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Abstract. We consider interprocedural data-flow analysis as formal-
ized by the standard IFDS framework, which can express many widely-
used static analyses such as reaching definitions, live variables, and null-
pointer. We focus on the well-studied on-demand setting in which queries
arrive one-by-one in a stream and each query should be answered as fast
as possible. While the classical IFDS algorithm provides a polynomial-
time solution for this problem, it is not scalable in practice. More specifi-
cally, it will either require a quadratic-time preprocessing phase or takes
linear time per query, both of which are untenable for modern huge code-
bases with hundreds of thousands of lines. Previous works have already
shown that parameterizing the problem by the treewidth of the program’s
control-flow graph is promising and can lead to significant gains in effi-
ciency. Unfortunately, these results were only applicable to the limited
special case of same-context queries.

In this work, we obtain significant speedups for the general case of on-
demand IFDS with queries that are not necessarily same-context. This
is achieved by exploiting a new graph sparsity parameter, namely the
treedepth of the program’s call graph. Our approach is the first to ex-
ploit the sparsity of control-flow graphs and call graphs at the same time
and parameterize by both the treewidth and the treedepth. We obtain
an algorithm with a linear preprocessing phase that can answer each
query in constant time wrt the size of the input. Finally, our experimen-
tal results demonstrate that our approach significantly outperforms the
classical IFDS and its on-demand variant.

Keywords: Static Analysis · Data-flow Analysis · IFDS · Parameterized
Algorithms.
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1 Introduction

Data-flow. Data-flow analysis is a catch-all term for a wide and expressive va-
riety of static program analyses that include common tasks such as reaching def-
initions [30], points-to and alias analysis [74,76,77,80,81,82], null-pointer deref-
erencing [58,55,32], uninitialized variables [61] and dead code elimination [43],
as well as several other standard frameworks, e.g. gen-kill and bit-vector prob-
lems [49,50,47]. The common thread among data-flow analyses is that they con-
sider certain “data facts” at each line of the code and then try to ascertain which
data facts may/must hold at any given point [69]. This is often achieved by a
worklist algorithm that keeps discovering new data facts until it reaches a fixed
point and converges to the final solution [69,48]. Variants of data-flow analy-
sis are already included in most IDEs and compilers. For example, Eclipse has
support for various data-flow analyses, such as unused variables and dead code
elimination, both natively [35] and through plugins [63,31]. Data-flow analyses
have also been applied in the context of compiler optimization, e.g. for register
allocation [52] and constant propagation analysis [42,73,17]. Additionally, they
have found important use-cases in security [18], including in taint analysis [4]
and detection of SQL injection attacks [41]. Due to their apparent importance,
data-flow analyses have been widely studied by the verification, compilers, secu-
rity and programming languages communities over the past five decades and are
also included in program analysis frameworks such as Soot [9] and WALA [1].

Intraprocedural vs Interprocedural Analysis. Traditionally, data-flow anal-
yses are divided into two general groups [46]:
– Intraprocedural approaches analyze each function/procedure of the code in

isolation [47,31]. This enables modularity and helps with efficiency, but the
tradeoff is that the call-context and interactions between the different pro-
cedures are not accounted for, hence leading to relatively lower precision.

– In contrast, interprocedural analyses consider the entirety of the program,
i.e. all the procedures, at the same time. They are often sensitive to call con-
text and only focus on execution paths that respect function invocation and
return rules, i.e. when a function ends, control has to return to the correct
site of the last call to that function [69,29]. Unsurprisingly, interprocedural
analyses are much more accurate but also have higher complexity than their
intraprocedural counterparts [66,69,72,75].

IFDS. One of the most classical and widely-used frameworks for interprocedural
data-flow analysis is that of Interprocedural Finite Distributive Subset problems
(IFDS) [69,68]. IFDS is an expressive framework that can perform all the anal-
yses enumerated above by assigning a set D of data facts to each line of the
program and then applying a reduction to a variant of graph reachability with
side conditions ensuring that function call and return rules are enforced. For
example, in a null-pointer analysis, each data fact di in D is of the form “the
pointer pi might be null”. See Section 2 for details. Given a program with n
lines, the original IFDS algorithm in [69] solves the data-flow problem for a
fixed starting point in time O(n · |D|3). Due to its elegance and generality, this
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framework has been thoroughly studied by the community. It has been extended
to various platforms and settings [4,57,10], notably the on-demand setting [45]
and in presence of correlated method calls [65], and has been implemented in
standard static analysis tools [1,9].

