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Abstract

The Precedence Constrained Generalized Traveling Salesman Problem (PCGTSP) is an
extension of two well-known combinatorial optimization problems — the Generalized Trav-
eling Salesman Problem (GTSP) and the Precedence Constrained Asymmetric Traveling
Salesman Problem (PCATSP), whose path version is known as the Sequential Ordering
Problem (SOP). Similarly to the classic GTSP, the goal of the PCGTSP, for a given input
digraph and partition of its node set into clusters, is to find a minimum cost cyclic route
(tour) visiting each cluster in a single node. In addition, as in the PCATSP, feasible tours
are restricted to visit the clusters with respect to the given partial order. Unlike the GTSP
and SOP, to the best of our knowledge, the PCGTSP still remain to be weakly studied
both in terms of polyhedral theory and algorithms. In this paper, for the first time for
the PCGTSP, we propose several families of valid inequalities, establish dimension of the
PCGTS polytope and prove sufficient conditions ensuring that the extended Balas’ π- and
σ-inequalities become facet-inducing. Relying on these theoretical results and evolving the
state-of-the-art algorithmic approaches for the PCATSP and SOP, we introduce a family of
MILP-models (formulations) and several variants of the branch-and-cut algorithm for the
PCGTSP. We prove their high performance in a competitive numerical evaluation against
the public benchmark library PCGTSPLIB, a known adaptation of the classic SOPLIB to
the problem in question.

1 Introduction

Introduced in the seminal paper by Srivastava et al. (1969), the Generalized Traveling Salesman
Problem (GTSP) is one of the most well-known generalizations of the classic Traveling Salesman
Problem (TSP). It has numerous industrial applications including air time minimization in metal
sheet cutting (Dewil et al. (2016); Chentsov et al. (2018); Makarovskikh et al. (2018)) and
coordinate measuring machinery (Salman et al. (2016)).

An instance of the GTSP can be defined informally as follows. A salesperson travels across a
given transportation network consisting of cities and roads connecting them, represented by the
nodes and arcs of some directed graph, respectively. The set of cities is partitioned into subsets
called clusters. By traveling on any road, the salesperson is charged with a corresponding
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transportation cost. The goal is to construct a closed tour that visits each cluster in one city
exactly and minimizes the accumulated transportation costs.

Being an extension of the classic Traveling Salesman Problem (TSP), the GTSP is strongly
NP-hard even on the Euclidean plane (Papadimitriou (1977)) any time when number of clusters
m is a part of the input. On the other hand, an adaptation to this problem of the well-known
Held and Karp dynamic programming scheme (Held and Karp (1962)) has running-time bound
O(n3m2 ·2m), i.e. the GTSP belongs to the class of Fixed-Parameter Tractable (FPT) problems,
being parameterized by the number of clusters. Furthermore, it can be solved to optimality in
polynomial time, provided that m = O(log n). In the case of PCGTSP, the running time is
O(n3m2 · |J |), where J is a set of ideals of the given partial order (see e.g. Khachay et al.
(2021)). In particular, if the order specifying the precedence constraints is of fixed width w, then
|J | = O(mw) (Steiner (1990)). Thus, in this case, the PCGTSP can be solved to optimality in
polynomial time.

The algorithmic design for the GTSP has been developed in the literature in several directions.
The first approach is based on the reduction of the initial problem to an appropriate instance of
the Asymmetric TSP (ATSP) (Noon and Bean (1993)), which at first glance gives an opportunity
to employ a vast variety of known algorithms designed for the ATSP (see e.g. Roberti and Toth
(2012)). However, despite its mathematical elegance, this approach suffers from several technical
shortcomings. First, even a close-to-optimal solutions of such auxiliary ATSP instances may
correspond to infeasible solutions of the initial GTSP. Furthermore, such instances may have
a quite unusual shape and thus difficult to solve for the existing TSP solvers (Karapetyan and
Gutin (2012), see also Yuan et al. (2020)).

Another approach provides various heuristics and meta-heuristics. Among them are the
memetic algorithms (Gutin and Karapetyan (2010)), an extension of the Lin-Kernighan-Helsgaun
heuristic solver (Helsgaun (2015)), and the GLNS meta-heuristic (Smith and Imeson (2017))
based on the Adaptive Large Neighborhood Search (ALNS) framework, which appears to be the
most efficient at the moment.

Finally, the third research direction is related to design of approximation algorithms with
theoretical performance guarantees (see e.g. Feremans et al. (2006); Khachai and Neznakhina
(2017)) and problem-specific branch-and-bound and branch-and-cut algorithms (Fischetti et al.
(1997); Yuan et al. (2020)).

The Sequential Ordering Problem (SOP), which is extremely close to the PCATSP, was
introduced in (Escudero (1988)). We should mention three groups of important results obtained
for the both problems on which the current research for the PCGTSP is based on.

The first of them, in the field of polyhedral study of the PCATSP, was obtained in the
seminal paper (Balas et al. (1995)), where sufficient conditions for the π- and σ-inequalities to
be facet-inducing were proved.

The second group comprises valid inequalities that exploit precedence constraints explicitly
and approaches to their strengthening, as well as the design of MILP-models (formulations)
in order to obtain better lower bounds while decreasing time complexity of the appropriate
LP-relaxations. Among them are compact formulations proposed in (Sarin et al. (2005)) as
an extension of results of (Gouveia and Pires (1999, 2001); Sherali and Driscoll (2002)), and
formulations whose exponential-size sets of valid inequalities are supplemented with polynomial-
time separation techniques (Gouveia and Pesneau (2006)). To the best of our knowledge, to the
date, the models providing the tightest lower bounds were introduced in (Gouveia et al. (2018)).

The last group of results relies on design and implementation of problem-specific branch-and-
cut algorithms including ones proposed in (Ascheuer et al. (2000)), (Cire and van Hoeve (2013))
and (Gouveia and Ruthmair (2015)), where the last one is regarded to be state-of-the-art on the
topic.

In this paper, we consider the PCGTSP, which is an extension of the GTSP, where the fea-
sible tours are restricted to visit all the clusters with respect to the partial order. At the same
time, PCGTSP extends the PCATSP as follows. Any instance of PCATSP is considered to be
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the instance of PCGTSP, where all clusters are singletons. Unlike both GTSP and PCATSP, the
PCGTSP considered in this paper still remains weakly studied. To the best of our knowledge,
all the related published results are exhausted by:
(i) efficient algorithms for several specific precedence constraints including partial orders of
Balas-type (see e.g. Balas and Simonetti (2001); Chentsov et al. (2016)) and the orders that
lead to quasi- and pseudo-pyramidal optimal tours (Khachay and Neznakhina (2020));
(ii) the PCGLNS heuristic solver proposed in Khachay et al. (2020) that extends the results
obtained in (Smith and Imeson (2017)) to the case of PCGTSP;
(iii) branch-and-bound and DP-and-bound algorithms for this problem (Khachay et al. (2021)),
based on Balas instance preprocessing (Balas et al. (1995)), Held and Karp branching framework
(see e.g. Morin and Marsten (1976)), and the combinatorial lower bounds from Salman et al.
(2020),
(iv) the public PCGTSPLIB benchmark library proposed in (Salman et al. (2020)) as an ex-
tension of the well-known SOPLIB library. According to the literature (Salman et al. (2020);
Khachay et al. (2021)), 12 out of 40 instances of this library were solved to optimality. Mean-
while, their solutions can be found within a competitive time by Gurobi solver supplied with our
extension of the L1PCATSPxy compact model, previously introduced in (Sarin et al. (2005)) for
the PCATSP, built-in cutting planes, and PCGLNS primal heuristic.

In addition, we should mention the branch-and-cut algorithm proposed recently in Yuan
et al. (2020) for the GTSP with time windows. This result seems to be relevant as the time
windows defined on clusters induce natural precedence constraints. Unfortunately, this approach
is hardly applicable to the general PCGTSP, since a partial order defined on the set of clusters
not necessarily admits encoding in terms of time windows.

In this paper, we try to bridge the gap both in the context of polyhedral theory and in the
field of branch-and-cut algorithms for the considered problem. Contribution of this paper is
three-fold:
(i) by evolving the inductive framework developed in Fischetti et al. (1995) for the symmetric
GTSP, we establish dimension of the PCGTS polytope and extend the sufficient facet-inducing
conditions for π- and σ-inequalites proved initially in (Balas et al. (1995)) for the PCATSP, to
the more general case of the PCGTSP;
(ii) relying on the known results on formulations for the PCATSP (Sarin et al. (2005); Gouveia
and Pesneau (2006); Gouveia et al. (2018)), we propose novel valid inequalities for the PCGTSP
and a family of compact and exponential-size MILP-models for this problem aimed to increase
tightness of their lower bounds and speed-up the solution procedure for the appropriate LP-
relaxations;
(iii) by combining the best formulations (in terms of lower bounds and running times) and the
PCGLNS primal heuristic, for the first time, we propose several variants of the branch-and-cut
algorithm for the PCGTSP, and compare their performance with aforementioned best known
results and our adaptation of the state-of-the-art algorithm proposed in Gouveia and Ruthmair
(2015) for the SOP.

As a result, the number of PCGTSPLIB instances solved to optimality has increased almost
twice, to 23 out of 40 instances. Furthermore, the carried out numerical evaluation confirm that
the considered MILP-models and branch-and-cut algorithm for the PCGTSP benefit well from
the incorporation of the predecessor/successor inequalities.

The rest of the paper is organized as follows. In Section 2, we give a mathematical statement
of the considered problem, introduce some necessary definitions and notation, discuss the instance
preprocessing, and describe the compact MILP-model used throughout the paper. In Section
3, we propose novel families of valid inequalities for the problem in question and explain the
corresponding separation procedures. Section 4 deals with the polyhedral study of the PCGTSP.
By extending the seminal results of Balas et al. (1995) and Fischetti et al. (1995), we establish
dimension of the PCGTS polytope and prove the conditions sufficient for π- and σ-inequalities
to be facet-inducing. Further, Section 5 represents the proposed formulations for the PCGTSP,
while Section 6 gives an overview of our branch-and-cut algorithm. In Section 7 we report the
results of the numerical evaluation, both for the proposed formulations and suggested variants
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of the branch-and-cut algorithm. Finally, Section 8 concludes the paper.

2 Problem statement

An instance of PCGTSP is given by a triple (G, C,G), where
- the complete loopless arc-weighted digraph G = (V,E, c), |V | = n, defines a groundset network
supplemented with transportation costs c(u, v) for an arbitrary arc (u, v) ∈ E;
- the partition C = {C1, . . . , Cm} splits the nodeset V of the graph G intom non-empty pairwise-
disjoint clusters, where the cluster C1 is referred to as depot;
- the directed acyclic graph G = (C, A) defines a partial order (precedence constraints) on the
set of clusters C. Further, without loss of generality, we assume G to be transitively closed, i.e.
(Ci, Cj) ∈ A and (Cj , Ck) ∈ A imply (Ci, Ck) ∈ A, and that (C1, Cp) ∈ A for any p ∈ {2, . . . ,m}.

A closed m-tour T is called a feasible solution of the PCGTSP, if
- it departs from and arrives at some node v1 ∈ C1;
- it visits each cluster Cp ∈ C exactly once;
- the tour T is consistent with the partial order G, i.e. no cluster Cq can be visited by the tour
T before its arbitrary predecessor in the order G.

