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Abstract

In this paper, we study the possibility of adding source separation as a pre-
processing step to the computer-assisted orchestration process. We first discuss the
motivation of this addition and its potential to increase the quality of orchestrations
of multi-layered sounds. Second, we select several state-of-the-art models for both
music source separation (separation of instruments) and universal sound separation
(separation of arbitrary sounds), and compare their effectiveness for the task of
orchestration. We assess which methods best suit the needs of orchestration by
applying them on our own target sounds, orchestrating the separated outputs, and
finally comparing them to the orchestration of the same target without separation.
Our experiments show that source separation improves the quality of orchestra-
tions, and the more accurate the separation, the better the resulting orchestration.
Finally, we compare unsupervised methods to supervised methods for separation,
and comment on the effect of training data selection on performance of supervised
methods.

1 Introduction

Computer-assisted composition is a field that focuses on the creation of computational tools to aid
in the musical composition process (Fernandez and Vico, 2013; Ariza, 2005). Within this field lies
target-based computer-assisted musical orchestration, a method which uses orchestral instruments to
recreate the timbre and temporal evolution of a target sound. It is the process of creating an orchestral
score that best matches an arbitrary target sound given a similarity metric and constraints (Maresz,
2013). In other words, finding which instruments playing which notes sounds the most similar to
the given sound. A goal of computer-assisted orchestration is to help composers by accelerating
certain creative processes. In particular, target-based computer-assisted orchestration helps composers
explore new timbral possibilities by combining instrumental samples in such a way as to mimic the
timbre of a given target sound.

Target-based computer-assisted orchestration is a complex problem because it attempts to recreate
the timbre of different sounds, and timbre is a difficult parameter to model. The task becomes more
complicated when you consider multi-layered sounds that are a combination of multiple sources.
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When two or more sources overlap in time, the orchestration algorithm cannot distinguish between
them. As such, the orchestration is rigid: the whole orchestra suddenly changes configuration when a
new source dominates, without any blending with the previous dominating source.

Our hypothesis is that if source separation is applied as a pre-processing step, then the separated
layers of a sound can be independently orchestrated and then recombined, resulting in an improved
orchestration. This logic follows from the orchestration principle of dovetailing (Adler, 2016, p. 467-
473). Dovetailing is a well known practice aimed at creating a blend of the instruments used during
orchestration in order to transition between timbres. Technically, dovetailing is the swapping and
overlapping of musical lines between different instruments: musical lines are scattered across multiple
instruments, connected with overlapping pitches

Orchidea is a framework and set of tools that is currently considered the state-of-the-art for computer-
assisted orchestration. It embeds the target in a feature space and uses a jointly-optimized heuristic
and constraint solver to find a combination of samples that best match the target (Cella and Esling,
2018; Cella, 2020). All of our orchestrations are done using Orchidea’s command line tools for batch
processing, which is available for download at http://www.orch-idea.org.

Orchidea is capable of performing both static and dynamic orchestration. In static orchestration,
temporal evolution is ignored and the target is represented as a single vector of timbral features. The
output is a single onset of notes that does not change over time. In contrast, dynamic orchestration
considers a time series of features, which allows the orchestration to evolve over time and contain
multiple onsets of notes. Orchidea is able to perform dynamic orchestration by cutting the target in
time into multiple segments, and then orchestrating each segment. In this paper, we perform only
static orchestrations in order to better observe the effects of source separation. The reason for this is
that we wish to disentangle the two difficult problems of source separation and time segmentation.
By only performing static orchestrations, we reduce the complexity of the problem by removing time
segmentation and can better observe the effects of source separation.

The paper is organized as follows: in section 2 we introduce sound source separation and list other
musical tasks in which source separation has had success. Section 3 will discuss our methods and
walk through the testing procedures we employed in our experiments. Sections 4 and 5 will describe
the findings of our experiments, an analysis of the results, and offer possibilities for future work.

The code for this paper can be found at: https://github.com/dzluke/AIMC2022, and you can
listen to a selection of targets and orchestrations here: https://dzluke.github.io/AIMC2022/.

2 Background

Sound source separation is the process by which a single audio file is separated into multiple sound
sources. A perfect separation is able to dissect a sound exactly into its constituent parts, in which
each part is an independent sonic event. Music source separation is a specific application of source
separation in which the input audio is music that is comprised of a subset of instruments or sounds.
For example, one music source separation method could attempt to split a song into three parts: voice,
bass, and drums. Another aimed at orchestral music may try to separate the input into families of
instruments: woodwinds, brass, strings, and percussion. In contrast, universal sound separation does
not operate under the assumption that the input is of a musical nature, and can be applied to arbitrary
sounds. In this case, the number of sources expected is specified, and the method will attempt to
divide the input into the given number of sources.

