
β−a(β+1)an+1δn

an+1

)
ϵn+1(u).

Then, let

Vn =
1

n3/2

(
1 0

0 a(β+1)
β−a(β+1)δn

)
and v =

(
1

−1

)
.

Then it is immediate that

vTVnHn(u) =
1√
n
Gn for all n ∈ N (5.6)

and that

lim
n→∞

Vn⟨H(u)⟩nV T
n = lim

n→∞

1

n3

(
1 −1

−1 1

)
n−1∑
k=1

(
a(β + 1)

β − a(β + 1)

)2

δ2ka
2
k+1E

[
ϵk+1(u)

2|Fk

]
= lim

n→∞

1

n3
· a2(1− a)(β + 1)3uTu

d(β − a(β + 1))2(1− a(β + 1) + β)

(
1 −1

−1 1

)
n−1∑
k=1

δ2ka
2
k+1µ

2
k+1 P-a.s.
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By (2.5) and (2.6), we know that

n−(1+a(β+1)−β)δn → 1

1 + a(β + 1)− β
· 1

Γ(a(β + 1) + 1)Γ(β + 1)
as n → ∞.

Hence the above calculation leads us to

Vn⟨H(u)⟩nV T
n → I(a, β)uTu · 1

d

(
1 −1

−1 1

)
as n → ∞ P-a.s. (5.7)

where

I(a, β) =
1

1− 2(a(β + 1)− β)
· a2(1− a)(β + 1)3

(β − a(β + 1))2(1− a(β + 1) + β)
. (5.8)

Consequently, (5.7) ensures that the condition (H.1) is satisfied. Notice that by (2.3) and (3.1),

there exists some constant C1(a, β) > 0 and similarly, by (2.5), (2.6), (A.22), there exists some

other constant C2(a, β) > 0 such that

∥Nn∥2 ≤ C1(a, β)n
2 and a2kϵk(u)

2 ≤ C2(a, β)n
2δ−2

n for all 1 ≤ k ≤ n.

Moreover, notice that for all 1 ≤ k ≤ n,

Vn∆Hk(u) =
1

n3/2

(
Nk(u)ϵk(u)

−1 − a(β+1)
β−a(β+1)akδk−1

a(β+1)
β−a(β+1)akδn

)
ϵk(u).

Hence, for all 1 ≤ k ≤ n, we observe that

∥Vn∆Hk(u)∥2 ≤ 4a2k
n3

(
a(β + 1)

β − a(β + 1)

)2((
β − a(β + 1)

aka(β + 1)

Nk(u)

ϵk(u)

)2

+ δ2k−1 + δ2n

)
ϵk(u)

2 ≤ C(a, β)

n
(5.9)

for some constant C(a, β) > 0. Consequently, we

n∑
k=1

E
[
∥Vn∆Hk(u)∥4

]
≤ 1

n
C(a, β) → 0 as n → ∞ P-a.s.

since, for all ϵ > 0,

n∑
k=1

E
[
∥Vn∆Hk(u)∥21{∥Vn∆Hk(u)∥>ϵ}|Fk−1

]
≤ 1

ϵ2

n∑
k=1

E
[
∥Vn∆Hk(u)∥4

]
→ 0 as n → ∞ P-a.s.

(5.10)

Then the condition (H.2), or the Lindeberg condition, is satisfied by (5.10). Hereafter, by (2.5),

(2.6), and by the definition of δn, we know there exists some constant C ′(a, β) ̸= 0 such that

log
(
detV −1

n

)2
log n

→ C ′(a, β) as n → ∞.

This ensures that there exists some other constant C ′′(a, β) > 0 such that

∞∑
n=1

1(
log
(
detV −1

n

)2)2E[∥Vn∆Hn(u)∥4|Fn−1

]
≤ C2(a, β)

∞∑
n=1

1

(log n)2
E
[
∥Vn∆Hn(u)∥4|Fn−1

]
.

Finally, using (5.9) leads to

∞∑
n=1

1

(log n)2
∥Vn∆Hn(u)∥4 ≤ C(a, β)

∞∑
n=1

1

(n log n)2
< ∞ P-a.s.
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for some constant C(a, β) > 0 depending only on a and β. The condition (H.4) is satisfied by

combining the above with (5.10). On the one hand,

1

log
(
detV −1

n

)2 n∑
k=1

(
(detVk)

2 − (detVk+1)
2

(detVk)2

)
VkHk(u)Hk(u)

TV T
k → 1

d
uTuV (5.11)

as n → ∞ P-a.s. where

V =

(
1 −1

−1 1

)
I(a, β)

and I(a, β) has been specified in (5.8). Then, we have

1

log n

n∑
k=1

(
(detVk)

2 − (detVk+1)
2

(detVk)2

)
VkHk(u)Hk(u)

TV T
k → 4− 2(a(β + 1)− β)

d
uTuV

as n → ∞ P-a.s. since
log n

log
(
detV −1

n

)2 → 4− 2(a(β + 1)− β) as n → ∞.

On the other hand, by (2.5) and (2.6), we have

n

(
(detVn)

2 − (detVn+1)
2

(detVn)2

)
→ 4− 2

(
a(β + 1)− β

)
as n → ∞ P-a.s.

Using (5.6) and (5.11), we observe that

1

log n

n∑
k=1

uTGkG
T
k u

k2
=

1

log n

n∑
k=1

vTVkHk(u)Hk(u)
TV T

k v

k
→ vTV v · 1

d
uTu

as n → ∞ P-a.s. Since u ∈ Rd is arbitrary, the assertion follows from (4.5). □

Theorem 5.3. In the critical regime, we have the quadratic strong law

1

log log n

n∑
k=1

GkG
T
k

(k log k)2
→ 4(2β + 1)2

9
· 1
d
Id as n → ∞ P-a.s.

Proof. We will check that all the three conditions of [32, Theorem A.2] are satisfied. Denote

Wn =
1

n
√
n log n

(
1 0

0 a(β+1)
β−a(β+1)δn

)
and w =

(
1

−1

)
.

Then, for H defined in (5.5), it is clear that

wTWnHn(u) =
1√

n log n
Gn for all n ∈ N

and that

lim
n→∞

Wn⟨H(u)⟩nWT
n = lim

n→∞

1

n3 log n

(
1 −1

−1 1

)
n−1∑
k=1

(2β + 1)2δ2ka
2
k+1E

[
ϵk+1(u)

2|Fk

]
= lim

n→∞

(2β + 1)2

n3 log n
· u

Tu

d

(
1 −1

−1 1

)
n−1∑
k=1

δ2ka
2
k+1µ

2
k+1 P-a.s.

By (2.5) and (2.6), we know that

n−3/2δn → 2

3
· Γ(β + 1)

Γ(β + 1 + 1
2 )

as n → ∞.
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Hence, the above calculation leads us to

Wn⟨H(u)⟩nWT
n → I(β)uTu · 1

d

(
1 −1

−1 1

)
as n → ∞ P-a.s. with I(β) =

4(2β + 1)2

9
.

(5.12)

Consequently, the condition (H.1) is satisfied thanks to (5.12). Notice that by (2.3) and (3.1),

there exists some constant C1(β) > 0 and similarly, there exists some constant C2(β) > 0 such

that

∥Nn∥2 ≤ C1(β)n
2 and a2kϵk(u)

2 ≤ C2(β)n
2δ−2

n log n for all 1 ≤ k ≤ n.

Then, notice for all 1 ≤ k ≤ n that

Wn∆Hk(u) =
1

n
√
n log n

(
Nk(u)ϵk(u)

−1 − a(β+1)
β−a(β+1)akδk−1

a(β+1)
β−a(β+1)akδn

)
ϵk(u).