The cost of a tour T = (v1, v2, . . . , vm) is the sum of costs of its arcs cost(T ) = c(vm, v1) +∑m−1
i=1 c(vi, vi+1). The objective of the PCGTSP is to find a feasible m-tour of the minimum

cost.

2.1 Preliminaries

We start with some necessary definitions and notation. For any pair of clusters Cp and Cq except
the depot cluster C1, for which (Cp, Cq) ∈ A, we refer to Cp as a predecessor of Cq (and Cq as
a successor of Cp) or shortly Cp ≺ Cq. Further, to any non-depot cluster C, we assign subsets
π(C) = {Ci ̸= C1 : Ci ≺ C} and σ(C) = {Ci ̸= C1 : C ≺ Ci} of its predecessors and successors,
respectively. This notation can be easily extended to an arbitrary nonempty subset of clusters
C′ ⊂ C \ {C1}: π(C′) =

⋃
C∈C′ π(C), σ(C′) =

⋃
C∈C′ σ(C). In turn, by π̃(C) and σ̃(C) we

denote the subsets of π(C) and σ(C) respectively consisting of the direct parents and children
of the cluster C. Finally, by C+ =

⋃m
i=2 π(Ci) and C− =

⋃m
i=2 σ(Ci) we denote the sets of all

aforementioned predecessors and successors, respectively.

If, for C ̸= C1, π(C)∪ σ(C) = ∅, we call C a free cluster. In terms of polyhedral results, we
restrict ourselves to the setting of PCGTSP with a singleton free cluster, which we call CBalas.

In the following, by C(v) we denote (the only) cluster that contains an arbitrary node v ∈ V .
We call v a non-individual node, if |C(v)| > 1, otherwise v is called individual. To simplify the
problem at hand, we use the instance preprocessing technique proposed in Balas et al. (1995).
We exclude any arc (i, j) ∈ E, for which at least one of the following options holds:

(i ∈ C1) & (j ∈ C−) (1)

(i ∈ C+) & (j ∈ C1) (2)

C(j) ≺ C(i) (3)

∃ C̃ ∈ C : (C(i) ≺ C̃) & (C̃ ≺ C(j)) (4)

C(i) = C(j). (5)

For any proper subset ∅ ̸= S ⊂ V , we use the standard notation δ−(S) = {(i, j) ∈ E : i /∈
S, j ∈ S}, δ+(S) = {(i, j) ∈ E : i ∈ S, j /∈ S}, and δ(S) = δ+(S) ∪ δ−(S) for the appropriate
incoming and outgoing cuts, and their union, respectively.

In the case of a singleton S = {v}, we use simple notation δ+(v) and δ−(v).

Without loss of generality, we assume that graph G has no isolated nodes after preprocessing.
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Furthermore, we can assume that, for any node v ∈ V , δ+(v) ̸= ∅ and δ−(v) ̸= ∅. As a simple
consequence, we obtain that δ+(C) ̸= ∅ and δ−(C) ̸= ∅ for any cluster C as well.

2.2 Compact MILP model

To obtain a basic compact model for the considered problem, we extend the known L1PCATSPxy
formulation, proposed in Sarin et al. (2005) for the PCATSP, which is the best performer among
compact models in terms of LP-relaxation bounds for that problem.

For any (i, j) ∈ E and node v ∈ V , we introduce the following binary decision variables:

xij =

{
1, if (i, j) belongs to the solution

0, otherwise,
zv =

{
1, if v is visited by the solution

0, otherwise.

In addition, we introduce auxiliary variables ypq and upq:

ypq =

{
1, if cluster Cp precedes Cq in the solution (not necessarily immediately)

0, otherwise,

upq =

{
1, if cluster Cp immediately precedes Cq in the solution

0, otherwise.

The proposed MILP model for the PCGTSP is as follows:

min
∑

(i,j)∈E

cijxij , (6)

s.t.
∑
i∈Ck

zi = 1 (k ∈ {1, . . . ,m}) (7)

∑
(i,j)∈δ+(i)

xij = zi (i ∈ V ) (8)

∑
(i,j)∈δ−(i)

xji = zi (i ∈ V ) (9)

m∑
q=1,q ̸=p

upq = 1 (p ∈ {1, . . . ,m}),
m∑

p=1,p̸=q

upq = 1 (q ∈ {1, . . . ,m}) (10)

∑
i∈δ+(Cp)

∑
j∈δ−(Cq)

xij = upq (p, q ∈ {1, . . . ,m}, p ̸= q) (11)

(ypq + uqp) + yqr + yrp ⩽ 2 (p, q, r ∈ {2, . . . ,m}, p ̸= q ̸= r) (12)

upq − ypq ⩽ 0 (p, q ∈ {2, . . . ,m}, p ̸= q) (13)

ypq + yqp = 1 ({p, q} ⊂ {2, . . . ,m}) (14)

ypq = 1 (p, q ∈ {2, . . . ,m}, Cp ≺ Cq) (15)

xij , zi ∈ {0, 1}, upq ⩾ 0, ypq ⩾ 0 (16)

The objective is to minimize the total traveling cost (6). Constraints (7) ensure that exactly
one node from each cluster is visited. Constraints (8) and (9) are flow conservation constraints
in terms of nodes, while constraints (10) are flow conservation constraints in terms of clusters.
Technical constraints (11) establish the link between the decision and auxiliary variables. Sim-
ilarly to the initial L1PCATSPxy model, constraints (12)-(15) ensure subtour elimination and
establish the given precedence constraints simultaneously.

By evolving the arguments of Sarin et al. (2005), it is easy to verify the following observation.

Observation 1. For any feasible solutions [x′, z′, u′, y′] and [x′′, z′′, u′′, y′′] of the model (6)-(16),
(x′ = x′′) ∧ (z′ = z′′) ⇒ (u′ = u′′) ∧ (y′ = y′′).
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3 Valid inequalities

In this section, we extend to the case of PCGTSP some known families of valid inequalities
initially introduced in papers Balas et al. (1995); Gouveia and Ruthmair (2015); Gouveia et al.
(2018) for the PCATSP. It is convenient to specify these inequalities in terms of the following
standard notation. For any non-empty disjoint cluster subsets U ′,U ′′ ⊂ C,

x(U ′,U ′′) =
∑

Cp⊂U ′

∑
Cq⊂U ′′

∑
i∈Cp

∑
j∈Cq

xij ≡
∑

Cp⊂U ′

∑
Cq⊂U ′′

upq.

3.1 Predecessor and successor inequalities

Proposition 1. For an arbitrary non-empty S ⊂ C \{C1}, S̄ = C \S, the predecessor-inequality
(π-inequality):

x(S \ π(S), S̄ \ π(S)) ⩾ 1 (17)

is valid for the PCGTSP.

Proof. Let T be an arbitrary tour that satisfies the precedence constraints and Cp be the last
cluster in S visited by T . Then, Cp ∈ S \ π(S) and for the next cluster visited by T , Cq ∈
S̄ \π(S). Such a cluster exists, since the tour T should depart from and arrive at C1. Therefore,
x(S \ π(S), S̄ \ π(S)) ⩾ upq = 1.

Since the following two propositions can be treated similarly, we skip their proofs for the sake
of brevity.

Proposition 2. For an arbitrary non-empty S ⊂ C \ {C1}, S̄ = C \ S, the successor-inequality
(σ-inequality):

x(S̄ \ σ(S),S \ σ(S)) ⩾ 1 (18)

is valid for the PCGTSP.

Proposition 3. Let X ,Y ⊂ C \ {C1} be non-empty subsets such that, for an arbitrary clusters
C ′ ∈ X and C ′′ ∈ Y, C ′ ≺ C ′′, and let Q = {C1}∪π(X )∪σ(Y). Then for any S ⊂ C, S̄ = C \S
such that X ⊆ S, Y ⊆ S̄, the (π, σ)-inequality:

x(S \ Q, S̄ \ Q) ⩾ 1 (19)

is valid for the PCGTSP.

3.2 Precedence cycle breaking inequalities

For some natural t, consider a subset C′ = {Ci1 , . . . , Ci2t+1} ⊂ C \ {C1}, such that Ci1 ≺ . . . ≺
Ci2t+1 . Introduce the subsets C′

odd = {Ci2s+1 : s ∈ {0, . . . , t}} and C′
even = {Ci2s : s ∈ {1, . . . , t}}

of C′, that contain Cij with odd and even j respectively.

Proposition 4. For an arbitrary non-empty S ⊂ C \ {C1}, S̄ = C \ S, such that C′
odd ⊂ S and

C′
even ⊂ S̄,

x(S, S̄) ≥ t+ 1 (20)

is valid for the PCGTSP.

Proof. Indeed, consider an arbitrary feasible tour T . Since clusters Ci1 . . . Ci2t+1 are linearly
ordered and C1 ̸∈ S, the tour T crosses the border from S to S̄ at least t+ 1 times.

Following (Gouveia and Ruthmair (2015)), without loss of generality, we can assume that
Cij ∈ π̃(Cij+1

) for each j ∈ {1, . . . , 2t}. Furthermore, we can strengthen inequality (20) as
follows.
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Proposition 5. For an arbitrary non-empty S ⊂ C \ {C1}, S̄ = C \ S, such that C′
odd ⊂ S and

C′
even ⊂ S̄, the condition σ̃(Ci2t+1

) ̸⊂ S implies the validity of inequality

x(S \ S ′, S̄ \ S ′) ≥ t+ 1, (21)

where S ′ = π(Ci1) ∪ σ(Ci2t+1
) \ σ̃(Ci2t+1

).

3.3 Single-option inequalities

In this subsection, we extend the family of simple (but powerful) inequalities proposed in Gouveia
and Ruthmair (2015) for the PCATSP, whose validity can be easily obtained from (7)-(11) and
precedence constraints.

Proposition 6. For an arbitrary {Ci, Cj} ⊂ C \ {C1}, the following inequalities

uij + uji + ukl + ulk ≤ 1 (Ck ∈ π(Ci), Cl ∈ σ(Cj)) (22)

uij + uji +
∑

Cl∈σ(Cj)

ukl ≤ 1 (Ck ∈ π(Ci)) (23)

uij + uji +
∑

Cl∈σ(Cj)

ulk ≤ 1 (Ck ∈ π(Ci)) (24)

uij + uji +
∑

Ck∈π(Ci)

ukl ≤ 1 (Cl ∈ σ(Cj)) (25)

uij + uji +
∑

Ck∈π(Ci)

ulk ≤ 1 (Cl ∈ σ(Cj)) (26)

are valid for the PCGTSP.

3.4 Strengthened precedence variables and network flow based in-
equalities

The authors of (Gouveia et al. (2018)) introduced a novel exponential-size families of valid
inequalities augmented with polynomial-time separation procedures, their strengthened counter-
parts, and the related formulations for the PCATSP. Comprehensive numerical analysis carried
out there showed that more tight lower bounds were provided by the formulations based on
strengthened inequalities. Therefore, in this paper, we restrict ourselves only on extension to
the PCGTSP of these families.