Using source separation techniques as a pre-processing step has been shown to improve results in
several music processing tasks. Source separation can be used to remove part of the spectrum in
order to enhance the clarity of the features of interest for the task at hand. For instance, in the task of
automatic chord estimation from audio, some authors have chosen to remove part of the spectrum
related to percussive sounds to improve chord accuracy (Reed et al., 2009). Similarly some authors
have investigated how beat tracking can be improved by using source separation as a pre-processing
step for difficult songs with highly expressive vocals (Zapata and Gómez, 2012). Source separation
can also be applied to separate different components of the signal and work on them separately to
reduce the complexity of the task. For instance, in the context of tempo detection in Chordia and Rae
(2009), the authors decompose the signal into sources to reduce rhythmic complexity, under the idea
that some layers may be more rhythmically regular than the overall mix. Another example can be

2

http://www.orch-idea.org
https://github.com/dzluke/AIMC2022
https://dzluke.github.io/AIMC2022/


found in Gómez et al. (2018) where harmonic/percussive and solo/accompaniment source separation
techniques are investigated as a pre-processing step to improve predominant instrument recognition
in jazz music.

Consider a motivating example: a target that has a continuous drone sound throughout and a melody
playing above this drone. Without source separation, Orchidea would detect each note of the melody
as a new onset and cut the target in time at each new note. However, this segmentation in time would
also affect the drone, cutting it in time and forcing it to have a new onset each time the melody
changes notes. The resulting orchestration would have multiple onsets for the drone, even though only
one onset is needed at the beginning of the drone. When source separation is applied to this target,
the drone and melody could be orchestrated separately. Therefore, the drone could be orchestrated by
a single onset that lasts for the duration of the drone. At the same time, the melody could have as
many new onsets as needed without affecting the drone. The orchestration would be greatly improved
by removing the unnecessary onsets in the orchestration of the drone.

3 Experimental Methodology

Figure 1: Diagram comparing the process of orchestration with and without separation. At the top,
the full target orchestration is created simply by orchestrating the target. At the bottom, the separation
process is performed, and the resulting sub-targets are individually orchestrated with subsets of the
orchestra before being recombined to obtain the separated orchestration.

We compare the effectiveness of different source separation methods for the task of orchestration by
applying the separation methods to various targets, orchestrating the separated output of the method,
and finally comparing this to the orchestration of the target if no separation was performed. This
process is described in Fig. 1. Consider a target sound that is a combination of a low droning sound
and high-pitched whistle. With separation, these two sounds would be disentangled into two separate
sub-targets and each would be individually orchestrated. The separated orchestrations would then be
combined to create the solution (Fig. 1, bottom). This would then be compared to the orchestration if
no separation had been performed (Fig. 1, top).

We test the effectiveness of five different supervised source separation methods on 300 custom made
targets that are combinations of sounds from different databases. During testing, a target is input
to a source separation method, which outputs four sub-targets. The accuracy of the separation is
measured using the cosine distance. Then each sub-target is independently orchestrated with a
randomly assigned subset of the full orchestra. These orchestrations are then combined to play
simultaneously, creating a final orchestrated solution. Finally the distance between the target and
solution is calculated, giving us a metric to compare the various separation methods. See Fig. 2 for a
diagram of this process.

For a given target, the same split of the orchestra is used to orchestrate the separations. We randomly
create these subsets of the orchestra in order to avoid any biases that could come from a hand-picking
the instruments used to orchestrate each sub-target.
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3.1 Data

We created 300 targets where each target was a combination of four source sounds. The sources come
from the NIGENS (Trowitzsch et al., 2019) and BBC (BBC, 2021) databases, and freesound.org
(Font et al., 2013). We selected a total of 90 samples from these databases, choosing sounds that fit
the following criteria:

1. Static sounds that do not change harmonically over time

2. Sounds in which there is at least some pitched content and not only noise

The sounds chosen include alarms, bells, engine noises, soundscapes, synthesizer chords, and sound
effects. Each target that we used for testing was a combination of four randomly chosen source
sounds from the group of 90 sounds. When a target is created, the longest of the four sources is
chosen to start playing at the beginning of the target. The other three sources are then randomly
assigned different times to begin playing such that they will start between the beginning of the target
and half-way through the longest source sound. This is done to ensure that the sources overlap and to
minimize the amount of time in which there is only a single source sounding.