The ensures that, for all 1 ≤ k ≤ n,

∥Wn∆Hk(u)∥2 ≤ 4a2k
n3 log n

(2β + 1)2
((

(2β + 1)−2Nk(u)

ϵk(u)

)2
+ δ2k−1 + δ2n

)
ϵk(u)

2 ≤ C(β)

n
(5.13)

for some constant C(β) > 0. Hence,

n∑
k=1

E
[
∥Wn∆Hk(u)∥4

]
≤ 1

n
C(β) → 0 as n → ∞ P-a.s.

since, for all ϵ > 0,

n∑
k=1

E
[
∥Wn∆Hk(u)∥21{∥Wn∆Hk(u)∥>ϵ}|Fk−1

]
≤ 1

ϵ2

n∑
k=1

E
[
∥Wn∆Hk(u)∥4

]
→ 0 as n → ∞.

(5.14)

Therefore, the condition (H.2), or the Lindeberg condition, is satisfied using (5.14). Hereafter, we

know that
log
(
detW−1

n

)2
log log n

→ 4 as n → ∞.

This ensures that there exists some constant C2(β) > 0 such that

∞∑
n=1

1(
log
(
detW−1

n

)2)2E[∥Wn∆Hn(u)∥4|Fn−1

]
≤

∞∑
n=1

C2(β)

(log log n)2
E
[
∥Wn∆Hn(u)∥4|Fn−1

]
.

(5.15)

We get from (5.13) that

∞∑
n=1

1

(log log n)2
∥Wn∆Hn(u)∥4 ≤ C(β)

∞∑
n=1

1

(n log n log log n)2
< ∞ P-a.s.

for some constant C(β) > 0 depending only onβ. The condition (H.4) is satisfied using the above

together with (5.15). Then,

1

log
(
detW−1

n

)2 n∑
k=1

(
(detWk)

2 − (detWk+1)
2

(detWk)2

)
WkHk(u)Hk(u)

TWT
k → 1

d
uTuW

as n → ∞ P-a.s. where

W =
4(2β + 1)2

9

(
1 −1

−1 1

)
.
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Furthermore, on the one hand we have

1

log log n

n∑
k=1

(
(detWk)

2 − (detWk+1)
2

(detWk)2

)
WkHk(u)Hk(u)

TWT
k → 1

d
uTuW

as n → ∞ P-a.s. since
log log n

log
(
detW−1

n

)2 → 1

4
as n → ∞.

On the other hand, we have

n log n

(
(detWn)

2 − (detWn+1)
2

(detWn)2

)
→ 1 as n → ∞ P-a.s.

By (5.6) and (5.11), we observe that

1

log log n

n∑
k=1

uTGkG
T
k u

(k log k)2
=

1

log log n

n∑
k=1

wTWkHk(u)Hk(u)
TWT

k w

4k log k
→ wTWw · 1

4d
uTu (5.16)

as n → ∞ P-a.s. Since u ∈ Rd is arbitrary, the assertion follows from (5.16). □

Theorem 5.4. In the superdiffusive regime, we have the mean square convergence, given by

E
[∥∥∥∥ 1

na(β+1)−β
Gn − 1

1 + a(β + 1)− β
Lβ

∥∥∥∥2]→ 0 as n → ∞. (5.17)

Proof. For all test vector u ∈ Rd, it is immediate that

E
[∣∣∣∣ 1

na(β+1)−β
Gn(u)−

1

1 + a(β + 1)− β
Lβ(u)

∣∣∣∣2] ≤ 2E
[∣∣∣∣ 1

n1+a(β+1)−β
Zn(u)

∣∣∣∣2]
+ 2E

[∣∣∣∣ 1

n1+a(β+1)−β
· a(β + 1)

a(β + 1)− β
δnMn − 1

1 + a(β + 1)− β
Lβ

∣∣∣∣2].
(5.18)

By (4.20) and (5.7), the second term converges to zero. Looking back to the first term in (5.18),

we observe

E
[∣∣∣∣ 1

n1+a(β+1)−β
Zn(u)

∣∣∣∣2] ≤ 4

n1+2(a(β+1)−β)

n∑
k=1

E
[
Nk(u)

2
]

+
4

n1+2(a(β+1)−β)

(
a(β + 1)

a(β + 1)− β

)2

E
[∣∣∣∣∣

n∑
k=1

akδk−1ϵk(u)

∣∣∣∣∣
2]
.

(5.19)

The first term in (5.19) converges to zero because E[Nk(u)] ≤ (uTu)n for all 1 ≤ k ≤ n, and

moreover, in the superdiffusive regime we have a(β+1) > β+1/2. The second term in (5.19) also

converges to zero because

n−(1+a(β+1)−β)δn → 1

1 + a(β + 1)− β
· 1

Γ(1 + a(β + 1))Γ(β + 1)
as n → ∞.

Finally, using the above and that M(u) =
∑∞

k=1 akϵk(u) is bounded in L2, the assertion follows.

□

5.3. Scaling limit.

Theorem 5.5. The barycenter process admits a scaling limit at the diffusive regime, or conver-

gence in distribution, in the Skorokhod space D([0, 1]) of càdlàg functions, such that(
1√
n
G⌊nt⌋, t ≥ 0

)
=⇒

( 1∫
0

Wtr dr, t ≥ 0

)
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where (Wt)t≥0 is a continuous Rd-valued centered Gaussian process define in Theorem 4.3 with its

covariance defined in (4.6). In particular,

E
[( 1∫

0

Wsv dv

)( 1∫
0

Wtu du

)T]
=

β

3(β(1− a)− a)(1− a)
s · 1

d
Id

+
2(a(β + 1)(1− a) + aβ)

3(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)(1 + (1− a)(β + 1))
ta−β(1−a)s1−a+β(1−a) · 1

d
Id

(5.20)

for all 0 ≤ s ≤ t < ∞.

Proof. An easy calculation leads to

lim
n→∞

1√
n
G⌊nt⌋ = lim

n→∞

1∫
0

1√
n
S⌊ntr⌋ dr =⇒

1∫
0

Wtr dr

which ensures that G⌊nt⌋ is a continuous function of S⌊ntr⌋ in D([0, 1]). Then, the last convergence

in law is due to the functional central limit Theorem 4.3, with (Wt)t≥0 defined there. Hence, the

barycenter process (Gn)n∈N admits a Gaussian scaling limit in the diffusive regime as well, with

covariance

E
[( 1∫

0

Wsv dv

)( 1∫
0

Wtu du

)T]
= 2

1∫
0

u∫
0

E
[
WsvW

T
tu

]
dv du.

Using (4.6), the formula (5.20) and the assertion follows. □

Theorem 5.6. The barycenter process admits a scaling limit at the critical regime, or convergence

in distribution, in the Skorokhod space D([0, 1]) of càdlàg functions, such that(
1√

nt log n
G⌊nt⌋, t ≥ 0

)
=⇒

( 1∫
0

(2β + 1)Btr dr, t ≥ 0

)
where (Bt)t≥0 is a continuous Rd-valued centered Gaussian process define in Theorem 4.6 with its

covariance defined in (4.17).

Proof. For each r ∈ [0, 1], (3.2) and (4.11) implies that

lim
n→∞

1√
nt log n

·
M⌊ntr⌋(u)

a⌊ntr⌋µ⌊ntr⌋
= lim

n→∞

1√
nt log n

(
ntr(log n+ r

t log r)
)1/2

Btr(u) P-a.s.

for all u ∈ Rd. Moreover, (4.16) yields

lim
n→∞

1√
nt log n

N⌊ntr⌋(u) = lim
n→∞

r1/2 · 1√
ntr log n

N⌊ntr⌋(u) = 0 P-a.s.

for all u ∈ Rd. By (4.15), we have(
1√

nt log n
S⌊ntr⌋(u), t ≥ 0

)
=⇒

(
(2β + 1)Btr(u), t ≥ 0

)
for all u ∈ Rd and r ∈ [0, 1]. Hence, we use again

lim
n→∞

1√
nt log n

G⌊nt⌋ = lim
n→∞

1∫
0

1√
nt log n

S⌊ntr⌋ dr =⇒
1∫

0

(2β + 1)Btr dr

and the assertion is verified. □
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Theorem 5.7. The barycenter process admits a scaling limit at the superdiffusive regime, or

convergence in distribution, in the Skorokhod space D([0, 1]) of càdlàg functions, such that(
1

na(β+1)−β
G⌊nt⌋, t ≥ 0

)
=⇒

( 1∫
0

Qtr dr, t ≥ 0

)
with the covariance specified in (5.3) and the limiting Lβ characterized in Theorem 4.8 and Qt =

ta(β+1)−βLβ characterized in Theorem 4.9 for all t ≥ 0.