On-demand Data-flow Analysis. Due to the expensiveness of exhaustive
data-flow analysis, i.e. an analysis that considers every possible starting point,
many works in the literature have turned their focus to on-demand analy-
sis [45,22,6,77,81,82,34,67]. In this setting, the algorithm can first run a pre-
processing phase in which it collects some information about the program and
produces summaries that can be used to speedup the query phase. Then, in the
query phase, the algorithm is provided with a series of queries and should an-
swer each one as efficiently as possible. Each query is of the form (ℓ1, d1, ℓ2, d2)
and asks whether it is possible to reach line ℓ2 of the program, with the data
fact d2 holding at that line, assuming that we are currently at line ℓ1 and data
fact d1 holds1. It is also noteworthy that on-demand algorithms commonly use
information found in previous queries to handle the current query more effi-
ciently. On-demand analyses are especially important in just-in-time compilers
and their speculative optimizations [22,28,53,7,37], in which having dynamic in-
formation about the current state of the program can dramatically decrease the
overhead for the compiler. In addition, on-demand analyses have the following
merits (quoted from[45,68]):
– narrowing down the focus to specific points of interest,
– narrowing down the focus to specific data-flow facts of interest,
– reducing the work in preliminary phases,
– side-stepping incremental updating problems, and
– offering on-demand analysis as a user-level operation that helps programmers

with debugging.

On-demand IFDS. An on-demand variant of the IFDS algorithm was first pro-
vided in [45]. This method has no preprocessing but memoizes the information
obtained in each query to help answer future queries more efficiently. It outper-
forms the classical IFDS algorithm of [69] in practice, but the only theoretical
guarantee is that of same worst-case complexity, i.e. the on-demand version will
never be any worse than running a new instance of the IFDS algorithm for each
query. Hence, the worst-case runtime on m queries is O(n·m·|D|3). Recall that n
is the number of lines in the program and |D| is the number of data facts at each
line. Alternatively, one can push all the complexity to the preprocessing phase,
running the IFDS algorithm exhaustively for each possible starting point, and
then answering queries by a simple table lookup. In this case, the preprocessing
will take O(n2 · |D|3). Unfortunately, none of these two variants are scalable
enough to handle codebases with hundreds of thousands of lines, e.g. standard
utilities in the DaCapo benchmark suite [8] such as Eclipse or Jython.

Same-context On-demand IFDS. The work [22] provides a parameterized
algorithm for a special case of the on-demand IFDS problem. The main idea

1 Instead of single data facts d1 and d2, we can also use a set of data facts at each of
ℓ1 and ℓ2, but as we will see in Section 2, this does not affect the generality.
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in [22] is to observe that control-flow graphs of real-world programs are sparse
and tree-like and that this sparsity can be exploited to find faster algorithms
for same-context IFDS analysis. More specifically, the sparsity is formalized by
a graph parameter called treewidth [71,70]. Intuitively speaking, treewidth is a
measure of how much a given graph resembles a tree, i.e. more tree-like graphs
have smaller treewidth. See Section 3 for a formal definition. It is proven that
structured programs in several languages, such as C, have bounded treewidth [78]
and there are experimental works that establish small bounds on the treewidth
of control-flow graphs of real-world programs written in other languages, such
as Java [44], Ada [16] and Solidity [19]. Using these facts, [22] provides an on-

demand algorithm with O(n · |D|3) preprocessing time and O
(
⌈ |D|
lgn⌉

)
time per

query2. In practice, |D| is often tiny in comparison with n and hence this algo-
rithm is considered to have linear preprocessing and constant query time. Unfor-
tunately, the algorithm in [22] is not applicable to the general case of IFDS and
can only handle same-context queries. Specifically, the queries in [22] provide a
tuple (ℓ1, d1, ℓ2, d2) just as in standard IFDS queries but they ask whether it is
possible to reach (ℓ2, d2) from (ℓ1, d1) by an execution path that preserves the
state of the stack, i.e. ℓ1 and ℓ2 are limited to being in the same function and the
algorithm only considers execution paths in which every function call returns
before reaching ℓ2.