Proposition 7. For an arbitrary clusters Cp and Cq not equal to C1, where p ̸= q, the strength-
ened simple-cut inequality x(S, S̄) ≥ ypq is valid for the PCGTSP, for any partition

(S, S̄) of (C \ C1
pq) ∪ {Cp, Cq}, such that Cp ∈ S, Cq ∈ S̄, (27)

(S, S̄) of (C \ C2
pq) ∪ {C1, Cp}, such that C1 ∈ S, Cp ∈ S̄, (28)

(S, S̄) of (C \ C3
pq) ∪ {C1, Cq}, such that Cq ∈ S, C1 ∈ S̄, (29)

where C1
pq = {C1}∪π(Cp)∪σ(Cq), C

2
pq = {Cq}∪σ(Cp)∪σ(Cq) and C3

pq = {Cp}∪π(Cp)∪π(Cq).

Proposition 8. For an arbitrary triple (Cp, Cq, Cr) of distinct clusters not equal to C1, the
strengthened GDDL inequality1

x(S, S̄) ≥ ypr + yrq (30)

is valid for the PCGTSP for any partition (S, S̄) of
(
C \ Cpqr

)
∪ {C1, Cp, Cq, Cr}, such that

{C1, Cr} ⊂ S, {Cp, Cq} ⊂ S̄ and Cpqr =
(
σ(Cp) ∩ σ(Cq)

)
∪
(
π(Cr) ∩ σ(Cp)

)
∪
(
σ(Cq) ∩ σ(Cr)

)
.

1Generalized Disaggregated Desrochers-Laporte inequality
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Proposition 9. For an arbitrary triple (Cp, Cq, Cr) of distinct clusters not equal to C1, the
strengthened Reversed GDDL inequality

x(S, S̄) ≥ ypr + yrq (31)

is valid for the PCGTSP for any partition (S, S̄) of
(
C \ CR

pqr

)
∪ {C1, Cp, Cq, Cr}, such that

{Cp, Cq} ⊂ S, {C1, Cr} ⊂ S̄ and CR
pqr =

(
π(Cp) ∩ π(Cr)

)
∪
(
π(Cp) ∩ π(Cq)

)
∪
(
σ(Cr) ∩ π(Cq)

)
.

Proposition 10. For an arbitrary triple (Cp, Cq, Cr) of distinct clusters not equal to C1, the
strengthened 2-path inequality x(S, S̄) ≥ ypq+yqr−1 is valid for the PCGTSP, for any partition

(S, S̄) of (C \ C1
pqr) ∪ {C1, Cp}, such that C1 ∈ S, Cp ∈ S̄, (32)

(S, S̄) of (C \ C2
pqr) ∪ {Cp, Cq}, such that Cp ∈ S, Cq ∈ S̄, (33)

(S, S̄) of (C \ C3
pqr) ∪ {Cq, Cr}, such that Cq ∈ S, Cr ∈ S̄. (34)

(S, S̄) of (C \ C4
pqr) ∪ {C1, Cr}, such that Cr ∈ S, C1 ∈ S̄, (35)

where C1
pqr = {Cq, Cr} ∪ σ(Cp) ∪ σ(Cq) ∪ σ(Cr), C2

pqr = {C1, Cr} ∪ π(Cp) ∪ σ(Cq) ∪ σ(Cr),
C3
pqr = {C1, Cp}∪π(Cp)∪π(Cq)∪σ(Cr), and C4

pqr = {Cp, Cq}∪π(Cp)∪π(Cq)∪π(Cr), respectively.

Proposition 11. For an arbitrary quadruple (Cp, Cq, Cr, Cs) of distinct clusters not equal to C1,
the strengthened 3v GDDL-like inequality x(S, S̄) ≥ ypq + yqr + yrs−1 is valid for the PCGTSP,
for any partition:

(S, S̄) of (C \ C1
pqrs) ∪ {Cp, Cq, Cr, Cs}, such that {Cp, Cr} ⊂ S, {Cq, Cs} ⊂ S̄, (36)

(S, S̄) of (C \ C2
pqrs) ∪ {C1, Cp, Cq, Cs}, such that {Cp, Cs} ⊂ S, {Cq, C1} ⊂ S̄, (37)

(S, S̄) of (C \ C3
pqrs) ∪ {C1, Cp, Cr, Cs}, such that {C1, Cr} ⊂ S, {Cp, Cs} ⊂ S̄, (38)

where C1
pqrs = {C1} ∪

(
(π(Cq) ∪ π(Cr) ∪ σ(Cs)) ∩ (π(Cp) ∪ σ(Cq))

)
, C2

pqrs = {Cr} ∪
(
(π(Cr) ∪

π(Cs))∩(π(Cp)∪σ(Cq)∪σ(Cr))
)
, and C3

pqrs = {Cq}∪
(
(σ(Cp)∪σ(Cq))∩(π(Cq)∪π(Cr)∪σ(Cs))

)
.

Proposition 12. For an arbitrary quintuple (Cp, Cq, Ck, Cr, Cs) of distinct clusters not equal
to C1, the strengthened 4v GDDL-like inequality x(S, S̄) ≥ ypq + yqk + ykr + yrs − 2 is valid for
the PCGTSP, for any partition

(S, S̄) of C \ Cpqkrs ∪ {Cp, Cq, Cr, Cs}, such that {Cp, Cr} ⊂ S, {Cq, Cs} ⊂ S̄, (39)

where Cpqkrs = {C1, Ck} ∪
(
(π(Cp) ∪ σ(Cq) ∪ σ(Ck)) ∩ (π(Ck) ∪ π(Cr) ∪ σ(Cs))

)
.

Proofs of all the propositions of this subsection can be obtained by extension of the arguments
presented in Gouveia et al. (2018).

3.5 Separation procedures

All the aforementioned families of valid inequalities are augmented with polynomial-time sepa-
ration procedures, which extend he seminal unit flow propagation approach introduced in Balas
et al. (1995). In Algorithm 1, we present the proposed separation technique for π-inequalities
(17).

For the sake of brevity, we restrict our further discussion to precedence cycle breaking in-
equalities (20). Other procedures evolve the similar results obtained in (Gouveia and Ruthmair
(2015); Gouveia et al. (2018)) for the PCATSP and (Yuan et al. (2020)) for the GTSP with time
windows and can be retrieved from the supplemented source code (Khachai (2022)).

Indeed, suppose we are given by the current fractional solution (x, z, u, y). For a sequence
of non-depot clusters Ci1 ≺ . . . ≺ Ci2t+1 , we construct an auxiliary cluster digraph H = (C ∪
{s, t}, E′), where s and t are artificial source and destination nodes connected by incapacitated
arcs with clusters from C′

odd and C′
even ∪{C1}, respectively. For each other arc (Cp, Cq) ∈ E′, its

capacity is defined by upq. Next, if the value of the maximum s-t-flow in the digraph H appears
to be less than t+ 1, an arbitrary minimum cut (S, S̄), where S ⊂ C ∪ C′

odd \ ({C1} ∪ C′
even) and

S̄ = C \ S, defines inequality (20) violated by the given solution.
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Algorithm 1 Separation technique for π-inequalities
Input: current (fractional) solution (xij , zi, upq, ypq), a non-depot cluster C ̸= C1

Output: π-inequality for an appropriate S (if any)

1: create an auxiliary cluster digraph GC = (CC , EC), where CC = C \ π(C) and (Cp, Cq) belongs to EC and has
capacity upq if and only if upq > 0

2: find a maximum C-to-C1 flow F in the graph GC

3: if val(F ) < 1 then
4: find a minimum cut U ′,U ′′ ⊂ CC

5: set S = U ′ ∪ π(C) and S̄ = C \ S = U ′′

6: return π-inequality
x(S \ π(S)), S̄ \ π(S)) ⩾ 1

7: end if

4 Facets of the PCGTS polytope

In this section, we study a polyhedral structure of the PCGTS polytope. To elaborate this task,
we employ the classic approach relying on dimensions of the studied polytope and its faces.

By definition, for an arbitrary polytope P , its dimension is equal to the dimension of its affine
hull dimP = dim (aff(P )), which in turn is one less than the number of affinely independent
extreme points this polytope.

An intersection of a polytope P with an arbitrary support hyperplane is called a face of this
polytope. Usually, for the sake of convenience, the family of faces of a polytope is extended
by improper faces ∅ and P . A face F of a polytope P is called a facet (of this polytope), if
dimF = dimP − 1.

The PCGTSP is an extension of an Equality GTSP (E-GTSP) introduced in Fischetti
et al. (1995), where E-GTSP polytope was denoted by P=. Therefore, we keep the same
notation for the PCGTS polytope, i.e. the convex hull of the incidence vectors [x, z] en-
coding all the feasible tours of the problem in question. As it follows from Observation 1,
P= = conv{[x, z] ∈ RE∪V : (7) − (16) holds}. Since [x, z] could be obviously extended to the
feasible solution [x, z, u, y] of (7)-(16), the polytope P= is isomorphic to the convex hull of the
feasible set of the initial non-relaxed MILP model from Subsection 2.2. In the sequel, for the sim-
plicity, we will not distinguish them. Our goal is to derive conditions sufficient for an arbitrary
inequality

αTx− βT z ⩾ γ (40)

to induce a facet of the polytope P=.

4.1 Dimension of the PCGTS polytope

In this section, we prove the following

Theorem 1. For any instance of PCGTSP, the following equation:

dim (P=) = |E| − n−m+ 1 (41)

holds.

To prove Theorem 1, we employ an inductive approach similar to Fischetti et al. (1995) on
the number of excessive nodes ρ within clusters:

ρ =

m∑
h=1

(|Ch| − 1) = n−m. (42)

Here, the base case ρ = 0 corresponds to the Precedence Constrained Asymmetric Traveling
Salesman Problem (PCATSP) and follows from

Theorem 2 (Balas et al. (1995)). For an arbitrary instance of PCATSP, dimension of its
polytope P=

ATSP is as follows: dimP=
ATSP = |E| − 2n+ 1.
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Figure 1: Example of a directed graph and its bipartite representation

Remark 1. In the paper by Balas et al. (1995), the polytope is denoted in RE . However, it can
be unambigiously extended to RE∪V by setting zv = 1 for each node v ∈ V as it was done in
Fischetti et al. (1995).

In order to prove the inductive step, we need additional notation and technical lemmas. Let
inequality (40) be valid for P=, i.e. P= ⊂ {[x, z] ∈ RE∪V : αTx ⩾ βT z + γ}. Consider the
appropriate face H(α, β, γ) = P= ∩ {[x, z] ∈ RE∪V : αTx = βT z + γ} of the polytope P=.

Further, to any non-individual node v ∈ V , we assign:
(i) a PCGTSP polytope P=

v associated with the subgraph of G induced by V \ {v},
(ii) the v-restriction of inequality (40) obtained by dropping variables zv and xe for all e ∈ δ(v),
(iii) the v-compatibility digraph of (40) G∗

v = (V \ C(v), E∗
v ), where

E∗
v = {(i, j) : i, j ∈ V \ C(v), i ̸= j,∃ [x, z] ∈ H(α, β, γ), xiv = xvj = 1},

(iv) its bipartite representation B∗
v (see Bang-Jensen and Gutin (2009) and Fig. 1).

Lemma 3. For any valid inequality αTx ⩾ βT z+γ, and an arbitrary non-individual node v ∈ V ,
dimH(α, β, γ) ⩾ dimH(α, β, γ)v+rank(B∗

v) where H(α, β, γ)v is the face of polytope P=
v induced

by its v-restriction.