Proof. Again, we find that

lim
n→∞

1

na(β+1)−β
G⌊nt⌋ =

1∫
0

1

na(β+1)−β
S⌊ntr⌋ dr =⇒

1∫
0

Qtr dr

which ensures that G⌊nt⌋ is a continuous function of S⌊ntr⌋ in D([0, 1]). Then, the last convergence

in law is due to the functional central limit Theorem 4.9. Hence the barycenter process (Gn)n∈N

admits a non-degenerate scaling limit in the superdiffusive regime as well, with covariance

E
[( 1∫

0

Qsv dv

)( 1∫
0

Qtu du

)T]
= 2

1∫
0

u∫
0

E
[
QsvQ

T
tu

]
dv du =

ta(β+1)−βsa(β+1)−β

(1 + a(β + 1)− β)2
E
[
LβL

T
β

]
=

ta(β+1)−βsa(β+1)−β

(1 + a(β + 1)− β)2

(
a(β + 1)

β − a(β + 1)

)2
Γ(2(a− 1)(β + 1) + 1)

Γ((2a− 1)(β + 1) + 1)2
· 1
d
Id

for all 0 ≤ s ≤ t < ∞. □

6. Velocity of quadratic mean displacement

In this Section, we investigate the velocity of the mean square displacement of the MARW.

This quantitative estimates give us the information on how fast the limit Theorems in Section 4

are carried on. Similar convergence velocities have been discussed in [20, 26], where the authors

analyzed the convergence velocity of the moments of a one-dimensional elephant random walk of

all orders. In the superdiffusive regime, the convergence velocity was discussed in [6]. Here, only

the rate of quadratic moment convergence for the MARW in all of the three (diffusive, critical,

and superdiffusive) regimes are discussed.

Following the limit Theorems in Section 4, we expect the asymptotic behavior of the mean

square displacement is as follows,

E
[
SnS

T
n

]
∼


n · (a−2β)(1−a)(β+1)+β(a+1)

(2(β+1)(1−a)−1)(a−β(1−a))(1−a) ·
1
dId when a < 1− 1

2(β+1)

n log n · (2β + 1)2 · 1
dId when a = 1− 1

2(β+1)

n2(a(β+1)−β) ·
(

a(β+1)
β−a(β+1)

)2
Γ(2(a−1)(β+1)+1)
Γ((2a−1)(β+1)+1)2 · 1

dId when a > 1− 1
2(β+1) ,

(6.1)

where the notation ∼ indicates two sequences an ∼ bn if and only if an/bn → 1 as n → ∞.

The aim of this Section is not only to show that the above estimates (6.1) are valid, but also

to investigate the exact velocity of their convergence in the diffusive and critical regime.

6.1. Diffusive regime.

Theorem 6.1. For all p < (4dβ + 2d+ 1)/4d(β + 1), we have, as n → ∞,

1

n
E
[
SnS

T
n

]
− (a− 2β)(1− a)(β + 1) + β(a+ 1)

(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)
· 1
d
Id

∼ −(C1n
−2(1−a)(β+1) + C2n

−1) · 1
d
Id.
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Proof. Take the vector v = (1,−1)T and Vn ∈ R2×2 as in (A.16). Then, 1√
n
Sn(u) = vTVnLn(u),

where Ln(u) = (Nn(u),Mn(u))
T is as in (3.6). In particular,

1

n
uTE

[
SnS

T
n

]
u = vTVnE

[
Ln(u)Ln(u)

T
]
V T
n v

= vTVnE
[(

E
[
Nn(u)

2
]

E
[
Nn(u)Mn(u)

]
E
[
Mn(u)Nn(u)

]
E
[
Mn(u)

2
] )]

V T
n v

= vTVnE
[(

E
[
⟨N(u)⟩n

]
E
[
⟨N(u),M(u)⟩n

]
E
[
⟨M(u), N(u)⟩n

]
E
[
⟨M(u)⟩n

] )]
V T
n v.

Therefore,

1

n
uTE

[
SnS

T
n

]
u =

1

n
E
[
⟨N(u)⟩n

]
+

1

na2nµ
2
n

(
a(β + 1)

β − a(β + 1)

)2

E
[
⟨M(u)⟩n

]
− 2

nanµn

(
a(β + 1)

β − a(β + 1)

)
E
[
⟨M(u), N(u)⟩n

]
.

Since the test vector u ∈ Rd is taken arbitrarily, we get from Lemmas A.15 and A.16 that

1

n
E
[
SnS

T
n

]
− (a− 2β)(1− a)(β + 1) + β(a+ 1)

(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)
· 1
d
Id

∼ −(C1n
−2(1−a)(β+1) + C2n

−1) · 1
d
Id as n → ∞.

□

6.2. Critical regime.

Theorem 6.2. When p = (4dβ + 2d+ 1)/4d(β + 1), we have, as n → ∞,

1

n log n
E
[
SnS

T
n

]
− (2β + 1)2 · 1

d
Id ∼ −(C1(log n)

−1 + C2n
−1) · 1

d
Id.

Proof. Take w = (1,−1)T and Wn ∈ R2×2 as in (A.28). Then 1√
n logn

Sn(u) = wTWnLn(u) as in

(A.29) for all u ∈ Rd. In particular,

1

n log n
uTE

[
SnS

T
n

]
u = wTWnE

[
Ln(u)Ln(u)

T
]
WT

n w.

Hence,

1

n log n
uTE

[
SnS

T
n

]
u = wTWnE

[(
E
[
⟨N(u)⟩n

]
E
[
⟨N(u),M(u)⟩n

]
E
[
⟨M(u), N(u)⟩n

]
E
[
⟨M(u)⟩n

] )]
WT

n w.

Therefore, we get by (3.4) as n → ∞,

1

n log n
uTE

[
SnS

T
n

]
u =

1

n log n

(
E
[
⟨N(u)⟩n

]
+

(2β + 1)2

a2nµ
2
n

E
[
⟨M(u)⟩n

])
,

which implies

1

n log n
E
[
SnS

T
n

]
− (2β + 1)2 · 1

d
Id ∼ −(C1(log n)

−1 + C2n
−1) · 1

d
Id as n → ∞.

□

6.3. Superdiffusive regime.
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Theorem 6.3. When p > (4dβ + 2d+ 1)/4d(β + 1), we have, as n → ∞,

1

n2(a(β+1)−β)
E
[
SnS

T
n

]
−
(

a(β + 1)

β − a(β + 1)

)2
Γ(2(a− 1)(β + 1) + 1)

Γ((2a− 1)(β + 1) + 1)2
· 1
d
Id

∼ −(C1n
−4(a(β+1)−β)+1 + C2n

−2(a(β+1)−β)).

Proof. Similar to previous computations for the diffusive regime, we have for all u ∈ Rd,

1

n2(a(β+1)−β)
uTE

[
SnS

T
n

]
u =

1

n2(a(β+1)−β)
E
[
⟨N(u)⟩n

]
+

1

n2(a(β+1)−β)a2nµ
2
n

(
a(β + 1)

β − a(β + 1)

)2

E
[
⟨M(u)⟩n

]
− 2

n2(a(β+1)−β)anµn

(
a(β + 1)

β − a(β + 1)

)
E
[
⟨M(u), N(u)⟩n

]
.