Our Contribution. In this work, we present a novel algorithm for the general
case of on-demand IFDS analysis. Our contributions are as follows:

– We identify a new sparsity parameter, namely the treedepth of the program’s
call graph, and use it to find more efficient parameterized algorithms for
IFDS data-flow analysis. Hence, our approach exploits the sparsity of both
call graphs and control-flow graphs and bounds both the treedepth and the
treewidth. Treedepth [60,14] is a well-studied graph sparsity parameter. It
intuitively measures how much the graph resembles a star, i.e. a shallow
tree [59, Chapter 6].

– We provide a scalable algorithm that is not limited to same-context queries
as in [22] and is much more efficient than the classical on-demand IFDS
algorithm of [45]. Specifically, after a lightweight preprocessing that takes
O(n · |D|3 · treedepth2) time, our algorithm is able to answer each query in
O(|D|3 ·treedepth). Thus, this is the first algorithm that can solve the general
case of on-demand IFDS scalably and handle codebases and programs with
hundreds of thousands or even millions of lines of code.

– We provide experimental results on the standard DaCapo benchmarks [8]
illustrating that:
• our assumption of the sparsity of call graphs and low treedepth holds in
practice in real-world programs; and

• our approach comfortably beats the runtimes of exhaustive and on-
demand IFDS algorithms [69,45] by two orders of magnitude.

2 This algorithm uses the Word-RAM model of computation. The division by lgn is
obtained by encoding lgn bits in one word.
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Novelty. Our approach is novel in several directions:
– Unlike previous optimizations for IFDS that only focused on control-flow

graphs, we exploit the sparsity of both control-flow graphs and call graphs.
– To the best of our knowledge, this is the first time that the treedepth param-

eter is exploited in a static analysis or program verification setting. While
this parameter is well-known in the graph theory community and we argue
that it is a natural candidate for formalizing the sparsity of call graphs (See
Section 3), this is the first work that considers it in this context.

– We provide the first theoretical improvements in the runtime of general on-
demand data-flow analysis since [45], which was published in 1995. Previous
improvements were either heuristics without a theoretical guarantee of im-
provement or only applicable to the special case of same-context queries.

– Our algorithm is much faster than [45] in practice and is the first to enable
on-demand interprocedural data-flow analysis for programs with hundreds
of thousands or even millions of lines of code. Previously, for such large
programs, the only choices were to either apply the data-flow analysis in-
traprocedurally, which would significantly decrease the precision, or to limit
ourselves to the very special case of same-context queries [22].

Limitation. The primary limitation of our algorithm is that it relies on the as-
sumption of bounded treewidth for control-flow graphs and bounded treedepth
for call graphs. In both cases, it is theoretically possible to generate pathological
programs that have arbitrarily large width/depth: [44] shows that it is possible
to write Java programs whose control-flow graphs have any arbitrary treewidth.
However, such programs are highly unrealistic, e.g. they require a huge num-
ber of labeled nested while loops with a large nesting depth and break/continue
statements that reference a while loop that is many levels above in the nest-
ing order. Similarly, in Section 3, we construct a pathological example program
whose call graph has a large treedepth. Nevertheless, this is also unrealistic and
real-world programs, such as those in the DaCapo benchmark suite, have both
small treewidth and small treedepth, as shown in Section 5 and [78,44,16,19].

Organization. In Section 2, we present the standard IFDS framework and
formally define our problem. This is followed by a presentation of the graph
sparsity parameters we will use, i.e. treewidth and treedepth, in Section 3. Our
algorithm is then presented in Section 4, followed by experimental results in
Section 5.

2 The IFDS Framework

In this section, we provide an overview of the IFDS framework following the
notation and presentation of [22,69] and formally define the interprocedural data-
flow problem considered in this work.