Proof. Consider the matrix M , whose rows are extreme points of the face H(α, β, γ) (Fig. 2). By
construction, H(α, β, γ) is contained in a hyperplane of RE∪V not passing through the origin (due
to equation (7)). Therefore, for any subset of rows of M , the affine independence is equivalent
to the linear one. Thus, dimH(α, β, γ) = rank(M)− 1.

Matrix M can be represented as follows:

M =

(
M11 0 0
M21 M22 1

)
,

where the last column corresponds to node v, and the columns left to it correspond to the
arcs incident with v. By construction, block M11 corresponds to the extreme points of face
H(α, β, γ)v. Thus, rank(M11) = dimH(α, β, γ)v + 1.

On the other hand, matrix M22 is located in the part of the tour visiting node v. By
construction, it should visit it only once. Therefore, each row of M22 has exactly two 1s.
Consider an arbitrary row of block M22. Suppose that 1s are located in the columns (i, v)
and (v, j). Hence, in graph B∗

v , nodes i and j are adjacent and the considered row is a column
in the incidence matrix MB∗

v
of B∗

v . Thus, M22 = MT
B∗

v
(see Fig. 3).

Therefore, rank(M22) = rank(B∗
v) = NB∗

v
− κ(B∗

v), where NB∗
v
is a size of the nodeset

of bipartite graph B∗
v and κ(B∗

v) is the number of its connected components (see e.g. Biggs
(1974)).
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Figure 2: Matrix of extreme points of H(α, β, γ)

Finally, rank(M) ⩾ rank(M11)+rank(M22). Since rank(M11) = dimH(α, β, γ)v+1, rank(M22) =
rank(B∗

v). Lemma 1 is proved.

The claim of Lemma 1 is valid for an arbitrary face H(α, β, γ). Now, to determine dimension
of polytope P=, we consider its improper face H(0, 0, 0) = P=. To emphasize the associated
bipartite graph B∗

v in this special case, denote it by B̄∗
v .

Lemma 4. For any non-individual node v, rank(B̄∗
v) = |δ(v)| − 1.

Proof. We prove Lemma 4 by enumeration of all the possible options to relate cluster C(v) with
the given precedence constraints. In the sequel, we use the following notation. By π̃ and σ̃, for
cluster C(v), we denote subsets of nodes belonging to its direct parents and children, respectively.
Similarly, we introduce subsets π̂ and σ̂ of nodes that belong to other ancestors and descendants
of this cluster. In addition, by r, we denote a union of all clusters except CBalas incompatible
with C(v).

Observation 2. For any cluster, its parents (if any) are mutually incomparable. For its children
the same claim is valid as well.

Case 1 (π̃ ̸= ∅ and σ̃ = ∅). In this case, cluster C(v) is one of the minimal descendants in
the given partial order. Here, for cut δ(v) in graph G (see Fig. 4), we have |δ(v)| = |C1|+ |π̃|+
2|r|+ 2, since |CBalas| = 1. Consider the appropriate bipartite graph B̄∗

v (Fig. 5). It has

NB̄∗
v
= 2|C1|+2|π̂|+2|π̃|+2|r|+2 nodes. By definition, an arbitrary node i from the left part

and j′ from the right part of graph B̄∗
v are incident if and only if there is a feasible tour with the

fragment i-v-j. If such an arc exists, then graph B̄∗
v has a complete bipartite subgraph, whose

parts are induced by clusters C(i) and C(j). In Fig. 5, we encode such subgraphs by straight line
segments. By construction, all non-isolated nodes of B̄∗

v belong to the only connected component.
Furthermore, the number of connected components is κ(B̄∗

v) = 1 + |C1|+ 2|π̂|+ |π̃|. Indeed, for
instance, verify the incidence of some i ∈ π̃ and node j′ corresponding to the only node of cluster
CBalas. Take an arbitrary node v1 ∈ C1 from the depot and construct a feasible tour as follows.
Departing from v1 the tour visits all the clusters preceding C(v) such that the cluster C(i) is
visited last, at node i. Then, we traverse arcs (i, v) and (v, j) directly, visit all the remaining
clusters (respecting the precedence constraints) and complete the tour by returning to node v1.

Finally, rank(B̄∗
v) = NB̄∗

v
− κ(B̄∗

v) = |C1|+ |π̃|+ 2|r|+ 1 = |δ(v)| − 1.

Case 2 (σ̃ ̸= ∅ and π̃ = ∅). This case is dual to Case 1, here C(v) is the maximal
ancestor in the partial order. In the similar sense (see Fig. 6 and Fig. 7), we obtain |δ(v)| =

Figure 3: Block M22 and the incidence matrix of B∗
v
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Figure 4: Cut δ(v) for Case 1 Figure 5: Bipartite graph B̄∗
v for Case 1

|C1| + |σ̃| + 2|r| + 2, NB̄∗
v
= 2|C1| + 2|σ̂| + 2|σ̃| + 2|r| + 2, κ(B̄∗

v) = 1 + |C1| + 2|σ̂| + |σ̃|, and
finally, rank(B̄∗

v) = |C1|+ |σ̃|+ 2|r|+ 1 = |δ(v)| − 1.

Case 3 (π̃ ̸= ∅, σ̃ ̸= ∅). The only difference here is that cluster C(v) has both parents and
children, which slightly impacts the structure of B̄∗

v . Proceeding with the proof in a similar way,
we obtain (Fig. 8 and Fig. 9): |δ(v)| = |π̃|+|σ̃|+2|r|+2, NB̄∗

v
= 2(|C1|+|σ̂|+|σ̃|+|π̂|+|π̃|+|r|+1),

κ(B̄∗
v) = 1 + 2|C1|+ |σ̃|+ |π̃|+ 2|π̂|+ 2|σ̂|, and rank(B̄∗

v) = 2|π̃|+ 2|σ̃|+ 2|r|+ 1 = |δ(v)| − 1.

Case 4 (π̃ = ∅, σ̃ = ∅). Without loss of generality, we restrict ourselves to the case where
the set of free clusters is exhausted by C(v) and CBalas (if the set of free clusters has more than
two elements, the case is similar to this one). Since this case is different from the discussed
above, we provide an argument in detail. Since v is a non-individual node, C(v) ̸= CBalas.
Again for cut δ(v), we have |δ(v)| = 2|C1|+2|r|+2. We show that in this case B̄∗

v is a connected
bipartite graph. We skip the trivial option of the empty order, since here B̄∗

v is a complete graph.
Otherwise, there are always at least two clusters Cp and Cq, such that Cp is the parent of Cq.
Obviously, these clusters induce a complete bipartite subgraph of graph B̄∗

v . Since both copies of
CBalas are incident with all other clusters from the opposite part, B̄∗

v is connected (see Fig. 10).
Finally, we obtain NB̄∗

v
= 2|C1|+2|r|+2, κ(B̄∗

v) = 1, and rank(B̄∗
v) = 2|C1|+2|r|+1 = |δ(v)|−1.

Case 5 (C(v) = C1). This is another unique case. To proceed with our proof, we need
additional notation. By Σ, we denote the set of all nodes from minimal descendants, Π consists
of all nodes from maximal ancestors in the given partial order. Also, let F be the set of all nodes
from free clusters, except CBalas, and R are the remaining nodes. Then, |δ(v)| = 2|F | + |Π| +
|Σ|+ 2.

As for the graph B̄∗
v , it is constructed in the same sense as for the previous cases. The only

difference here, is that the depot is departure and arrival node at the same time. However, this
won’t be a problem, since any feasible tour is closed (see Fig. 11). Finally, NB̄∗

v
= 2(|R|+ |Π|+

|F |+ 1+ |Σ|), κ(B̄∗
v) = 1 + |Π|+ |Σ|+ 2|R|, and rank(B̄∗

v) = |δ(v)| − 1. Lemma 4 is proved.

Figure 6: Cut δ(v) for Case 2 Figure 7: Bipartite graph B̄∗
v for Case 2
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Figure 8: Cut δ(v) for Case 3 Figure 9: Bipartite graph B̄∗
v for Case 3

Figure 10: Representation of δ(v) and the connected components of B̄∗
v for Case 4. Bold line provides connectivity of

the B̄∗
v

Now, we ready to establish dimension of the polytope P= and prove Theorem 1.

Proof. By construction, the PCGTS polytope P= is a part of a solution set of inequality system
(7)-(11). Hence, dimP= cannot be greater than dimension of this solution set. In turn, for an
arbitrary feasible system of linear equations Ax = b with m× d coefficient matrix, dimension of
its solution set is d− rank(A).

Let A be the coefficient matrix of system (7)-(11) (Fig. 12). By construction, rank(A) ⩾
rank(D) + rank(K) = rank(D) +m. We show that rank(D) = 2n − 1. To the initial graph G,
we assign cluster digraph Gc = (C, Ec), for which (C ′, C ′′) ∈ Ec if and only if there exist i ∈ C ′

and j ∈ C ′′, such that (i, j) ∈ E. Let BG and BGc be bipartite representations of digraphs G
and Gc respectively.

Observation 3. Evidently, if (C ′, C ′′) ∈ Ec, then (i, j) ∈ E ∀i ∈ C ′ ∀j ∈ C ′′.

Observation 4. By construction, D is the incidence matrix of BG.

Figure 11: Representation of δ(v) and the connected components of the B̄∗
v for Case 5
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Figure 12: Structure of matrix A.

As a simple consequence, we obtain that graphs BG and BGc
have the same number of

connected components.

Since the initial graph G has at least one free cluster, then by Proposition 5.3 from Balas et al.
(1995), BGc is connected, i.e. κ(BGc) = κ(BG) = 1, rank(D) = 2n−1, and rank(A) ⩾ 2n+m−1.
Therefore,

dimP= ⩽ |E|+ |V | − rank(A) ⩽ |E|+ n− 2n−m+ 1 = |E| − n−m+ 1. (43)

To complete the argument, we need to prove the lower bound

dimP= ⩾ |E| − n−m+ 1. (44)

We proceed with induction on the number of excessive nodes within clusters:

ρ =

m∑
h=1

(|Ch| − 1) = n−m

Base Case (ρ = 0) follows from Theorem 2 for the PCATSP.

Inductive Step. Assume that inequality (44) holds for some ρ. To prove it for ρ+ 1, take
an arbitrary non-individual node v. By Lemma 3 and Lemma 4,

dimP= ⩾ dimP=
v + rank(B̄∗

v) = dimP=
v + |δ(v)| − 1.

Recall that P=
v corresponds to the graph of n − 1 nodes and |E \ δ(v)| arcs. By induction

hypothesis, dimP=
v ⩾ |E| − |δ(v)| − n−m+ 2, and the claim follows.

Combination of (43) and (44) concludes the proof.

4.2 Facet-inducing inequalities

By extending the results obtained in Balas et al. (1995), in this subsection we establish the
sufficient conditions ensuring that π- and σ-inequalities ((17) and (18)) introduced in Subsection
3.1 are facet-inducing.

Theorem 5. For S ⊂ C \ {C1, CBalas} and S̄ = C \ S, an inequality

x(S \ π(S), S̄) ⩾ 1 (45)

induces a facet of the polytope P=, if π(S) ⊂ S, σ(S) ⊂ S, and S contains at least 3 free clusters.
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Theorem 6. For S ⊂ C \ {C1, CBalas} and S̄ = C \ S, an inequality

x(S̄,S \ σ(S)) ⩾ 1 (46)

induces a facet of the polytope P=, if π(S) ⊂ S, σ(S) ⊂ S, and S contains at least 3 free clusters.