Hence, by (2.5), (2.6), (3.5) and since u ∈ Rd is arbitrary,

1

n2(a(β+1)−β)
E
[
SnS

T
n

]
−
(

a(β + 1)

β − a(β + 1)

)2
Γ(2(a− 1)(β + 1) + 1)

Γ((2a− 1)(β + 1) + 1)2
· 1
d
Id

∼ −(C1n
−4(a(β+1)−β)+1 + C2n

−2(a(β+1)−β)) as n → ∞.

□

7. Cramér moderate deviations

In this Section, we discuss the Cramér moderate deviations for the multidimensional reinforced

random walk (Sn)n∈N. The similar statistical quantity as well as the Berry-Esseen bound for the

one-dimensional elephant random walk (ERW) without amnesia-reinforcement has been given in

[20]. Our derivation of Cramér moderate deviations for the MARW does not rely on a Berry-

Esseen bound. The discussion of such statistical quantities is expected to reveal the transience

property and the central limit Theorems for the MARW. For this direction, readers are refereed

to [3, 16]. Thanks to Lemma A.21 and Lemma A.22, we can properly state the Cramér moderate

deviations principles for the MARW.

Theorem 7.1. In the diffusive and critical regimes, we have the following Cramér moderate

deviations for the MARW. Let (ϑn)n∈N ⊆ R be a non-decreasing sequence so that ϑn/
√
n → 0 as

n → ∞. Take any non-empty Borel set B ⊆ Rd, then we have

− inf
x∈intB

1

2
∥x∥2 ≤ lim inf

n→∞
ϑ−2
n logP

(
anµnSn

ϑn
√
wn

∈ B

)
≤ lim sup

n→∞
ϑ−2
n logP

(
anµnSn

ϑn
√
wn

∈ B

)
≤ − inf

x∈clB

1

2
∥x∥2,

where intB and clB denote the interior and the closure of B ⊆ Rd, respectively.

Proof. Our proof will only present the Cramér moderate deviations for the MARW in the diffusive

regime. The same property for the critical regime follows from exactly the same steps. First, take

xB = infx∈B ∥x∥. Then it is obvious that infx∈clB ∥x∥ ≤ xB and infx∈clB ∥x∥2/2 ≤ x2
B/2.

Henceforth,

P
(
anµnSn

ϑn
√
wn

∈ B

)
≤

d∑
j=1

P
(∣∣∣∣anµnS

j
n√

wn

∣∣∣∣ ≥ ϑnxB

d

)
≤
(
1− Φ(ϑnxB)

)
F(B, ϑ, n), (7.1)
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where we write

F(B, ϑ, n) := 2Cd · exp
(

1√
n

(
ϑnxB

2d

)3
+ 1

n

(
ϑnxB

2d

)2
+ 1√

n
(1 + 1

2 log n)(1 +
ϑnxB

2d )
)

+ 2Cd · exp
(

1√
n

(
ϑnxB

2d

)3
+ 1

n2(1−a)(β+1)

(
ϑnxB

2d

)2
+ 1√

n
(1 + 1

2 log n)(n
1/2−(1−a)(β+1) + ϑnxB

2d )
)
.

Hence,

lim sup
n→∞

ϑ−2
n logP

(
anµnSn

ϑn
√
wn

∈ B

)
≤ −1

2
x2
B ≤ − inf

x∈clB

1

2
∥x∥2.

To achieve the asymptotic lower bound, we first notice that this assertion automatically holds if

intB = ∅, whence − infx∈∅ ∥x∥
2
/2 = −∞. Consequently, we assume that intB ̸= ∅. Notice that

intB is open in Rd. Hence, for all ϵ∗ > 0 sufficiently small, we could find x∗ ∈ intB with

0 <
1

2
∥x∗∥2 < inf

x∈intB

1

2
∥x∥2 + ϵ∗ and 0 < min

{∣∣xj
∗
∣∣ : 1 ≤ j ≤ d

}
.

Choose ϵ∗∗ sufficient small such that 0 < ϵ∗∗ <
∣∣∣xj

∗

∣∣∣ for each j = 1, . . . , d. Then,

U(x∗, ϵ∗∗) ⊆ intB ⊆ B, where U(x∗, ϵ∗∗) :=
{
x ∈ Rd :

∣∣xj − xj
∗
∣∣ < ϵ∗∗ for all j

}
.

On the other hand,

P
(
anµnSn

ϑn
√
wn

∈ B

)
≥ P

(
anµnSn√

wn
∈ ϑn · U(x∗, ϵ∗∗)

)

≥
d∏

j=1

P
(
ϑn(x

j
∗ + ϵ∗∗) ≥

anµnS
j
n√

wn
≥ ϑn(x

j
∗ − ϵ∗∗)

)
.

From Lemma A.21 and Lemma A.22, we know that

lim
n→∞

P
(
anµnS

j
n√

wn
≥ ϑn(x

j
∗ + ϵ∗∗)

)/
P
(
anµnS

j
n√

wn
≥ ϑn(x

j
∗ − ϵ∗∗)

)
= 0 for each j.

Similar to (7.1),

lim inf
n→∞

ϑ−2
n logP

(
anµnSn

ϑn
√
wn

∈ B

)
≥ −1

2
∥x∗ − ϵ∗∗∥2.

Letting ϵ∗∗ → 0, we observe that

lim inf
n→∞

ϑ−2
n logP

(
anµnSn

ϑn
√
wn

∈ B

)
≥ −1

2
∥x∗∥2 ≥ − inf

x∈intB

1

2
∥x∥2 − ϵ∗.

Since ϵ∗ > 0 was take arbitrarily, letting ϵ∗ → 0, we verify the assertion. □

Appendix A. Technical Lemmas

A.1. Asymptotics of the processes. We start by introducing the following processes that are

of great influence on the behavior of the random walk. Let (e1, e2, . . . , ed) denote a canonical

Euclidean basis of Rd. For each n ∈ N and 1 ≤ j ≤ d, define

NX
n (j) =

n∑
k=1

1{Xj
k ̸=0}µk and Σn =

d∑
j=1

NX
n (j)eje

T
j , (A.1)

such that (Σn)n∈N is a matrix-valued process.

Lemma A.1. We have the following almost sure convergence in the three regimes.

1

nµn+1
Σn → 1

d(β + 1)
Id as n → ∞ P-a.s. (A.2)
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Proof. For each n ∈ N and 1 ≤ j ≤ d, define

ΛX
n (j) =

NX
n (j)

n
. (A.3)

It follows from (A.1) that

ΛX
n+1(j) =

n

n+ 1
ΛX
n (j) +

1

n+ 1
1{Xj

n+1 ̸=0}µn+1.

Moreover, we observe thanks to (A.12) that

ΛX
n+1(j) =

n

n+ 1
· γnΛX

n (j) +
1

n+ 1
1{Xj

n+1 ̸=0}µn+1 −
a(β + 1)

n+ 1
ΛX
n (j)

=
n

n+ 1
· γnΛX

n (j) +
µn+1

n
δXn+1(j) +

(1− a)µn+1

d(n+ 1)

with

δXn+1(j) = 1{Xj
n+1 ̸=0} − P

(
Xj

n+1 ̸= 0|Fn

)
.

Then, by (2.4) we know

ΛX
n (j) =

1

nan

(
ΛX
1 (j) +

1− a

d

n∑
k=2

akµk +HX
n (j)

)
(A.4)

with

HX
n (j) =

n∑
k=2

akµkδ
X
k (j).

It is clear that for a fixed 1 ≤ j ≤ d, the real-valued process (HX
n (j))n∈N is locally square-integrable

since it is a finite sum. Afterwards, this process appears to be a martingale adapted to (Fn)n∈N

because (δXn (j))n∈N satisfied the martingale difference relation E[δXn+1(j)|Fn] = 0. It is obvious

that

⟨HX(j)⟩n ≤ wn =

n∑
k=1

(akµk)
2 P-a.s.