Model of Computation. Throughout this paper, we consider the standard
word RAM model of computation in which every word is of length w = Θ(lg n),
where n is the length of the input. We assume that common operations, such
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as addition, shift and bitwise logic between a pair of words, take O(1) time.
Note that this has no effect on the implementation of our algorithms since most
modern computers have a word size of at least 64 and we are not aware of any
possible real-world input to our problems whose size can potentially exceed 264.
We need this assumption since we use the algorithm of [22] as a black box. Our
own contribution does not rely on the word RAM model.

Control-flow Graphs. In IFDS, a program with k functions f1, f2, . . . , fk is
modeled by k control-flow graphsG1, G2, . . . , Gk, one for each function, as well as
certain interprocedural edges that model function calls and returns. The graphs
Gi are standard control-flow graphs, having a dedicated start vertex si modeling
the beginning point of fi, another dedicated end vertex ei modeling its end point,
one vertex for every line of code in fi, and a directed edge from u to v, if line v
can potentially be reached right after line u in some execution of the program.
The only exception is that function call statements are modeled by two vertices:
a call vertex cl and a return site vertex rl. The vertex cl has only incoming edges,
whereas rl has only outgoing edges. There is also an edge from cl to rl, which
is called a call-to-return-site edge. This edge is used to pass local information,
e.g. information about the variables in fi that are unaffected by the function
call, from cl to rl.

Supergraphs. The entire program is modeled by a supergraph G, consisting of
all the control-flow graphs Gi, as well as interprocedural edges between them. If
a function call statement in fi, corresponding to vertices cl and rl in Gi, calls the
function fj , then the supergraph contains the following interprocedural edges:
– a call-to-start edge from the call vertex cl to the start vertex sj of the called

function fj , and
– an exit-to-return-site edge from the endpoint ej of the called function fj

back to the return site rl.

Call Graphs. Given a supergraph G as above, a call graph is a directed graph
C whose vertices are the functions f1, . . . , fk of the program and there is an edge
from fi to fj iff there is a function call statement in fi that calls fj . In other
words, the call graph models the interprocedural edges in the supergraph and
the supergraph can be seen as a combination of the control-flow and call graphs.

Example. Figure 1 shows a program consisting of two functions (left) and its
supergraph (right).

Valid Paths. The supergraph G potentially contains invalid paths, i.e. paths
that are not realizable by an actual run of the underlying program. The IFDS
framework only considers interprocedurally valid paths in G. These are the paths
that respect the rules for function invocation and return. More concretely, when a
function’s execution ends, control should return to the correct return-site vertex
in its parent function. Formally, consider a path Π in G and let Π∗ be the sub-
sequence of Π that is obtained by removing any vertex that was not a call vertex
cl or a return-site vertex rl. Then, Π is called a same-context interprocedurally
valid path if Π∗ can be generated from the non-terminal S in the following
grammar:

S → ϵ | cl S rl S.
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1 void g(int *&a, int *&b) {

2 b = a;

3 }

4

5 int main() {

6 int *a, *b;

7 a = new int (42);

8 g(a, b);

9 *b = 0;

10 }

call-to
-start

exit-to-return-site

Fig. 1. A C++ program (left) and its supergraph (right).

In other words, any function call in Π that was invoked in line cl should end by
returning to its corresponding return-site rl. A same-context valid path preserves
the state of the function call stack. In contrast, the path Π is interprocedurally
valid or simply valid if Π∗ is generated by the non-terminal S′ in the following
grammar:

S′ → S | S′ cl S.

A valid path has to respect the rules for returning to the right return-site vertex
after the end of each function, but it does not necessarily keep the function call
stack intact and it is allowed ot have function calls that do not necessarily end
by the end of the path. Let u and v be vertices in the supergraph G. We denote
the set of all same-context valid paths from u to v by SCVP(u, v) and the set of
all interprocedurally valid paths from u to v by IVP(u, v). In IFDS, we only focus
on valid paths and hence the problem is to compute a meet-over-all-valid-paths
solution to data-flow facts, instead of the meet-over-all-paths approach that is
usually taken in intraprocedural data-flow analysis [69].