Similarly to Theorem 1, our proof is based on the inductive framework developed in Fischetti
et al. (1995) for the symmetric GTSP. The induction is carried out on the number of excessive
nodes (42) in clusters. Since the base case corresponds to the classic PCATSP, our claim follows
from the known result (Balas et al. (1995), Theorem 5.5). In turn, proof of the inductive step
relies on Lemma 3 and our adaptation of Lemma 4 to the case of the proper faceHπ = H(α, β, γ),
where

β = 0, γ = 1, αi,j =

{
1, ∃Cp ∈ S \ π(S),∃Cq ∈ S̄ : i ∈ Cp, j ∈ Cq,

0, otherwise

induced by inequality (45).

Lemma 7. Let Hπ be the face of P= induced by π-inequality (45). The hypothesis of Theorem
5 implies that, for an arbitrary non-individual node v, rank(B∗

v) = |δ(v)| − 1.

Proof. Our argument is based on enumeration of all the possible options to establish a relation
between cluster C(v) and the given partial order. Previously, in the proof of Lemma 4, for each
case, we explored properties of the associated cut δ(v) and bipartite graph B̄∗

v . Now, each of
these options can be split into several sub-options in correspondence to the ways to locate C(v)
with respect to the face Hπ (see Table 1).

Table 1: Options for cluster C(v).

case # relation to the partial order relation to the face Hπ

1 minimal descendant S ′ = S \ π(S), S̄
2 maximal ancestor π(S), S̄
3 has parents and children π(S), S̄
4 free cluster S ′, S̄
5 depot S̄

It is easy to verify that all subcases of any unique case presented at a single line of Table 1
share the same cut δ(v), while their associated bipartite graphs B∗

v are spanning subgraphs of
graph B̄∗

v constructed in Lemma 4 for the entire polytope P=. In its proof, we showed that,
for any v, graph B̄∗

v contains a single connected component. Therefore, to prove Lemma 7, it is
sufficient to show that the same node subset induces a connected component in any mentioned
graph B∗

v as well.

For the sake of brevity, we restrict ourselves to cases 3 and 4 (see Table 1), since they appear
to be the most common. For the other cases, the argument can be obtained in a similar way.

As in the proof of Lemma 4, by π̃, σ̃, and r, we denote the subsets of nodes (in graph G)
belonging to parent, child and incomparable clusters with respect to cluster C(v), respectively.

Case 3 (π̃ ̸= ∅, σ̃ ̸= ∅). In both subcases, for C(v) ∈ π(S) and C(v) ∈ S̄, we verify the
connectivity of the subgraphs induced by the connected component found in the proof of Lemma
4, Case 3. We present these subgraphs in Fig. 13 in more detail. To prove their connectivity, it
is sufficient (a) to show that the single node from CBalas is adjacent to any other node from the
opposite part of graph B∗

v ; (b) to present at least one additional arc connecting nodes from any
two clusters other than CBalas.

(a) For instance, we establish the existence of an arc connecting node i ∈ CBalas and some
node j belonging to some child cluster C ∈ S ′ = S \ π(S) of cluster C(v) (Fig. 13). Departing
from the depot, we start with construction of a tour T by visiting all the clusters in S̄ except
CBalas (regarding the precedence constraints). Then, we proceed with all the ancestors of cluster
C(j) except C(v). This is possible due to Proposition 2.
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Figure 13: Connected components of B∗
v for Case 3. C(v) ∈ S̄ (left) and C(v) ∈ S̄ (right)

Figure 14: Connected components of B∗
v for Case 4. C(v) ∈ S̄′ (left) and C(v) ∈ S̄ (right)

Further, we traverse the i-v-j fragment and proceed with visiting all the remaining clusters
in π(S). Finally, we randomly visit all the clusters in S ′ and return to the depot by a direct arc.
By construction, it is the only arc in the proposed tour that belongs to the cut δ+(S \ π(S), S̄)
(in graph G). Therefore, for this tour, inequality (45) becomes tight.

(b) Without loss of generality, provide an argument for subcase C(v) ∈ S̄ (Fig. 13). Let i
be any node from some parent C(i) of C(v), and j belongs to a free cluster C(j). Again, we
consider the tour T departing from an arbitrary depot node. We visit all the ancestors of C(v),
except C(i). Next, we pass through the i-v-j fragment and continue from C(j) by visiting all
the clusters in π(S). Then, we proceed with traveling over the rest of S ′. Finally, we return
to S̄ by an arc that belongs to the cut δ+(S \ π(S), S̄), and complete the tour by visiting the
remaining clusters, arriving at the depot.

Case 4 (π̃ = ∅, σ̃ = ∅). Generally speaking, the argument for this case is close to the
previous one. However, we mention it separately, since this case appears to be the only reason
for requiring at least three free clusters from S ′ in the hypothesis of Theorem 5. As it follows
from Fig. 14, for C(v) ∈ S ′, cluster CBalas does no longer induce a dominating set in the
considered subgraph (of graph B∗

v). Instead, free clusters take its place.

Furthermore, these free clusters ensure the connectivity of the subgraph. Indeed, consider
free clusters C(i), C(j) ∈ S ′, such that C(i) ̸= C(v) ̸= C(j). Construct a feasible tour T with
the fragment i-v-j in graph G. Since C(i), C(v) and C(j) are free and belong to S ′, we are
allowed to move i-v-j directly after the departure from the depot. Then, after visiting all the
clusters in π(S), we come to the remaining clusters from S ′, cross the border between S ′ and S̄
(at once), move through all the clusters in S̄ and return to the depot.

In subcase C(v) ∈ S̄ (Fig. 14), the proof can be obtained in a similar way to the Case 3.
Lemma 7 is proved.
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Now, we are ready to establish the proof of Theorem 5.

Proof. Let Hπ be the face of polytope P= induced by π-inequality. By Theorem 1, we have
dimHπ ⩽ dimP= = |E| − n−m+ 1. By induction on number ρ (see eqn. (42)), we show that

dimHπ ⩾ |E| − n−m. (47)

Base case of (ρ = 0) is proved in Balas et al. (1995), since, in this case, the problem at hand
is equivalent to the PCATSP.

Inductive step. Assuming that (47) holds for some ρ, prove it for ρ+1. Combining claims
of Lemma 3 and Lemma 7, we have dimHπ ⩾ dimHπ

v + rank(B∗
v) = dimHπ

v + |δ(v)| − 1. Since,
by induction hypothesis, dimHπ

v ⩾ |E| − |δ(v)| − n+ 1−m, we obtain the desired lower bound
(47).

Figure 15: Example of the contradicting solution

To finalize the proof, we show that inequality (47) is tight. Indeed, suppose by contradiction
that it is not. But, under this assumption, dimHπ = dimP= and, consequently the face Hπ

coincides with the polytope P=. However, we can always provide a feasible solution crossing the
outgoing cut δ+(S \π(S)) at least twice (see, e.g., Fig. 15). Theorem 5 follows from the obtained
contradiction.

For the sake of brevity, we omit the proof of Theorem 6, which can be obtained in a similar
way.

5 Formulations

In this section we describe novel MILP-models (formulations) for the PCGTSP. Almost all
of them are extensions of the known formulations proposed initially in Gouveia and Pesneau
(2006); Gouveia and Ruthmair (2015); Gouveia et al. (2018) for the PCATSP and incorporate
exponential size families of valid inequalities introduced for the PCGTSP in Section 3.

Following to Gouveia et al. (2018), we start with the sequence of models obtained incremen-
tally as follows:
- M1 is our basic compact model described in Subsection 2.2,
- M2 is M1 augmented with strengthened simple-cut (27)–(29) and both strengthened regular
(30), and reversed GDDL (31) inequalities,
- M3 is M2 with strengthened 2-path inequalities (32)–(35),
- M4 is M3 enforced by strengthened 3v GDDL-like inequalities (36)–(38),
- M5 is M4 supplied with strengthened 4v GDDL-like inequalities (39).

In addition, we propose the model incorporating the inequalities described in Subsection 3.1,
Subsection 3.2, and Subsection 3.3:
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- M∗
1 is M1 augmented with π-, σ-, and (π, σ)-inequalities (17)–(19), precedence cycle breaking

inequalities (20) and (21), and inequalities (22)–(26).

In order to increase the tightness of the lower bounds, we combine M∗
1 with other best

performers of our exploratory Experiment I (see Subsection 7.2):
- M∗

3, which is M∗
1 + M3 and

- M∗
5 = M∗

1 + M5.

In all these models, families of valid inequalities are separated exactly, following to the in-
cremental pattern proposed in Gouveia et al. (2018). Although the models M3 and M5 clearly
benefit from the combination with M∗

1 in terms of the lower bounds, they still remain to be
rather time-consuming.

Therefore, by evolving the well-known roulette-wheel sampling principle (see ex. Gendreau
and Potvin (2019)) and simple online learning technique, we propose a novel heuristic separation
procedure and the corresponding models M∗

3s and M∗
5s, which we call sampled as well. The main

idea of the proposed procedure is as follows:
- to each family of valid inequalities, we assign an appropriate probabilistic measure; for instance,
in the case of 3v GDDL-like inequalities (36)-(38), it is sufficient to define a discrete distribution
on the set of ordered quadruples (Cp, Cq, Cr, Cs) of non-depot clusters;
- given by a sample size, at each separation epoch, we apply cut generation technique at this
epoch only to the entries of a sample drawn from the defined distribution;
- each time, when a tuple managed to produce a cut, we increase its probability.

Generally speaking, the proposed separation heuristic is a compromise between the tightness
of the LP-relaxation bounds and numerical performance. However, we decide to evaluate it in
our experiments along with the known incremental separation pattern, because the sampling
gives us an opportunity to adopt powerful but large families of valid inequalities from the very
beginning of the LP-relaxation solution process.

6 Branch-and-Cut Algorithm

Our branch-and-cut algorithm extends the algorithm proposed in Gouveia and Ruthmair (2015)
for the SOP and has a component-wise structure based on few main building blocks. Among
them are instance preprocessing routine, primal heuristic, and a formulation of the problem in
question that specifies a family of cutting planes.

In its current version, the proposed algorithm is restricted to use the same instance prepro-
cessing routine. The arcs violating precedence constraints are excluded from the given graph
by preprocessing rules (1)-(5), previously introduced in Balas et al. (1995) for the PCATSP. In
addition, as the only primal heuristic, the algorithm uses PCGLNS, proposed in Khachay et al.
(2020) and briefly described in Subsection 6.1. Thus, all the proposed variants of the algorithm
(refer to Subsection 7.3 for details) were obtained by varying the problem formulation.