3.2 Separation methods

We consider source separation models trained to tackle two distinct separation problems: music
source separation and universal sound separation. The music source separation models we test
are Open-Unmix, Demucs, and Conv-Tasnet. The universal source separation models we test are
non-negative matrix factorization (NMF) and TDCN++. Open-Unmix, Demucs, Conv-Tasnet, and
TDCN++ are supervised models, and NMF is an unsupervised method.

It is important here to make the distinction that we did not train the supervised models ourselves.
Therefore, we cannot guarantee that the data the models were trained on is optimal for solving our
problem. However, one of the goals of this paper is to explore whether existing, pre-trained source
separation models can separate non-musical sounds in a way that improves orchestration. We choose
to include music source separation methods because of the diversity of different models available and
the results these models achieve at their task.

3.2.1 Music source separation

The music source separation models we use are Open-Unmix (Stöter et al., 2019), Demucs (Défossez
et al., 2019), and Conv-Tasnet (Luo and Mesgarani, 2018). For these architectures, we use models
that are pre-trained on the MUSDB18 dataset (Rafii et al., 2017). The models output 4 stereo tracks
that correspond to instrumental categories defined in the SiSEC 2018 Mus evaluation campaign:
vocals, drums, bass and other (Stöter et al., 2018).

Open-Unmix (Stöter et al., 2019) is an open source implementation of a deep music source separation
model, based on Uhlich et al. (2017). It is actually composed of multiple models that are trained
for each instrumental target. Each of these models is trained on the specific target using the same
architecture, based on a three layer bidirectional LSTM network. Open-Unmix operates on the Short
Time Fourier Transform (STFT) of the input mixture. It predicts the target by multiplying the output
of the LSTM network with the magnitude spectrogram of the input, essentially applying a mask, and
uses Wiener filtering as a last processing step.

The Demucs (Défossez et al., 2019) architecture is a deep learning model for musical source
separation. This models in the waveform domain, taking the stereo mixture as input, and outputting
4 stereo waveforms corresponding to the four categories of the MUSDB18 dataset. The Demucs
models consists of a 6-layer convolutional encoder, two bidirectional-LSTM layers, and a 6-layer
decoder made of transposed convolution. Skip U-net connections (Ronneberger et al., 2015) link
encoder layers with their corresponding decoder layers. This model obtained state-of-the-art results
on the MusDB set, surpassing Open-Unmix. We use the second version of Demucs which uses only
the waveform, the third version being a hybrid model using both the waveform and a spectrogram.

We also used the Conv-Tasnet (Luo and Mesgarani, 2018) implementation of Défossez et al. (2019),
who adapted the architecture, originally designed for speech separation at 8 kHz, for the task of music
source separation. Conv-Tasnet is a deep learning model that is also based on three processing stages:
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encoder, separation and decoder. The encoder transforms the input waveform into a high-dimensional
feature representation that is optimized to separate different sources. Then, the separation step
computes a multiplicative mask for each of the target sources. Finally, the decoder reconstructs the
original waveforms using the masked features.

3.2.2 Universal sound separation

The second type of method we tested are the universal sound separation methods TDCN++ and NMF,
which can separate arbitrary sounds, not just musical instruments. This method more closely matches
our problem of separating non-musical target sounds.

Non-negative matrix factorization (NMF) (Cichocki and Phan, 2009; Févotte and Idier, 2011) is an
unsupervised learning method, which takes an input non-negative matrix, in this case a spectrogram
S, in RN×M and decomposes it into a basis matrix A in RN×J and a component matrix X in RJ×M

such that S ≈ A×X . We use the coordinate descent algorithm from the scikit-learn Python package
based on Cichocki and Phan (2009) with J set to 4, which selects for 4 features in the dataset. We then
output 4 mono waveforms containing each isolated feature Fi, where Fi = Ai ×Xi for i = 1, 2, 3,
or 4.

TDCN++ is a model proposed by Kavalerov et al. (2019), based on Conv-Tasnet. It was modified
in order to be used for general sound separation, and not only for speech. The main architecture
remains the same as in Luo and Mesgarani (2018), and the changes only affect the masking network.
More specifically, feature-wise normalization replaces global normalization, residual connection
ranges are extended to improve the flow of information, and learnable scale parameters are introduced
to weight the outputs of each residual layer. Those modifications help the model to better extract
features without drastically increasing its size. We use a trained version of this model, which was
trained on a custom dataset made of samples from movie production recordings from the Pro Sound
Effects Library database (Pro Sound Effects, 2021). We use the model given as a baseline for the
FUSS dataset (Wisdom et al., 2021), which is able to separate mixtures with a variable number of
sources, ignoring the outputs that have a power below a given threshold.