IFDS Arena [69].An arena of the IFDS data-flow analysis is a tuple (G,D,Φ,M,⊓)
wherein:
– G = (V,E) is a supergraph consisting of control-flow graphs and interproce-

dural edges, as illustrated above.
– D is a finite set of data facts. Intuitively, we would like to keep track of which

subset of data facts in D hold at any vertex of G (line of the program).
– The meet operator ⊓ is either union or intersection, i.e. ⊓ ∈ {∪,∩}.
– Φ is the set of distributive flow functions over ⊓. Every function φ ∈ Φ is of

the form φ : 2D → 2D and for every pair of subsets of data facts D1, D2 ⊆ D,
we have φ(D1 ⊓D2) = φ(D1) ⊓ φ(D2).
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– M : E → Φ is a function that assigns a distributive flow function to every
edge of the supergraph. Informally, M(e) models the effect of executing the
edge e on the set of data facts. If the data facts that held before the execution
of the edge e are given by a subset D′ ⊆ D, then the data facts that hold
after e are M(e)(D′) ⊆ D.

We can extend the function M to any path Π in G. Let Π be a path consisting of
the edges e1, e2, . . . , eπ. We define M(Π) := M(eπ) ◦ M(eπ−1) ◦ · · · ◦ M(e1).
Here, ◦ denotes function composition. According to this definition, M(Π) mod-
els the effect that Π’s execution has on the set of data facts that hold in the
program’s current state.

Problem Formalization. Consider an initial state (u,D1) ∈ V × 2D of the
program, i.e. we are at line u of the program and we know that the data facts
in D1 hold. Let v ∈ V be another line, we define

MIVP(u,D1, v) :=
l

Π∈IVP(u,v)
M(Π)(D1).

We simplify the notation to MIVP(v), when the initial state is clear from the
context. Our goal is to compute the MIVP values. Intuitively, MIVP corresponds
to meet-over-all-valid-paths. If the meet operator is intersection, then MIVP(v)
models the data facts that must hold whenever we reach v. Conversely, if we use
union as our meet operator, then MIVP(v) is the set of data facts that may hold
when reaching v. The work [69] provides an algorithm to compute MIVP(v) for
every end vertex v in O(n · |D|3), in which n = |V |.
Same-context IFDS. We can also define a same-context variant of MIVP as
follows:

MSCVP(v) :=
l

Π∈SCVP(u,v)
M(Π)(D1).

The intuition is similar to MIVP, except that in MSCVP we only consider same-
context valid paths that preserve the function call stack’s status and ignore other
valid paths. The work [22] uses parameterization by treewidth of the control-flow
graphs to obtain faster algorithms for computing MSCVP. However, its algorithms
are limited to the same-context setting. In contrast, in this work, we follow
the original IFDS formulation of [69] and focus on MIVP, not MSCVP. Our main
contribution is that we present the first theoretical improvement for computing
MIVP since [69,45].

Dualization. In this work, we only consider the cases in which the meet operator
is union. In other words, we focus on may analyses. IFDS instances in which the
meet operator is intersection, also known as must analyses, can be reduced to
union instances by a simple dualization. See [69,48] for details.

Data Fact Domain. In our presentation, we are assuming that there is a
fixed global data fact domain D. In practice, the domain D can differ in every
function of the program. For example, in a null-pointer analysis, the data facts
in each function keep track of nullness of the pointers that are either global
or local to that particular function. However, having different D sets would
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reduce the elegance of the presentation and has no real effect on any of the
algorithms. So, we follow [69,22] and consider a single domain D in the sequel.
Our implementation in Section 5 supports different domains for each function.

Graph Representation of Functions [69]. Every union-distributive function
φ : 2D → 2D can be succinctly represented by the following relation Rφ ⊆
(D ∪ {0})× (D ∪ {0}) :

Rφ := {(0,0)} ∪ {(0, d) | d ∈ φ(∅)} ∪ {(d1, d2) | d2 ∈ φ({d1}) \ φ(∅)}.

The intuition is that, in order to specify the union-distributive function φ, it
suffices to fix φ(∅) and φ({d}) for every d ∈ D. Then, we always have

φ({d1, d2, . . . , dr}) = φ({d1}) ∪ φ({d2}) ∪ · · · ∪ φ({dr}).