Hence, we get by [18, Theorem 4.3.15] that for all γ > 0

HX
n (j)2

⟨HX(j)⟩n
= o
((

log⟨HX(j)⟩n
)1+γ) P-a.s. (A.5)

Since ⟨HX(j)⟩n ≤ wn and by (A.5), we obtain that

HX
n (j)2 = o

(
wn

(
logwn

)1+γ) P-a.s.

In the diffusive regime, by Lemma A.1 and (3.3), we have

HX
n (j)2 = o

(
n1−2(a(β+1)−β)

(
log n

)1+γ) P-a.s.

By (2.5) and (2.6), we observe that(
HX

n (j)

nanµn+1

)2

= o
(
n−1

(
log n

)1+γ) P-a.s.

Hence
HX

n (j)

nanµn+1
→ 0 as n → ∞ P-a.s.

By (2.5) and (2.6) again, we observe further

1

nanµn+1

n∑
k=1

akµk → 1

(1− a)(β + 1)
as n → ∞. (A.6)
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Hence, we have

µ−1
n+1Λ

X
n (j) →→ 1

β + 1
as n → ∞.

By (A.3) and (A.4), we can then conclude that

1

nµn+1
Σn → 1

d(β + 1)
Id as n → ∞ P-a.s.

in the diffusive regime. In the critical regime, where a = 1− 1
2(β+1) , we have from (3.4))

HX
n (j)2 = o

(
log n

(
log log n

)1+γ) P-a.s.

Hence (
HX

n (j)

nanµn+1

)2

= o
(
n−1 log n

(
log logn

)1+γ) P-a.s.

which implies that
HX

n (j)

nanµn+1
→ 0 as n → ∞ P-a.s.

Similar to the convergence in (A.6), in the critical regime, we observe

1

nanµn+1

n∑
k=1

akµk → 1

2
P-a.s.

Hence, we conclude that

µ−1
n+1Λ

X
n (j) → 1

d(β + 1)
and

1

nµn+1
Σn → 1

d(β + 1)
Id as n → ∞ P-a.s.

which proves (A.2). In the superdiffusive regime, we have

HX
n (j)2 = o

(
1
)

P-a.s.

and then (
HX

n (j)

nanµn+1

)2

= o
(
n−2(1−a)(β+1)

)
P-a.s.

which implies
HX

n (j)

nanµn+1
→ 0 as n → ∞ P-a.s.

We can similarly show that

µ−1
n+1Λ

X
n (j) → 1

β + 1
as n → ∞.

which then ensures that

1

nµn+1
Σn → 1

d(β + 1)
Id as n → ∞ P-a.s.

Consequently, the assertion is verified. □

The next result follows directly from the definition of Mn and Nn

Lemma A.2. We have the following formulas for the predictable matrix-valued quadratic varia-

tions

⟨M⟩n = (a1µ1)
2E
[
X1X

T
1

]
+

n−1∑
k=1

a(β + 1)

ka−2
k+1

µk+1Σk +
1− a

da−2
k+1

µ2
k+1Id −

(
γk − 1

a−1
k+1

)2

YkY
T
k , (A.7)

and

⟨N⟩n =

(
β

β − a(β + 1)

)2

E
[
X1X

T
1

]
+

n−1∑
k=1

a(β + 1)

kµk+1
Σk +

1− a

d
Id −

(
γk − 1

µk+1

)2

YkY
T
k . (A.8)
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In particular, we have

Tr⟨M⟩n = wn −
n∑

k=1

(γk − 1)2a2k+1∥Yk∥2, (A.9)

and

Tr⟨N⟩n =

(
β

β − a(β + 1)

)2

n−
n−1∑
k=1

(
a(β + 1)

kµk+1

)2

∥Yk∥2. (A.10)

Lemma A.3. We have the following estimate for the matrix-valued conditional expectation.

E
[
ϵn+1ϵ

T
n+1|Fn

]
=

a(β + 1)

n
µn+1Σn +

1− a

d
µ2
n+1Id − (γn − 1)2YnY

T
n .

And as a consequence

E
[
∥ϵn+1∥2|Fn

]
= µ2

n+1 − (γn − 1)2∥Yn∥2.

Proof. Observe that

E
[
ϵn+1ϵ

T
n+1|Fn

]
= E

[
Yn+1Y

T
n+1|Fn

]
− γ2

nYnY
T
n

with

E
[
Yn+1Y

T
n+1|Fn

]
= YnY

T
n + 2µn+1YnE

[
XT

n+1|Fn

]
+ µ2

n+1E
[
Xn+1X

T
n+1|Fn

]
=

(
1 +

2a(β + 1)

n

)
YnY

T
n + µ2

n+1E
[
Xn+1X

T
n+1|Fn

]
.

(A.11)

For all k ≥ 1, we know that XkX
T
k =

∑d
j=1 1{Xj

k ̸=0}eje
T
j . Then

P
(
Xj

n+1 ̸= 0|Fn

)
=

n∑
k=1

P
(
βn+1 = k

)
· P
(
(AnXk)

j ̸= 0|Fn

)
=

n∑
k=1

1{Xj
k ̸=0}P

(
An = ±Id

)
· (β + 1)µk

nµn+1
+

n∑
k=1

(
1− 1{Xj

k ̸=0}
)
P
(
An = ±Jd

)
· (β + 1)µk

nµn+1
.

Hence

P
(
Xj

n+1 ̸= 0|Fn

)
=

β + 1

nµn+1
·
(
P
(
An = +Id

)
− P

(
An = +Jd

))
NX

n (j) + 2P
(
An = +Jd

)
=

a(β + 1)

nµn+1
NX

n (j) +
1− a

d
.

(A.12)

Therefore

E
[
Xn+1X

T
n+1|Fn

]
=

d∑
j=1

P
(
Xj

n+1 ̸= 0|Fn

)
eje

T
j =

a(β + 1)

nµn+1
Σn +

1− a

d
Id. (A.13)

And from (A.11) and (A.13) we can conclude that

E
[
ϵn+1ϵ

T
n+1|Fn

]
= E

[
Yn+1Y

T
n+1|Fn

]
− γ2

nYnY
T
n

=

(
1 +

2a(β + 1)

n

)
YnY

T
n +

a(β + 1)

n
µn+1Σn +

1− a

d
µ2
n+1Id − γ2

nYnY
T
n

=
a(β + 1)

n
µn+1Σn +

1− a

d
µ2
n+1Id − (γn − 1)2YnY

T
n .

(A.14)

On the other hand

Tr(Σn) =
nµn+1

β + 1
. (A.15)

Taking traces in (A.14) and by (A.15), we have

E
[
∥ϵn+1∥2|Fn

]
= µ2

n+1 − (γn − 1)2∥Yn∥2

which ensures that the assertion is verified. □
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A.2. Scaling limits of the random walk and the barycenter.

A.2.1. The diffusive regime.

Lemma A.4. For each n ∈ N and test vector u ∈ Rd, let

Vn =
1√
n

(
1 0

0 a(β+1)
β−a(β+1) (anµn)

−1

)
and v =

(
1

−1

)
. (A.16)

Then

vTVnLn(u) =
1√
n
Sn(u). (A.17)

And for all t ≥ 0, we have

Vn⟨L(u)⟩⌊nt⌋V T
n → uTu

d
Vt as n → ∞ P-a.s. (A.18)

where

Vt =
1

(β − a(β + 1))2

(
β2t aβ

1−a t
1+β−a(β+1)

aβ
1−a t

1+β−a(β+1) a2(β+1)2

1−2a(β+1)+2β t
1+2β−2a(β+1)

)
. (A.19)

Proof. From Lemma A.3 and the fact that ⟨M(u)⟩n = uT ⟨M⟩nu, we see that

⟨M(u)⟩⌊nt⌋ = a21µ
2
1u

TE
[
X1X

T
1

]
u

+

⌊nt⌋−1∑
k=1

a(β + 1)

k
a2k+1µk+1u

TΣku+
1− a

d
a2k+1µ

2
k+1u

Tu− (γk − 1)2a2k+1u
TYkY

T
k u

and

⟨N(u)⟩⌊nt⌋ =
(

β

β − a(β + 1)

)2

uTE
[
X1X

T
1

]
u

+

(
β

β − a(β + 1)

)2 ⌊nt⌋−1∑
k=1

a(β + 1)

kµk+1
uTΣku+

1− a

d
uTu−

(
γk − 1

µk+1

)2

uTYkY
T
k u.