3.3 Testing

The procedure we use for testing is as follows:

1. The target is created as a combination of four randomly chosen sources, which are offset to
begin playing at different times.

2. The target, without any separation performed, is orchestrated using the entire orchestra.
This creates what we call the full target orchestration.

3. The full orchestra is randomly split into four equal sized subsets, each containing 7 to 8
instruments.

4. For each separation method:

1. The separation method is applied to the target, splitting the target into four sub-targets.
2. The separation is evaluated using the cosine distance.
3. The four sub-targets are separately orchestrated, each using a different subset of the

orchestra.
4. The four orchestrations are combined to play simultaneously, creating the separated

orchestration.
5. The distance between the target and the separated orchestration is calculated.

The orchestrations performed are static orchestrations, meaning the orchestration does not change
over time; a single onset of notes is created for each sub-target, no matter if the target itself has
multiple onsets. The OrchideaSOL database of orchestral samples is used with Orchidea to create
the orchestrations (Cella et al., 2020b). This database contains recordings of extended playing
techniques, which better fits the often noisy or inharmonic nature of our targets. The full orchestra, of
which non-overlapping subsets were selected to orchestrate the sub-targets, contains the following
instruments: 8 violins, 4 violas, 3 cellos, 1 bass, 2 oboes, 2 flutes, 2 clarinets in B♭, 2 bassoons, 2
trumpets, 2 trombones, and 2 French horns.
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Figure 2: Diagram showing how the full target orchestration is a single orchestration with the full
orchestra, and the separated orchestration is four orchestrations with four subsets of the orchestra.

3.4 Evaluation

We compare the effectiveness of the separation methods in two ways. First, we evaluate the separation
accuracy by calculating the cosine distance between the target and the output of a separation method.
Second, we compare how each separation method affects the quality of the orchestration by calculating
the spectral distance between the target and the separated orchestration. We use these distance metrics
as they are specific to our problem of computer-assisted orchestration (Abreu et al., 2016).

3.4.1 Separation evaluation

The source separation step of our experiments was evaluated independently from the orchestration
process. To evaluate the source separation quality of an estimate-reference pair, we first frame the
waveforms into non-overlapping segments of approximately 90ms. Then, for each frame, we compute
the normalized magnitude spectrum and compare them using the cosine distance. Therefore, the
distance between an estimated sub-target x̃ and a reference x is given by Eq. 1.

D(x, x̃) =
1

n

n∑
i

(1− ⟨xi, x̃i⟩
∥xi∥ · ∥x̃i∥

) (1)

where xi is the normalized magnitude spectrum of the i-th frame. To align the estimates from the
source separation models with their corresponding reference sub-targets, we consider all references-
estimations permutations, and we keep the best result.

3.4.2 Orchestration evaluation

Our goal is to evaluate the effect of source separation methods on orchestration. We determine the
quality of an orchestration by calculating the spectral distance between the target and orchestration.
The spectral distance metric is proposed in Cella (2020) as part of the cost function used in Orchidea
during the optimization, and used in Cella et al. (2020a) to compare accuracies of orchestrations. The
equation takes in the normalized magnitude spectrum of the target x and of the solution x̃. Then for
each bin k of the spectrum, it calculates the absolute difference between the amplitudes. The differing
values of λ1 and λ2 allow the metric to penalize the solution in different ways. For our purposes, we
used λ1 = 0.5 and λ2 = 10, which penalizes a solution that overshoots the harmonic energy of the
target.

d(x, x̃) = λ1

∑
k

δk1(xk − x̃k) + λ2

∑
k

δk2|xk − x̃k| (2)

where δk1 = 1 if xk ≥ x̃k, 0 otherwise; and δk2 = 1 if xk < x̃k, 0 otherwise.

We found that sometimes one or more of the outputs of a separation method would be silence. This
happens when the method cannot distinguish between two or more sources and incorrectly identifies
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Table 1: Results for separation and orchestration evaluation averaged across 300 targets. Separation
evaluations uses the cosine distance defined in Eqn. 1. Orchestration evaluation uses the spectral
distance defined in Eqn. 2. “Full target” corresponds to the orchestration of the target with no
separation performed (see Sec. 3.3). Lower values are better for both metrics.