We use a new item 0 to model φ(∅), i.e. 0 Rφ d⇔ d ∈ φ(∅). To specify φ({d}),
we first note that φ(∅) ⊆ φ({d}), so we only need to specify the elements that are
in φ({d}) but not φ(∅). These are precisely the elements that are in relation with
d. In other words, φ({d}) = φ(∅) ∪ {d′ | d Rφ d′}. We can further represent the
relation Rφ as a bipartite graph Hφ in which each part consists of the vertices
D ∪ {0} and Rφ defines the edges.

Example. Figure 2 shows the graph representation of several union-distributive
functions.

Optimal and Parallel On-demand Data-flow Analysis 9

Remark 1. We note two points about the IFDS framework:
– As in [49], we only consider IFDS instances in which the meet operator

is union. Instances with intersection can be reduced to union instances by
dualization [49].

– For brevity, we are considering a global domain D, while in many applica-
tions the domain is procedure-specific. This does not affect the generality of
our approach and our algorithms remain correct for the general case where
each procedure has its own dedicated domain. Indeed, our implementation
supports the general case.

Succinct representations. A distributive function f : 2D → 2D can be succinctly
represented by a relation Rf ⊆ (D ∪ {0})× (D ∪ {0}) defined as:

Rf := {(0,0)}
∪ {(0, b) | b ∈ f(∅)}
∪ {(a, b) | b ∈ f({a})− f(∅)}.

Given that f is distributive over union, we have f({d1, . . . , dk}) = f({d1})∪· · ·∪
f({dk}). Hence, to specify f it is sufficient to specify f(∅) and f({d}) for each
d ∈ D. This is exactly what Rf does. In short, we have: f(∅) = {b ∈ D | (0, b) ∈
Rf} and f({d}) = f(∅)∪{b ∈ D | (d, b) ∈ Rf}. Moreover, we can represent the
relation Rf as a bipartite graph Hf in which each part consists of the vertices
D ∪ {0} and Rf is the set of edges. For brevity, we define D∗ := D ∪ {0}.

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

λx.{a, b} λx.(x− {a}) ∪ {b} λx.x λx.x ∪ {a} λx.

{
{a}x 6= ∅
∅ x = ∅

Fig. 3: Succinct representation of several distributive functions.

Example 3. Let D = {a, b}. Figure 3 provides several examples of bipartite
graphs representing distributive functions.

Bounded Bandwidth Assumption. Following [49], we assume that the bandwidth
in function calls and returns is bounded by a constant. In other words, there is
a small constant b, such that for every edge e that is a call-to-start or exit-to-
return-site edge, every vertex in the graph representation HM(e) has degree b or
less. This is a classical assumption in IFDS [49,7] and models the fact that every
parameter in a called function is only dependent on a few variables in the callee

Fig. 2. Graph representation of union-distributive functions with D = {a, b} [22].

Composition of Graph Representations [69]. What makes this graph rep-
resentation particularly elegant is that we can compose two functions by a sim-
ple reachability computation. Specifically, if φ1 and φ2 are distributive, then
so is φ2 ◦ φ1. By definition chasing, we can see that Rφ2◦φ1

= Rφ1
;Rφ2

=
{(d1, d2) | ∃d3 (d1, d3) ∈ Rφ1

∧(d3, d2) ∈ Rφ2
}. Thus, to compute the graph rep-

resentationHφ2◦φ1 , we simply merge the bottom part ofHφ1 with the top part of
Hφ2 and then compute reachability from the top-most layer to the bottom-most
layer.

Example. Figure 3 illustrates how the composition of two distributive functions
can be obtained using their graph representations. Note that this process some-
times leads to superfluous edges. For example, since we have the edge (0, a) in
the result, the edge (b, a) is not necessary. However, having it has no negative
side-effects, either.
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(and conversely, every returned value is only dependent on a few variables in the
called function).

Composition of distributive functions. Let f and g be distributive functions and
Rf and Rg their succinct representations. It is easy to verify that g ◦ f is also
distributive, hence it has a succinct representation Rg◦f . Moreover, we have
Rg◦f = Rf ;Rg = {(a, b) | ∃c (a, c) ∈ Rf ∧ (c, b) ∈ Rg}.

0 a b

0 a b

0 a b

0 a b

λx.{a}
λx.x ∪ {a}

λx.