Using a similar token and Lemma A.1, we can work out the off-diagonal entries in ⟨L(u)⟩⌊nt⌋, and
we obtain that

lim
n→∞

Vn⟨L(u)⟩⌊nt⌋V T
n

= lim
n→∞

uTu

nd(β − a(β + 1))2

 β2⌊nt⌋ a(β+1)β
anµn

∑⌊nt⌋−1
k=0 ak+1µk+1

a(β+1)β
anµn

∑⌊nt⌋−1
k=0 ak+1µk+1

(
a(β+1)
anµn

)2∑⌊nt⌋−1
k=0 (ak+1µk+1)

2


=

uTu

d(β − a(β + 1))2

(
β2t aβ

1−a t
1−(a(β+1)−β)

aβ
1−a t

1−(a(β+1)−β) a2(β+1)2

1−2(a(β+1)−β) t
1−2(a(β+1)−β)

)
=

uTu

d
Vt P-a.s.

where the last equality is due to (2.5) and (2.6). Thus, it implies that

1

nanµn

n∑
k=1

akµk → 1

1− (a(β + 1)− β)
and

1

n(anµn)2

n∑
k=1

(akµk)
2 → 1

1− 2(a(β + 1)− β)

as n → ∞. Hence, equation (A.18) holds and the assertion is then verified. □

Lemma A.5. The MARW satisfies the Lindeberg condition in the diffusive regime. That is, for

all t ≥ 0 and all ϵ > 0,

⌊nt⌋∑
k=1

E
[
∥Vn∆Lk(u)∥21{∥VnLk(u)∥2>ϵ}|Fk−1

]
→ 0 as n → ∞ P-a.s.
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Proof. On the one hand, it is easy to compute from (3.7) and (A.16) that, for all 1 ≤ k ≤ n,

Vn∆Lk(u) =
1√

n(β − a(β + 1))µn

(
β µn

µk

a ak

an

)
ϵk(u)

which implies

∥Vn∆Lk(u)∥2 =
1

n(β − a(β + 1))2

(
β2

µ2
k

+
a2a2k

(anµn)2

)
ϵk(u)

2.

Hence

∥Vn∆Lk(u)∥4 ≤ 2

n2(β − a(β + 1))4

(
β4

µ4
k

+
a4a4k

(anµn)4

)
ϵk(u)

4. (A.20)

On the other hand, from (2.5) we observe that

1

na2n

n∑
k=1

a2k ≤ C1(a, β)
−1 and

1

na4n

n∑
k=1

a4k ≤ C2(a, β)
−1 for all n ∈ N (A.21)

and where C1(a, β), C2(a, β) > 0 are constants depending only on a and β. Moreover, we get that

sup
1≤k≤n

|ϵk(u)| ≤ sup
1≤k≤n

∥ϵk∥∥u∥ ≤ sup
1≤k≤n

(β + 2)µk∥u∥ ≤ (β + 2)µn∥u∥. (A.22)

Hence, we deduce from (A.21) and (A.22)

n∑
k=1

∥Vn∆Lk(u)∥4 ≤ 2

n2(β − a(β + 1))4

((
β(β + 2)

)4∥u∥4 + (
a(β + 2)

)4∥u∥4
C2(a, β)

)
→ 0 (A.23)

as n → ∞ P-a.s. This implies that

n∑
k=1

E
[
∥Vn∆Lk(u)∥4|Fk−1

]
→ 0 as n → ∞ P-a.s.

Therefore, for all ϵ > 0, we obtain

n∑
k=1

E
[
∥Vn∆Lk(u)∥21{∥VnLk(u)∥2>ϵ}|Fk−1

]
≤ 1

ϵ2

n∑
k=1

E
[
∥Vn∆Lk(u)∥4|Fk−1

]
→ 0

as n → ∞ P-a.s. This yields finally
⌊nt⌋∑
k=1

E
[
∥Vn∆Lk(u)∥21{∥VnLk(u)∥2>ϵ}|Fk−1

]
≤ 1

ϵ2

⌊nt⌋∑
k=1

E
[∥∥∥(VnV

−1
⌊nt⌋)V⌊nt⌋∆Lk(u)

∥∥∥4|Fk−1

]
→ 0

as n → ∞ P-a.s. since VnV
−1
⌊nt⌋ converges as n → ∞. □

Lemma A.6. The deterministic matrix Vt defined in (A.19) can be rewritten as

Vt = tα1K1 + tα2K2 + · · ·+ tαqKq

with q ∈ N, αj > 0 and each Kj is a symmetric matrix for all 1 ≤ j ≤ 1.

Proof. A direct computation analoguous to the one in [32] shows that Vt = tα1K1+tα2K2+tα3K3,

where

α1 = 1, α2 = 1− a(β + 1) > 0, α3 = 1− 2a(β + 1) > 0

since a < 1− 1
2(β+1) is in the diffusive regime. Moreover

K1 =
β2

(a(β + 1)− β)2

(
1 0

0 0

)
, K2 =

aβ

(1− a)(a(β + 1)− β)2

(
0 1

1 0

)
,

K3 =
a2(β + 1)2

(1− 2a(β + 1) + 2β)(a(β + 1)− β)2

(
0 0

0 1

)
.



30 JIAMING CHEN AND LUCILE LAULIN

□

Lemma A.7. Given the matrix-valued process (Vn)n∈N define in (A.16), we have

∞∑
n=1

1(
log
(
detV −1

n

)2)2E[∥Vn∆Ln(u)∥4|Fn−1

]
< ∞ P-a.s.

Proof. From (A.16), it is immediate that

detV −1
n =

β − a(β + 1)

a(β + 1)
nanµn. (A.24)

By (2.5) and (2.6), we obtain

log
(
detV −1

n

)2
log n

→ 2(1− a)(β + 1) as n → ∞ P-a.s. (A.25)

Hence there exists a constant C(a, β) > 0 depending only on a and β such that

∞∑
n=1

1(
log
(
detV −1

n

)2)2E[∥Vn∆Ln(u)∥4|Fn−1

]
≤ C(a, β)

∞∑
n=1

1

(log n)2
E
[
∥Vn∆Ln(u)∥4|Fn−1

]
.

(A.26)

Hereafter, equations (A.20), (A.22), (A.23) together imply that

∞∑
n=1

1

(log n)2
∥Vn∆Ln(u)∥4 ≤ C ′(a, β)

∞∑
n=1

1

(n log n)2
< ∞ P-a.s. (A.27)

for some other constant C ′(a, β) > 0 depending only on a and β. Consequently, equation (A.27)

together (A.26) ensures that the assertion is verified. □

A.2.2. The critical regime.

Lemma A.8. For each n ∈ N and test vector u ∈ Rd, let

Wn =
1√

n log n

(
1 0

0 2β+1
anµn

)
and w =

(
1

−1

)
. (A.28)

Then for all t ≥ 0, we have

wTWnLn(u) =
1√

n log n
Sn(u) (A.29)

and

Wn⟨L(u)⟩nWT
n → uTu

d
W as n → ∞ P-a.s. where Wt = (2β + 1)2

(
0 0

0 1

)
. (A.30)

Proof. It is clear that (A.29) follows from (3.2). Using a similar token than for the proof Lemma

A.4, we have

lim
n→∞

Wn⟨L(u)⟩nWT
n

= lim
n→∞

4uTu

(n log n)d

 β2n
β(β+ 1

2 )

anµn

∑n−1
k=0 ak+1µk+1

β(β+ 1
2 )

anµn

∑n−1
k=0 ak+1µk+1

(
β+ 1

2

anµn

)2∑n−1
k=0(ak+1µk+1)

2


=

4uTu

d

(
0 0

0
(
β + 1

2

)2
)

=
uTu

d
W P-a.s.

and the proof is complete. □
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Lemma A.9. The MARW satisfies the Lindeberg condition in the critical regime. That is, for all

t ≥ 0 and all ϵ > 0, given the (Wn)n∈N defined in (A.16), it satisfies

n∑
k=1

E
[
∥Wn∆Lk(u)∥21{∥WnLk(u)∥2>ϵ}|Fk−1

]
→ 0 as n → ∞ P-a.s.