6.1 PCGLNS Primal Heuristic

The PCGLNS heuristic extends the recent GLNS algorithm proposed in Smith and Imeson
(2017) for the common GTSP. PCGLNS is designed to take into account additional precedence
constraints defined on a set of clusters. In a nutshell, PCGLNS appears to be an original
implementation of the seminal Adaptive Large Neighborhood Search (ALNS) metaheuristic (see,
e.g. Gendreau and Potvin (2019)) and combines the well-known ruin and recreate principle with
online learning over a given sets of basic removal and insertion local search heuristics.
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Table 2: PCGTSPLIB library.

instance n m PC density

ESC07 39 8 14
ESC12 65 13 23
ESC25 133 26 36
ESC47 244 48 79
ESC63 349 64 296
ESC78 414 79 361
br17.10 88 17 31
br17.12 92 17 38
ft53.1 281 53 64
ft53.2 274 53 82
ft53.3 281 53 269
ft53.4 275 53 811
ft70.1 346 70 86
ft70.2 351 70 117
ft70.3 347 70 284
ft70.4 353 70 1394

kro124p.1 514 100 132
kro124p.2 524 100 169
kro124p.3 534 100 365
kro124p.4 526 100 2404

instance n m PC density

p43.1 203 43 53
p43.2 198 43 76
p43.3 211 43 138
p43.4 204 43 538

prob.100 510 99 139
prob.42 208 41 59
rbg048a 255 49 495
rbg050c 259 51 558
rbg109a 573 110 5438
rbg150a 871 151 10484
rbg174a 962 175 14129
rbg253a 1389 254 30434
rbg323a 1825 324 48525
rbg341a 1822 342 56644
rbg358a 1967 359 56894
rbg378a 1973 379 63963
ry48p.1 256 48 59
ry48p.2 250 48 73
ry48p.3 254 48 179
ry48p.4 249 48 643

n and m are the number of nodes and clusters respectively
’PC density’ is the number of arcs in the transitively closed precedence DAG

6.2 Implementation

The proposed algorithm is implemented on top of the Gurobi 9.3 framework. Primal heuristic and
cutting planes are provided as user callback functions. For the sampled models, all the parameters
of the heuristic separation including sample sizes and learning rates are tuned within preliminary
testing stage. All the built-in Gurobi heuristics and cutting plane algorithms are disabled, while
other parameters of the solver keep their default values. The suggested implementation is carried
out in Python 3 leveraging NetworkX software package for internal graph processing tasks and
fully cross-platform. All source code together with the reported experimental results are open
for public access at Khachai (2022).

7 Numerical evaluation

In this section, we report results of the competitive numerical experiments that show how
each proposed formulation and variant of the branch-and-cut algorithm could be useful for
the PCGTSP. In particular, these results reveal the notable impact contributed by predeces-
sor/successor inequalities in terms of accuracy and running time, which can be considered as
an additional support of the theoretical results obtained in Section 4. We proceed with two
separate experiments. In the former one, we evaluate the proposed formulations with respect
to their LP-relaxation bounds and the time consumption. In turn, the purpose of the latter
one is to compare the best performers of the first experiment with known results within the
branch-and-cut setting. All the computations are carried out on the 16-core Intel Xeon 128G
RAM server 2 against the same public benchmark library PCGTSPLIB.

7.1 PCGTSPLIB Benchmark library

The PCGTSPLIB library was derived in Salman et al. (2020) from the well-known SOPLIB
library in order to provide a test-bed for PCGTSP. To the best of our knowledge, it is the only
public library for the problem in question. We provide a short overview of this library in Table 2.

Since computational complexity of the PCGTSP depends mostly on the number of clusters
m (rather than the size of a node set n, as it is for SOP), it is convenient to partition all
40 instances of this library into small (up to 30 clusters), medium (up to 70 clusters), large
(up to 120 clusters), and huge ones (more than 120 clusters). In addition, the instances differ
substantially in terms the density of the constituent partial orders.

For each instance, we round the transportation costs to the nearest integral values. For the
sake of convenience, we provide the converted instances along with our source codes Khachai

2provided by Supercomputer ‘Uran’ at Krasovsky Institute of Mathematics and Mechanics
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(2022).

7.2 Experiment I: Comparison of the LP-relaxations

Inspired by the results of Gouveia et al. (2018), we start with the comparison of the formulations
M1–M5 and M∗

1 in terms of their LP-relaxation bounds and time complexity. In this experiment,
for each competing model, computation time was limited to 10 hours (36000 seconds).

Since the separation procedures for M2–M5 follow the incremental pattern initially proposed
for the SOP, more complex formulations provide tighter lower bounds, perhaps with substantially
increased computation time. Therefore, for each instance, whose optimum value is achieved by
some Mi model, we do not solve it by Mj , for any j > i. As it follows from Table 3, the optimum
values were found for 8 out of 40 instances: for ESC63 - by model M1, for br17.10 and br17.12
- by model M2, for other five - by model M∗

1 (along with M2 and M5 for rbg048a and rbg050c,
respectively). For the remaining instances, M2 found the tightest lower bound once, M3 three
times as well as M5, and M∗

1 — 25 times.

Table 3: Comparison of formulations M1–M5 and M∗
1 .

Instance OPT
M1 M2 M3 M4 M5 M∗

1
LPB t LPB t LPB t LPB t LPB t LPB t

ESC07 1730 1683 0 1730 0.28 1730 0.29 1730 0.29 1730 0.3 1730 0.09
ESC12 1390 1238 0.02 1387 5.91 1387 7.1 1387 8.21 1387 9.97 1390 0.8
ESC25 1383 1296 0.21 1362 229 1362 300 1362 364 1362 448 1363 7
ESC47 1063 1001 8.46 1012 2982 1012 3545 1013 4655 1016 7420 1023 119
ESC63 62 62 207.36 – – – – – – – – 62 318
ESC78 [14673, 14808] 14629 3829.32 14640 23287 14641 36000 14641 36000 14641 36000 14659 5477
br17.10 43 15 0.05 43 6.81 – – – – – – 32 5
br17.12 43 15 0.05 43 6.54 – – – – – – 35 6
ft53.1 6194 4981 9.71 5780 7045 5781 9646 5781 10540 5781 12688 5833 400
ft53.2 [6581, 6619] 5079 19.45 5951 4381 5960 8084 5961 10924 5962 17774 5982 174
ft53.3 [8323, 8446] 5928 114.76 7168 5761 7169 8637 7169 11541 7169 13080 7178 200
ft53.4 11822 9850 2.6 11443 4828 11449 5964 11449 9858 11449 14692 11437 49
ft70.1 32608 31543 228.15 32258 19022 32258 36000 32258 36000 32258 36000 32348 3069
ft70.2 [33037, 33448] 31820 395.64 32556 19258 32556 23596 32556 24649 32556 36000 32561 673
ft70.3 [34761, 35234] 32842 712.56 33960 9728 33961 25165 33961 36000 33961 36000 33856 1764
ft70.4 [44368, 44451] 40068 115.96 41080 9196 42116 23481 42116 36000 42116 36000 42043 182
kro124p.1 [31812, 32825] 29337 3589.11 29647 36000 29647 36000 29647 36000 29647 36000 30663 36000
kro124p.2 [32320, 34253] 29544 3036 29544 36000 29923 36000 29923 36000 29923 36000 30259 9791.41
kro124p.3 [34961, 40906] 30424 17364.51 30424 36000 30425 36000 30425 36000 30425 36000 31840 21149
kro124p.4 [56261, 62818] 43495 2310.91 43495 36000 47023 36000 47023 36000 47023 36000 49019 4776
p43.1 22545 879 3.19 22414 1702 22414 2175 22414 2997 22414 4363 22545 308
p43.2 22837 985 5.17 22651 1858 22651 2465 22651 3525 22651 4350 22645 409
p43.3 23119 1076 3.38 22802 1956 22802 2532 22802 3689 22802 5636 22848 400
p43.4 66848 44854 1.56 53858 1622 53858 2648 53858 3844 66678 4951 56071 73
prob.100 [838, 1343] 803 428.58 815 36000 816 36000 816 36000 816 36000 822 3457.78
prob.42 202 183 5.33 190 1429 191 1632 192 2718 193 3040 188 201
rbg048a 282 273 4.8 282 2901 – – – – – – 282 61
rbg050c 378 376 7.14 377 3311 377 5763 377 12218 378 14430 378 38
rbg109a 848 803 1.87 803 36000 832 36000 832 36000 832 36000 840 427
rbg150a 1414 1381 7.44 1381 36000 1381 36000 1381 36000 1381 36000 1411 1519
rbg174a 1641 1606 8.19 1606 36000 1606 36000 1606 36000 1606 36000 1631 2512
rbg253a 2372 2308 20.05 2308 36000 2308 36000 2308 36000 2308 36000 2342 850
rbg341a [2062, 2147] 1961 82.02 1961 36000 1961 36000 1961 36000 1961 36000 2019 1604.05
rbg358a [2037, 2172] 1967 7028 1967 36000 1967 36000 1967 36000 1967 36000 2001 36000
rbg378a [2233, 2385] 2132 35422 2132 36000 2132 36000 2132 36000 2132 36000 2166 36000
ry48p.1 [13084, 13135] 11617 22.54 11952 3413 11966 5311 11984 6772 11988 10910 12158 440
ry48p.2 [13401, 13802] 11721 12.24 12188 3529 12216 4375 12216 6812 12216 8171 12357 379
ry48p.3 [15768, 16533] 12520 112.79 13873 1749 13879 4392 13879 4717 13879 5888 13937 235
ry48p.4 25977 20378 3.46 21888 1844.32 21888 2081 22670 6564 23049 8669 22861 33

Notes: column ‘OPT’ provides optimum values of the instances (if known) or the best bounds;
columns M1–M5 and M∗

1 present LP-relaxation lower bounds and the corresponding running times;
optimum values highlighted in bold, best lower bounds underlined

Although the model M∗
1 appears to be the best performer for the most cases, there exist

instances, e.g. ft53.4, ft70.4, and ry48.p4, where some other competitors found more tight lower
bounds. Therefore, we evaluate models M∗

3 and M∗
5 obtained by combination M∗

1 with M3 and
M∗

1 with M5, where M5 and M3 are chosen for the combination as the most powerful and well-
balanced3 models among M2–M5 respectively.

According to results presented in Table 4, formulations M3, M5 and M∗
1 collaborate quite

well. In particular, for instances ft53.2, ft70.1 and p43.2, M∗
3 provides better lower bounds than

both initial models M3 and M∗
1. The similar result can be observed for instances ry48p.3 and

ft53.4 with respect to formulations M5, M
∗
1 and their combination M∗

5.

While the combined models perform better than their initial counterparts, they still remain to
be quite expensive to be applied in the branch-and-cut algorithm. On the other hand, comparing

3with respect to accuracy and time consumption
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the model M∗
3 with the sampled one M∗

3s and excluding tiny instances ESC07, ESC12, br17.10
and br17.12, we observe the significant decrease of the time complexity, i.e. LP-relaxation was
solved 16 times faster in average. Furthermore, the better lower bounds were obtained in 18 out
of 36 remaining instances. For those instances where M∗

3s found less accurate results, the lower
bound decreased at most by 1.7%. In addition, we should emphasize one large instance rbg109a,
where M∗

3s found an optimum value of the LP-relaxation faster than all other competitors.

Table 4: Performance of the combined and sampled formulations.