Separation method Separation evaluation Orchestration evaluation

TDCN++ 0.924 8.59
Conv-Tasnet 0.816 8.13
Open-Unmix 0.668 7.21
Demucs 0.655 6.90
NMF 0.633 5.61
Full target - 9.24

them as the same source. Therefore, some sub-targets can have multiple sources and some sub-targets
can be silence. However, Orchidea still attempts to orchestrate silence, so when a sub-target is
identified as silence, the orchestration of that sub-target is not included in the separated orchestration.
We identified silent sub-targets by calculating their root mean square (RMS) value. If the RMS
was below a threshold of 0.05 then the sub-target orchestration was not included in the separated
orchestration.

RMS(x) =

√√√√ 1

n

n∑
i

x2
i (3)

To determine whether source separation improves orchestration, we compare the distance between
the target and the full target orchestration to the distance between the target and the separated
orchestration. If the separated orchestration distance is lower, then performing separation improved
the orchestration.

4 Results and discussion

The separation evaluation and orchestration evaluation results, averaged across 300 targets, are dis-
played in Tab. 1. The results show that performing source separation followed by a static orchestration
of each individual sub-target improves the orchestration for all methods tested. Furthermore, when
comparing the results between the separation evaluation and orchestration evaluation, we find that as
the quality of the separation increases, so does the quality of the orchestration. In fact, the relative
rankings between each method are exactly the same when evaluating separation and orchestration.
NMF shows the best results, it has the lowest cosine distance for the separation evaluation and shows
a 39% decrease in spectral distance compared to the full target orchestration.

A surprising result is the difference in accuracy for the two universal source separation methods: NMF
and TDCN++. For both the separation evaluation and the orchestration evaluation, NMF performed
the best out of all methods and TDCN++ performed the worst. We expect universal source separation
to fit our problem better than music source separation, since our targets contain many non-musical
sounds. However, our data suggests that the aspect of the separation method that affects orchestration
is not whether it is universal or music source separation, but whether it is a supervised or unsupervised
method.

The one unsupervised method we tested, NMF, outperformed all the supervised methods. This
suggests that either unsupervised methods are better for our task, or that the data the supervised
methods were trained on does not fit our problem well. It is important to note that for the supervised
methods, we used pre-trained versions of the neural models. All of these models, except for TDCN++,
were trained on musical data. However, we tested them on a wide range of targets, many of which
were not strictly musical. This could explain why Demucs, Open-Unmix, and Conv-Tasnet performed
worse than NMF. Similarly, one reason that TDCN++ may have performed worse than the other
supervised methods is because it was trained on a different database than the other three supervised
methods.

7



5 Conclusions and future work

In this paper, we addressed the potential of using source separation as a pre-processing step for
computer-assisted orchestration. Based on the concept of dovetailing, our hypothesis is that separating
a multi-layered sound and orchestrating the individual layers should result in an orchestration that
better matches the timbre of the target. Our data confirms our hypothesis: all of the separation
methods tested improve the resulting orchestration. Furthermore, there is a correlation between the
effectiveness of the separation and the quality of the orchestration: as separation improves, so does
the orchestration. This shows that our approach and metrics are consistent.

We also performed a qualitative evaluation of the orchestrations. An interesting result that we
discovered from acoustic inspection is that the orchestrations generated after source separation tend
to favor dovetailing. Since only a portion of the orchestra is assigned to each source and since the
sources are inherently asynchronous with each other, the final orchestration is more fluid and appears
more interesting from a musical standpoint.

More work is needed to identify why TDCN++, a universal source separation method, performed
worse than the musical source separation models. Its performance is likely a result of the data it
was trained on, which was not necessarily optimized for the sounds common to computer-assisted
orchestration. A next step could be training this architecture ourselves on data that fits our problem
better.

Another aspect that could be improved is the assignment of the orchestras. Currently, the subset of
the orchestra that is assigned to each sub-target is randomly selected. However, it is possible that
this random assignment could reduce the quality of the final orchestration. If, for example, one of
the sub-targets contains mostly low pitch content, but the orchestra assigned to it contains mostly
high-pitched instruments, the resulting orchestration will suffer. To solve this problem, a step could
be added that jointly-optimizes the orchestras assigned to each sub-target, ultimately choosing an
assignment that leads to the best orchestration of each sub-target.

As we stated in Section 1, we performed only static orchestration in our experiments in order to better
observe the effects of source separation. However, dynamic orchestration is an important feature of
computer-assisted orchestration and could greatly benefit from source separation. Future work could
include applying source separation to dynamic targets and performing dynamic orchestration.

Finally, one or multiple of the separation methods we tested should be implemented in Orchidea in
order to improve the orchestrations Orchidea is capable of creating.
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