Proof. We state that equations (A.20) and (A.21) remain true with Vn replaced by Wn. More

precisely, they can be rewritten as

∥Wn∆Lk(u)∥4 ≤ 32

(n log n)2

(
β4

µ4
k

+
a4a4k

(anµn)4

)
ϵk(u)

4 (A.31)

and
1

na4n

n∑
k=1

a4k ≤ C(a, β)−1 for all n ∈ N

where C(a, β) > 0 is a constant depending only on t, a, and β. Since (A.22) is not affected by

switching regimes, we have that

n∑
k=1

∥Wn∆Lk(u)∥4 ≤ 32

(n log n)2

((
β(β + 2)

)4∥u∥4 + (
a(β + 2)

)4∥u∥4
C(t, a, β)

)
→ 0 (A.32)

as n → ∞ P-a.s. This implies

n∑
k=1

E
[
∥Wn∆Lk(u)∥4|Fk−1

]
→ 0 as n → ∞ P-a.s.

Therefore, for all ϵ > 0, we obtain

n∑
k=1

E
[
∥Wn∆Lk(u)∥21{∥WnLk(u)∥2>ϵ}|Fk−1

]
≤ 1

ϵ2

n∑
k=1

E
[
∥Wn∆Lk(u)∥4|Fk−1

]
→ 0

as n → ∞ P-a.s. and the assertion is verified. □

Lemma A.10. Given the matrix-valued sequence (Wn)n∈N define in (A.28), we have

∞∑
n=1

1(
log
(
detW−1

n

)2)2E[∥Wn∆Ln(u)∥4|Fn−1

]
< ∞ P-a.s.

Proof. From (A.28), it is immediate that

detW−1
n =

1

2β + 1

√
n log n · anµn. (A.33)

Then, we obtain by (2.5) and (2.6) that

log
(
detW−1

n

)2
log log n

→ 1 as n → ∞ P-a.s. (A.34)

Hence, there exists a constant C(a, β) > 0 depending only on a and β such that

∞∑
n=1

1(
log
(
detW−1

n

)2)2E[∥Wn∆Ln(u)∥4|Fn−1

]
≤

∞∑
n=1

C(a, β)

(log log n)2
E
[
∥Wn∆Ln(u)∥4|Fn−1

]
.

(A.35)

Hereafter, (A.31) together with (A.32) imply that

∞∑
n=1

1

(log log n)2
∥Wn∆Ln(u)∥4 ≤ C ′(a, β)

∞∑
n=1

1

(n log n log log n)2
< ∞ P-a.s.

for some other constant C ′(a, β) > 0 depending only on a and β. Finally, using the above equation

together with (A.35) completes the proof. □
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Lemma A.11. Fix the test vector u ∈ Rd. The growth rate of the compensator of the partial sum

of (Nn(u)
2)n∈N is less than cubic growth, in the sense that

1

n3

n−1∑
k=1

E
[
Nk+1(u)

2|Fn

]
→ 0 as n → ∞ P-a.s.

Proof. The law of iterated expectations and (A.8) yields

1

n
E
[
E
[
Nn+1(u)

2|Fn

]]
=

1

n
E
[
⟨N(u)⟩n

]
→
(

β

β − a(β + 1)

)2

uTu as n → ∞ P-a.s.

The strong law of large numbers then yields

1

n

n−1∑
k=1

1

k
E
[
Nk+1(u)

2|Fk

]
→
(

β

β − a(β + 1)

)2

uTu as n → ∞ P-a.s.

Hence

1

n3

n−1∑
k=1

E
[
Nk+1(u)

2|Fn

]
≤ 1

n2

n−1∑
k=1

1

k
E
[
Nk+1(u)

2|Fk

]
→ 0 as n → ∞ P-a.s.

□

A.2.3. The barycenter process. For the following Toeplitz Lemmas, see [18] and [33].

Lemma A.12. [33, Theorem 1.1 Part I] Let (an,k)1≤k≤kn, n∈N be a double array of real numbers

such that for all k ≥ 1, we have an,k → 0 as n → ∞ and supn∈N
∑kn

k=1 |an,k| < ∞. Let (xn)n∈N

be a real sequence. If xn → 0 as n → ∞, then
∑kn

k=1 an,kxk → 0 as n → ∞.

Lemma A.13. [33, Theorem 1.1 Part II] Let (an,k)1≤k≤kn, n∈N be a double array of real numbers

such that for all k ≥ 1, we have an,k → 0 as n → ∞ and supn∈N
∑kn

k=1 |an,k| < ∞. Let (xn)n∈N

be a real sequence. If xn → x as n → ∞ with x ∈ R and
∑kn

k=1 an,k = 1, then
∑kn

k=1 an,kxk → x

as n → ∞.

A.3. Quadratic rate estimates. Our first result is about the convergence rate of the process

(Yn)n∈N defined in (2.3).

Lemma A.14. For all p ∈ (0, 1), then we have, as n → ∞,

E[YnY
T
n ] ∼ n2a(β+1)

Γ(1 + 2a(β + 1))
· 1
d
Id+

n1+2β

Γ(β + 1)2(1 + 2β − 2a(β + 1))(β + 1)
· 1
d
Id.

Proof. From (A.11) and (A.13), we see

E
[
Yn+1Y

T
n+1|Fn

]
=

(
1 +

2a(β + 1)

n

)
YnY

T
n + µ2

n+1

(
a(β + 1)

nµn+1
Σn +

1− a

d
Id

)
.

Then, remember that

E
[
Σn

]
=

d∑
j=1

E
[
NX

n (j)
]
eje

T
j =

d∑
j=1

n∑
k=1

P
(
Xj

k ̸= 0
)
µk · ejeTj .

Lemma A.1 yields E[(nµn+1)
−1Σn] ∼ (β + 1)−1 · 1

dId. Hence,

E
[
Yn+1Y

T
n+1

]
∼
(
1 +

2a(β + 1)

n

)
E
[
YnY

T
n

]
+

µ2
n+1

β + 1
· 1
d
Id.
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A recursive argument then gives

E
[
YnY

T
n

]
∼ Γ(n+ 2a(β + 1))

Γ(n)Γ(1 + 2a(β + 1))
E
[
Y1Y

T
1

]
+

n−1∑
j=1

µ2
j

β + 1
·
∏n−1

k=1(1 + k−12a(β + 1))∏j−1
k=1(1 + k−12a(β + 1))

· 1
d
Id

∼ Γ(n+ 2a(β + 1))

Γ(n)Γ(1 + 2a(β + 1))
· 1
d
Id+

n−1∑
j=1

µ2
j

β + 1
· Γ(n+ 2a(β + 1))Γ(j)

Γ(j + 2a(β + 1))Γ(n)
· 1
d
Id.

Employing the asymptotics in (2.1) and (2.6), the assertion follows. □

The process Yn =
∑n

k=1 µkXk differs from Sn by a multiplicative factor at each step. When

there is no amnesia, the asymptotics of these two processes coincide. However, when β ≥ 0, we

have to treat the general case in another way.

Lemma A.15. For all p ∈ (0, 1) and test vector u ∈ Rd, we have, as n → ∞,

E
[
⟨M(u)⟩n

]
∼ wnu

Tu− (C1n
−1 + C2n

−2(a(β+1)−β))uTu,

and

E
[
⟨N(u)⟩n

]
∼
(

β

β − a(β + 1)

)2

nuTu− (C1n
1−2(1−a)(β+1) + C2)u

Tu.