Instance OPT
M∗

1 M3 M5 M∗
3 M∗

5 M∗
3s M∗

5s
LPB t LPB t LPB t LPB t LPB t LPB t LPB t

ESC07 1730 1730 0.09 1730 0.29 1730 0.3 1730 0.29 1730 0.3 1730 0.04 1730 0.06
ESC12 1390 1390 0.8 1387 7.1 1387 9.97 1387 7.2 1387 10 1390 0.35 1390 0.46
ESC25 1383 1363 7 1362 300 1362 448 1362 205 1362 221 1363 13 1383 4.31
ESC47 1063 1023 119 1012 2982 1016 7420 1014 5899 1018 6658 1026 247 1030 589
ESC63 62 62 318 62 8491 62 36000 62 13790 62 16506 62 250 62 243
ESC78 [14673, 14808] 14659 5477 14640 23287 14641 36000 14660 36000 14660 36000 14660 6106 14660 5312
br17.10 43 32 5 43 7 43 12.63 43 6.87 43 8.1 35 6 33 5
br17.12 43 35 6 43 7 43 35.05 43 6.69 43 7.99 34 5 34 4
ft53.1 6194 5833 400 5781 9646 5781 12688 5803 4786 5803 6144 5895 910 5833 375
ft53.2 [6581, 6619] 5982 174 5960 8084 5962 17774 6035 7282 6035 10144 5981 237 5982 124
ft53.3 [8323, 8446] 7178 200 7169 8637 7169 13080 7169 7717 7171 10286 7176 300 7180 204
ft53.4 11822 11437 49 11449 5964 11449 14692 11450 1450 11457 9649 11498 62 11463 43
ft70.1 32608 32348 3069 32258 36000 32258 36000 32380 13700 32380 36000 32385 4484 32348 2191
ft70.2 [33037, 33448] 32561 673 32556 23596 32556 36000 32563 24445 32564 28444 32598 862 32559 586
ft70.3 [34761, 35234] 33856 1764 33961 25165 33961 36000 33990 21890 33995 29579 33855 1275 33852 1432
ft70.4 [44368, 44451] 42043 182 42116 23481 42116 36000 42120 11022 42120 12040 42019 287 41900 198
kro124p.1 [31812, 32825] 30663 36000 29647 36000 29647 36000 29647 36000 29647 36000 30174 36000 30563 36000
kro124p.2 [32320, 34253] 30259 9791.41 29923 36000 29923 36000 30082 36000 30082 36000 30274 36000 30326 5527
kro124p.3 [34961, 40906] 31840 21149 30425 36000 30425 36000 30425 36000 30425 36000 31780 21225 31871 36000
kro124p.4 [56261, 62818] 49019 4776 47023 36000 47023 36000 47023 36000 47023 36000 48660 2579 48560 2513
p43.1 22545 22545 308 22414 2175 22414 4363 22415 1774 22415 3816 22545 206 22545 167
p43.2 22837 22645 409 22651 2465 22651 4350 22653 2316 22655 3649 22650 445 22642 338
p43.3 23119 22848 400 22802 2532 22802 5636 22870 1272 22872 2361 22915 389 22870 325
p43.4 66848 56071 73 53858 2648 66678 4951 53859 1328 66679 3400 56053 80 66700 340
prob.100 [838, 1343] 822 3457.78 816 36000 816 36000 816 36000 816 36000 823 4736 822 3596
prob.42 202 188 201 191 1632 193 3040 192 1325 193 2043 190 322 188 196
rbg048a 282 282 61 282 3544 282 15951 282 2128 282 21449 282 38 282 46
rbg050c 378 378 38 377 5763 378 14430 378 2880 378 12682 378 29 378 65
rbg109a 848 840 427 832 36000 832 36000 832 36000 832 36000 848 3530 840 952
rbg150a 1414 1411 1519 1381 36000 1381 36000 1381 36000 1381 36000 1411 17762 1411 2280
rbg174a 1641 1631 2512 1606 36000 1606 36000 1606 36000 1606 36000 1635 36000 1632 2455
rbg253a 2372 2342 850 2308 36000 2308 36000 2308 36000 2308 36000 2342 9059 2342 2135
rbg323a 2533 2515 3654.61 2491 36000 2491 36000 2491 36000 2491 36000 2517 5580 2515 7737
rbg341a [2062, 2147] 2019 1604.05 1961 36000 1961 36000 1961 36000 1961 36000 2017 4190 2021 3533
rbg358a [2037, 2172] 2001 36000 1967 36000 1967 36000 1967 36000 1967 36000 2013 36000 2013 36000
rbg378a [2233, 2385] 2166 36000 2132 36000 2132 36000 2132 36000 2132 36000 2189 36000 2191 36000
ry48p.1 [13084, 13135] 12158 440 11966 5311 11988 10910 12052 3539 12053 8878 12458 926 12167 252
ry48p.2 [13401, 13802] 12357 379 12216 4375 12216 8171 12217 5176 12217 8459 12780 1436 12366 253
ry48p.3 [15768, 16533] 13937 235 13879 4392 13879 5888 14011 5084 14597 13794 13783 179 13840 172
ry48p.4 25977 22861 33 21888 2081 23049 8669 22781 1874 23050 4988 22674 34 22677 46

Notes: column ‘OPT’ provides optimum values of the instances (if known) or the best bounds;
optimum values highlighted in bold

As for the models M∗
5 and M∗

5s, we observe average speed-up by 59 times and better lower
bounds in 22 out the same 36 instances. For that instances, where M∗

5 outperform its sampled
counterpart, the lower bound decreased at most by 5.2%. In addition, we should emphasize the
instance ESC25, for which M∗

5s was the only competitor, who found the optimum value.

To summarize, we conclude that the addition of predecessor/successor inequalities and ap-
plication of the proposed heuristic separation procedure can provide significant improvement in
LP-relaxation of the PCGTSP.

7.3 Experiment II: Comparison of Branch-and-Cut Algorithms

This experiment is intended to assess variants of the branch-and-cut algorithm proposed in
Section 6 induced by several formulations introduced in Section 5.

For the first competition, we choose variants bc∗1, bc
∗
3s, and bc∗5s induced by the best per-

formers of Experiment I, the models M∗
1, M

∗
3s, and M∗

5s respectively. In addition, we consider
the variant bc∗MTZ induced by the formulation M∗

1, where the compact model is replaced with an
adapted to the PCGTSP classic compact Miller-Tucker-Zemlin model (Miller et al. (1960)). It
can be obtained from the considered compact model by replacing constraints (12)–(15) with

(m− 1)upq + vp ≤ vq +m− 2 (Cp, Cq ∈ C \ {C1}, p ̸= q),

for 0 ≤ vp, vq ≤ (m − 2), and exclusion of y variables. Such a model was chosen intentionally,
as one of the lightest known compact models ensuring efficient enumeration of the nodes of
branching tree. As baselines, we use:
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- Gurobi solver applied to the model M1 with default configuration (including built-in heuristics
and cutting planes),
- our PCGTSP adaptation bc∗DFJ of the state-of-the-art branch-and-cut algorithm for the SOP
proposed in Gouveia and Ruthmair (2015). This algorithm tackles the similar partial classic
Dantzig-Fulkerson-Johnson (DFJ) model Dantzig et al. (1954) ((6)–(11), and (16) without y
variables) and separates corresponding families of valid inequalities (17)–(26). In addition, we
replace the initial primal heuristic with our GLNS-based heuristic PCGLNS, since GLNS appears
to be more efficient for the GTSP-like problems (see Smith and Imeson (2017)).

Table 5(a): Comparison of the branch-and-cut algorithms

Instance OPT Gurobi bc∗DFJ bc∗1 bc∗3s bc∗5s bc∗MTZ bc3s bcMTZ

ESC07 1730

UB 1730 1730 1730 1730 1730 1730 1730 1730
LB 1730 1730 1730 1730 1730 1730 1730 1730
gap 0 0 0 0 0 0 0 0
t 0.05 0.06 0.09 0.04 0.06 0.05 0.06 0.05

ESC12 1390

UB 1390 1390 1390 1390 1390 1390 1390 1390
LB 1390 1390 1390 1390 1390 1390 1390 1390
gap 0 0 0 0 0 0 0 0
t 5.05 0.58 0.8 0.35 0.46 0.19 2.14 0.37

ESC25 1383

UB 1383 1383 1383 1383 1383 1383 1383 1383
LB 1383 1383 1383 1383 1383 1383 1383 1383
gap 0 0 0 0 0 0 0 0
t 7.56 1.98 8 15 4.31 3.75 8.55 4

ESC47 1063

UB 1063 1063 1063 1063 1063 1063 1063 1063
LB 1063 1063 1063 1063 1063 1063 1063 1063
gap 0 0 0 0 0 0 0 0
t 6963 43.06 623 1520 837 29 1355 85

ESC63 62

UB 62 62 62 62 62 62 62 62
LB 62 62 62 62 62 62 62 62
gap 0 0 0 0 0 0 0 0
t 209 7.52 318 250 243 4.2 244 4.4

ESC78 [14673, 14808]

UB 14808 14808 14808 14808 14808 14808 14808 14808
LB 14633 14657 14661 14666 14667 14673 14553 14633
gap 1.2 1 1 1 1 0.9 1.8 1.2
t 72000 72000 72000 72000 72000 72000 72000 72000

br17.10 43

UB 43 43 43 43 43 43 43 43
LB 43 43 43 43 43 43 43 43
gap 0 0 0 0 0 0 0 0
t 232 11.74 12 10 13 9.75 10.76 4183

br17.12 43

UB 43 43 43 43 43 43 43 43
LB 43 43 43 43 43 43 43 43
gap 0 0 0 0 0 0 0 0
t 75 58.09 11 12 12 12.1 12 362

ft53.1 6194

UB 6194 6194 6194 6194 6194 6194 6194 6194
LB 5933 6194 6169 6176 6177 6194 6176 6022
gap 4.4 0 0.4 0.3 0.3 0 0.3 2.9
t 72000 3398 72000 72000 72000 2054 72000 72000

ft53.2 [6581, 6619]

UB 6619 6619 6619 6619 6619 6619 6619 6619
LB 6087 6442 6410 6490 6439 6581 6487 6248
gap 8.7 2.7 3.3 2 2.8 0.6 2 5.9
t 72000 72000 72000 72000 72000 72000 72000 72000

Notes: best performers are highlighted in bold

All the competitors are supplied with the same primal heuristic PCGLNS. The time limit is
set to 20 hours (72000 seconds). We report cost of the best found solution (UB), the best lower
bound (LB), an accuracy measure (gap, in percentage)

gap = UB−LB
LB ⩾ UB−OPT

OPT = ε,

for the relative error ε of the obtained solution, and the elapsed time (in seconds).

As it follows from Tables 5(a)–5(d), both baseline algorithms solved to optimality 17 out
of 40 instances in total, where the instances rbg150a and rbg174a (which are huge ones) were
solved by Gurobi solely, and the instances ft53.1, ft70.1, p43.1, p43.4, prob.42 – by bc∗DFJ. In
turn, the proposed algorithms bc∗1, bc

∗
3s, bc

∗
5s, bc

∗
MTZ managed to solve to optimality 23 out of

40 instances in total including all the mentioned above. Regarding to the new six instances,
ft53.4 and ry48p.4 were solved by all of them, the instance rbg253a was solved by bc∗1, the
instance rbg323a – by bc∗3s, bc∗5s and bc∗MTZ. Finally, the optimal solutions of the instances
p43.2 and p43.3 were found by both bc∗3s and bc∗5s. In addition, each of 15 instances solved to
optimality by bc∗DFJ is also solved exactly by one of the proposed variants about 8 times faster in
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average. Nevertheless, we should mention instances ESC25, rbg048a, and rbg050c, where bc∗DFJ

outperforms other competitors in terms of the elapsed time.