Proof. By Lemma A.2

E
[
⟨M(u)⟩n

]
= E

[
Tr⟨M⟩n

]
uTu = wnu

Tu−
n∑

k=1

(γk − 1)2a2k+1u
TE
[
YkY

T
k

]
u.

By Lemma A.14 and a finite summation,

E
[
⟨M(u)⟩n

]
∼ wnu

Tu−
n−1∑
k=1

a2(β + 1)2

k2
(k + 1)−2a(β+1)(C1k

2a(β+1) + C2k
1+2β)uTu

∼ wnu
Tu− (C1n

−1 + C2n
−2(a(β+1)−β))uTu.

Similarly,

E
[
⟨N(u)⟩n

]
= E

[
Tr⟨N⟩n

]
uTu =

(
β

β − a(β + 1)

)2

nuTu−
n−1∑
k=1

a2(β + 1)2

k2
µ−2
k+1u

TE
[
YkY

T
k

]
u.

Hence, using Lemma A.14 again, we observe

E
[
⟨N(u)⟩n

]
∼
(

β

β − a(β + 1)

)2

nuTu−
n−1∑
k=1

a2(β + 1)2

k2
(k + 1)−2β(C1k

2a(β+1) + C2k
1+2β)uTu

∼
(

β

β − a(β + 1)

)2

nuTu− (C1n
1−2(1−a)(β+1) + C2)u

Tu.

□

Lemma A.16. For all p ∈ (0, 1) and test vector u ∈ Rd, we have, as n → ∞,

E
[
⟨M(u), N(u)⟩n

]
∼ β

β − a(β + 1)
· Γ(β + 1)Γ(a(β + 1) + 1)

(1− a)(β + 1)
n(1−a)(β+1)uTu

− (C1n
−(1−a)(β+1) + C2n

(1−a)(β+1)−1)uTu.

Proof. By (3.7) and Lemma A.2, for all test vector u ∈ Rd

∆Ln+1(u) =

(
βµ−1

n+1

β − a(β + 1)

)T

ϵn+1(u),
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and therefore,

⟨M(u), N(u)⟩n =

n∑
k=1

β

β − a(β + 1)
akµ

−1
k E

[
ϵk(u)ϵk(u)

T |Fk−1

]
.

Taking the trace will give us

Tr⟨M,N⟩n =
β

β − a(β + 1)

n∑
k=1

akµk − β

β − a(β + 1)

n∑
k=1

akµ
−1
k (γk − 1)2∥Yk∥2.

Taking the expectation and using Lemma A.14 completes the proof. □

A.4. Moderate deviations.

Lemma A.17. For all p ∈ (0, 1) and for all j = 1, . . . , d,∣∣∆M j
n

∣∣ ≤ (a(β + 1) + 1
)
anµn for all n ∈ N. (A.36)

Proof. By (2.3) and (3.1),

∆M j
n = anY

j
n − an−1Y

j
n−1 = anµnX

j
n − (an − an−1)

n−1∑
k=1

µkX
j
k.

Since ∥Xk∥ = 1 for eack k ≤ n, then by (2.4),∣∣∆M j
n

∣∣ ≤ anµn + (n− 1)(an−1 − an)µn−1 ≤ anµn + a(β + 1)anµn.

And the assertion is verified. □

Lemma A.18. For all p ∈ (0, 1) and for all j = 1, . . . , d,∣∣∆N j
n

∣∣ ≤ 2a(β + 1) +
β

β − a(β + 1)
for all n ∈ N.

Proof. By (2.3) and (3.6),

∆N j
n =

βµ−1
n+1

β − a(β + 1)
ϵjn+1 =

βµ−1
n+1

β − a(β + 1)
·
(
µn+1X

j
n+1 + (1− γn)

n∑
k=1

Xj
kµk

)
.

Taking absolute value on both sides, and the assertion is verified. □

Lemma A.19. For all p ∈ (0, 1) and for all j = 1, . . . , d,∣∣∣∣ 1
√
wn

∆M j
k

∣∣∣∣ ≤ (a(β + 1) + 1
)anµn√

wn
for each 1 ≤ k ≤ n, (A.37)

and in the diffusive and critical regime,∣∣∣∣ 1

wn
⟨M j⟩n − 1

∣∣∣∣ ≤
C · n−1 when a < 1− 1

2(β+1)

C · (log n)−1 when a = 1− 1
2(β+1) .

Proof. Dividing by
√
wn from both sides of (A.36), we get (A.37). Moreover, by (A.9),∣∣⟨M j⟩n − wn

∣∣ ≤ n∑
k=1

(γk − 1)2a2k+1∥Yk∥2 ≤ C

n∑
k=1

wk

k2
.

Dividing both sides by wn and following (3.3), (3.4), the assertion is verified. □

Lemma A.20. For all p ∈ (0, 1) and for all j = 1, . . . , d,∣∣∣∣anµn√
wn

∆N j
k

∣∣∣∣ ≤ (2a(β + 1) +
β

β − a(β + 1)

)anµn√
wn

for each 1 ≤ k ≤ n, (A.38)
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and in both the diffusive and critical regime,∣∣∣∣a2nµ2
n

wn
⟨N j⟩n − 1

∣∣∣∣ ≤
C · n−2(1−a)(β+1) when a < 1− 1

2(β+1)

C · (n log n)−1 when a = 1− 1
2(β+1) .

Proof. Dividing by
√
wn and multiplied by anµu from both sides of (A.18), we get (A.38). Then,

by (A.10), we make use of the estimates and the inequalities hold. □

Denote by Φ(·) := (2π)−1/2
∫ ·
−∞ e−t2/2 dt the cumulative distribution of the standard normal

random variable. The following lemmas are straightforward derivations from [19, Theorem 1], see

also [22].

Lemma A.21. There exists an absolute constant α′(p, β) > 0 depending only on p, β such that

for all j = 1, . . . , d and all 0 ≤ x ≤ α′(p, β) · n−1/2, in the diffusive and critical regime,

P(M j
n/

√
wn ≥ x)

1− Φ(x)
=

P(M j
n/

√
wn ≤ −x)

1− Φ(−x)

=

C · exp
(

x3
√
n
+ x2

n + 1√
n
(1 + 1

2 log n)(1 + x)
)

when a < 1− 1
2(β+1)

C · exp
(

x3
√
n
+ x2

logn + ( 1√
logn

+ 1
2
√
n
log n)(1 + x)

)
when a = 1− 1

2(β+1) .

Lemma A.22. There exists an absolute constant α′′(p, β) > 0 depending only on p, β such that

for all j = 1, . . . , d and all 0 ≤ x ≤ α′′(p, β) · n−1/2, in the diffusive and critical regime,

P(anµnN
j
n/

√
wn ≥ x)

1− Φ(x)
=

P(anµnN
j
n/

√
wn ≤ −x)

1− Φ(−x)

=

C · exp
(

x3
√
n
+ x2

n2(1−a)(β+1) +
1√
n
(n1/2−(1−a)(β+1) + 1

2 log n)(1 + x)
)

when a < 1− 1
2(β+1)

C · exp
(

x3
√
n
+ x2

n logn + ( 1√
n logn

+ 1
2
√
n
log n)(1 + x)

)
when a = 1− 1

2(β+1) .

Acknowledgements. The authors wish to thank Jean Bertoin and Pierre Tarres for numerous

discussions and insightful comments.

References

[1] E. Baur. On a class of random walks with reinforced memory. J. Stat. Phys. 181 (2020), 772–802.
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[14] F. Chaabane, F. Maaouia. Théorèmes limites avec poids pour les martingales vectorielles. ESAIM Prob. Stat.,
4: 137–189, 2000.

[15] J. Chen, V. Margarint. Perturbations of multiple Schramm–Loewner evolution with two non-colliding Dyson

Brownian motions. Sto. Proces. Appl., 151: 553–570, 2022.
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