In the residual 17 open instances, the proposed algorithms managed to significantly increase
lower bounds and close the average gap value about 4.5 times better than both baselines and
complement each other quite well.

Our second observation is related to the comparison of variants bc∗3s and bc∗MTZ with the
corresponding counterparts bc3s and bcMTZ obtained by exclusion the predecessor / successor
inequalities from the separation pipeline. Regarding to bc3s and bc∗3s, we observe that inclusion
of such inequalities allows to solve to optimality three additional instances (p43.2, p43.3, and
rbg323a). Furthermore, for 12 out of 16 instances solved by both competitors exactly, we observe
notable decrease of the running rime. In addition, for the remaining 21 instances, bc∗3s closed the
gap by 1.7 times better in average. In turn, we should note that bc∗MTZ significantly outperforms
bcMTZ in terms of instances solved to optimality, gap values and elapsed time.

Therefore, the predecessor/successor inequalities are proved to be useful for the PCGTSP in
the branch-and-cut setting as well.

Table 5(b): Comparison of the branch-and-cut algorithms

Instance OPT Gurobi bc∗DFJ bc∗1 bc∗3s bc∗5s bc∗MTZ bc3s bcMTZ

ft53.3 [8323, 8446]

UB 8446 8446 8446 8446 8446 8446 8446 8446
LB 7135 7786 7992 8186 8222 8323 8108 7393
gap 18.4 8.5 5.7 3.2 2.7 1.5 4.2 14.2
t 72000 72000 72000 72000 72000 72000 72000 72000

ft53.4 11822

UB 11822 11822 11822 11822 11822 11822 11822 11822
LB 11253 11687 11822 11822 11822 11822 11822 11707
gap 5.1 1.2 0 0 0 0 0 1
t 72000 72000 129 163 192 162 733 72000

ft70.1 32608

UB 32614 32608 32614 32614 32614 32608 32614 32614
LB 31765 32608 32466 32480 32455 32608 32475 31968
gap 2.7 0 0.5 0.4 0.5 0 0.4 2
t 72000 6523 72000 72000 72000 5573 72000 72000

ft70.2 [33037, 33448]

UB 33448 33448 33448 33448 33448 33448 33448 33448
LB 32029 32889 32799 32890 32805 33037 32740 32725
gap 4.4 1.7 2 1.7 2 1.2 2.2 2.2
t 72000 72000 72000 72000 72000 72000 72000 72000

ft70.3 [34761, 35234]

UB 35234 35234 35234 35234 35234 35234 35234 35234
LB 33232 34105 34304 34761 34719 34736 34629 34167
gap 6 3.3 2.7 1.4 1.5 1.4 1.7 3.1
t 72000 72000 72000 72000 72000 72000 72000 72000

ft70.4 [44368, 44451]

UB 44451 44451 44451 44451 44451 44451 44451 44451
LB 41634 41388 44051 43998 44033 44368 43990 41459
gap 6.8 7.4 0.9 1 0.9 0.2 1 7.2
t 72000 72000 72000 72000 72000 72000 72000 72000

kro124p.1 [31812, 32825]

UB 32835 32835 32825 32835 32835 32835 32835 32835
LB 29704 30858 30827 30174 30182 31812 29530 30454
gap 10.5 6.4 6.5 8.8 8.8 3.2 11.2 7.8
t 72000 72000 72000 72000 72000 72000 72000 72000

kro124p.2 [32320, 34253]

UB 34253 34253 34253 34253 34253 34253 34253 34253
LB 30084 30722 30509 30448 30448 32320 29881 31657
gap 13.9 11.5 12.3 12.5 12.5 6 14.6 8.2
t 72000 72000 72000 72000 72000 72000 72000 72000

kro124p.3 [34961, 40906]

UB 40906 40906 40906 40906 40906 40906 40906 40906
LB 30945 31930 32734 32954 32674 34961 31122 33738
gap 32.2 28.1 25 24.1 25.2 17 31.4 21.2
t 72000 72000 72000 72000 72000 72000 72000 72000

kro124p.4 [56261, 62818]

UB 62818 62818 62818 62818 62818 62818 62818 62818
LB 46861 45720 54993 55329 53841 56261 51210 51495
gap 34.1 37.4 14.2 13.5 16.7 11.7 22.7 22
t 72000 72000 72000 72000 72000 72000 72000 72000

Notes: best performers are highlighted in bold

8 Conclusion

In this paper, we addressed the Precedence Constrained Generalized Traveling Salesman Prob-
lem (PCGTSP) both in terms of the polyhedral study and algorithmic analysis. By evolving
the results previously introduced for PCATSP, we proposed several novel families of the valid
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Table 5(c): Comparison of the branch-and-cut algorithms

Instance OPT Gurobi bc∗DFJ bc∗1 bc∗3s bc∗5s bc∗MTZ bc3s bcMTZ

p43.1 22545

UB 22545 22545 22545 22545 22545 22545 22545 22545
LB 22408 22545 22545 22545 22545 22545 22545 22545
gap 0.6 0 0 0 0 0 0 0
t 72000 195 308 206 167 27 2583 35722

p43.2 22837

UB 22837 22837 22837 22837 22837 22837 22837 22837
LB 22461 22711 22731 22837 22837 22765 22801 22639
gap 1.7 0.6 0.5 0 0 0.3 0.2 0.9
t 72000 72000 72000 22780 39365 72000 72000 72000

p43.3 23119

UB 23119 23119 23119 23119 23119 23119 23119 23119
LB 22399 22293 22970 23119 23119 23085 23104 22821
gap 3.2 3.7 0.6 0 0 0.1 0.1 1.3
t 72000 72000 72000 8672 11665 72000 72000 72000

p43.4 66848

UB 66848 66848 66848 66848 66848 66848 66848 66848
LB 45266 66848 66848 66848 66848 66848 66848 45169
gap 47.7 0 0 0 0 0 0 48
t 72000 2596 131 283 587 86 212 72000

prob.100 [838, 1343]

UB 1343 1516 1343 1343 1343 1343 1343 1343
LB 813 824 826 824 826 838 813 790
gap 65.2 84 62.6 63 62.6 60.3 65.2 70
t 72000 72000 72000 72000 72000 72000 72000 72000

prob.42 202

UB 204 202 202 202 202 202 202 202
LB 198 202 202 202 202 202 202 202
gap 3 0 0 0 0 0 0 0
t 72000 832 767 869 3559 326 1155 3987

rbg048a 282

UB 282 282 282 282 282 282 282 282
LB 282 282 282 282 282 282 282 282
gap 0 0 0 0 0 0 0 0
t 57 13 61 38 46 22 61 46

rbg050c 378

UB 378 378 378 378 378 378 378 378
LB 378 378 378 378 378 378 378 378
gap 0 0 0 0 0 0 0 0
t 42 21 38 29 65 47 34 673

rbg109a 848

UB 848 848 848 848 848 848 848 848
LB 848 848 848 848 848 848 848 834
gap 0 0 0 0 0 0 0 1.7
t 1942 51757 781 3567 3530 842 6583 72000

rbg150a 1414

UB 1414 1414 1414 1414 1414 1414 1414 1414
LB 1414 1400 1414 1414 1414 1414 1414 1400
gap 0 1 0 0 0 0 0 1
t 21725 72000 7674 27154 70000 22134 42549 72000

Notes: best performers are highlighted in bold
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Table 5(d): Comparison of the branch-and-cut algorithms

Instance OPT Gurobi bc∗DFJ bc∗1 bc∗3s bc∗5s bc∗MTZ bc3s bcMTZ

rbg174a 1641

UB 1641 1641 1641 1641 1641 1641 1641 1641
LB 1641 1602 1641 1636 1637 1638 1630 1607
gap 0 2.4 0 0.3 0.2 0.2 0.7 2.1
t 62657 72000 14448 72000 72000 72000 72000 72000

rbg253a 2372

UB 2373 2372 2372 2372 2372 2373 2372 2373
LB 2369 2358 2372 2357 2357 2365 2350 2301
gap 0.2 0.6 0 0.6 0.6 0.3 0.9 3.1
t 72000 72000 27642 72000 72000 72000 72000 72000

rbg323a 2533

UB 2595 2597 2586 2533 2533 2533 2594 2586
LB 2528 2517 2531 2533 2533 2533 2530 2488
gap 2.7 3.2 2.2 0 0 0 2.5 3.9
t 72000 72000 72000 71550 71800 71900 72000 72000

rbg341a [2062, 2147]

UB 2180 2195 2199 2184 2147 2184 2184 2184
LB 2047 2017 2056 2061 2062 2059 2060 1928
gap 6.5 8.8 7 6 4.1 6.1 6 13.3
t 72000 72000 72000 72000 72000 72000 72000 72000

rbg358a [2037, 2172]

UB 2172 2174 2175 2172 2174 2185 2172 2176
LB 1996 2009 2025 2025 2013 2037 2002 1956
gap 8.8 8.2 7.4 7.3 8 7.3 8.5 11.2
t 72000 72000 72000 72000 72000 72000 72000 72000

rbg378a [2233, 2385]

UB 2390 2385 2404 2400 2402 2404 2400 2404
LB 2185 2191 2210 2214 2205 2233 2132 2086
gap 9.4 8.9 8.8 8.4 8.9 7.7 12.6 15.2
t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.1 [13084, 13135]

UB 13135 13135 13135 13135 13135 13135 13135 13135
LB 12065 12732 12634 13084 12914 13039 12669 12596
gap 8.9 3.2 4 0.4 1.7 0.7 3.7 4.3
t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.2 [13401, 13802]

UB 13802 13802 13802 13802 13802 13802 13802 13802
LB 12217 12963 12917 13401 13327 13223 13019 12729
gap 13 6.5 6.9 3 3.6 4.4 6 8.4
t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.3 [15768, 16533]

UB 16533 16533 16533 16553 16533 16533 16533 16533
LB 13387 14753 14825 15147 15441 15768 14672 14268
gap 23.5 12.1 11.5 9.3 7.1 4.9 12.7 15.9
t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.4 25977

UB 25977 25977 25977 25977 25977 25977 25977 25977
LB 22732 24079 25977 25977 25977 25977 25977 23644
gap 14.3 7.9 0 0 0 0 0 9.9
t 72000 72000 11182 22106 29865 4626 25000 72000

Notes: best performers are highlighted in bold
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inequalities. Then, we established dimension of the PCGTS polytope and proved sufficient
conditions for the predecessor/successor inequalities to be facet-inducing.

Further, we offered a sequence of novel formulations for the PCGTSP and proposed the first
branch-and-cut algorithm relying on these fomulations. In the numerical evaluation, we reported
the most efficient formulations in terms of LP-relaxation bounds and suggested several well-
collaborating variants of the proposed branch-and-cut. As a result, the number of PCGTSPLIB
instances solved to optimality became 23 out of 40, where for 11 instances it was done for the
first time.

In addition, the obtained results confirmed the importance of the predecessor/successor in-
equalities for the PCGTSP, both for LP-relaxation and branch-and-cut framework.
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spanning tree problem with grid clustering. 4OR, 4(4):319–329, 2006. ISSN 1614-2411. doi:
10.1007/s10288-006-0012-6.
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