{
{a}x 6= ∅
∅ x = ∅

Fig. 4: Obtaining Hg◦f (right) from Hf and Hg (left)

Example 4. In terms of graphs, to compute Hg◦f , we first take Hf and Hg, then
contract corresponding vertices in the lower part of Hf and the upper part of
Hg, and finally compute reachability from the topmost part to the bottommost
part of the resulting graph. Consider f(x) = x ∪ {a}, g(x) = {a} for x 6= ∅
and g(∅) = ∅, then g ◦ f(x) = {a} for all x ⊆ D. Figure 4 shows contracting
of corresponding vertices in Hf and Hg (left) and using reachability to obtain
Hg◦f (right).

Exploded supergraph. Given an IFDS instance I = (G,D,F,M,∪) with super-
graph G = (V,E), its exploded supergraph G is obtained by taking |D∗| copies of
each vertex in V , one corresponding to each element of D∗, and replacing each
edge e with the graph representation HM(e) of the flow function M(e). Formally,

G = (V ,E) where V = V ×D∗ and

E =
{

((u, d1), (v, d2)) | e = (u, v) ∈ E ∧ (d1, d2) ∈ RM(e)

}
.

A path P in G is (same-context) valid, if the path P in G, obtained by ignoring
the second component of every vertex in P , is (same-context) valid. As shown
in [49], for a data flow fact d ∈ D and a vertex v ∈ V, we have d ∈ MVPv iff
there is a valid path in G from (smain, d

′) to (v, d) for some d′ ∈ D ∪ {0}. Hence,
the IFDS problem is reduced to reachability by valid paths in G. Similarly, the
same-context IFDS problem is reduced to reachability by same-context valid
paths in G.

Example 5. Consider a null pointer analysis on the program in Figure 2. At each
program point, we want to know which pointers can potentially be null. We first

Fig. 3. Composing two distributive functions using reachability [22].

Exploded Supergraph [69]. Consider an IFDS arena (G = (V,E), D, Φ,M,∪)
as above and let D∗ := D ∪ {0}. The exploded supergraph of this arena is a
directed graph G = (V ,E) in which:
– V = V × D∗, i.e. we take |D∗| copies of each vertex in the supergraph G,

one corresponding to each data fact in D∗.
– E = {(u1, d1, u2, d2) ∈ V × V | (u1, u2) ∈ E ∧ (d1, d2) ∈ RM(u1,u2)}. In

other words, every edge between vertices u1 and u2 in the supergraph G is
now replaced by the graphic representation of its corresponding distributive
flow function M(u1, u2).

Naturally, we say a path Π in G is interprocedurally (same-context) valid, if the
path Π in G, obtained by ignoring the second component of every vertex in Π,
is interprocedurally (same-context) valid.

Reduction to Reachability. We can now reformulate our problem based on
reachability by valid paths in the exploded supergraph G. Consider an initial
state (u,D1) ∈ V × 2D of the program and let v ∈ V be another line. Since the
exploded supergraph contains representations of all distributive flow functions,
it already encodes the changes that happen to the data facts when we execute
one step of the program. Thus, it is straightforward to see that for any data fact
d2, we have d2 ∈ MIVP(u,D1, v) if and only if there exist a data fact d1 ∈ D1

such that the vertex (v, d2) in G is reachable from the vertex (u, d1) using an
interprocedurally valid path [69]. Hence, our data-flow analysis is now reduced
to reachability by valid paths. Moreover, instead of computing MIVP values, we
can simplify our query structure so that each query provides two vertices (u, d1)
and (v, d2) in the exploded supergraph G and asks whether there is a valid path
from (u, d1) to (v, d2).

Example. Figure 4 shows the same program as in Figure 1, together with its
exploded supergraph for null-pointer analysis. Here, we have two data facts: d1
models the fact “the pointer a may be null” and d2 does the same for b. Starting
from line 5, i.e. the beginning of the main function, and knowing no data facts,
i.e. D1 = {0}, we would like to see if either a or b might be null at the end of the
main function. Using a reachability analysis on the exploded supergraph, we can
identify all vertices that can be reached by a valid path (green) and conclude
that neither a nor b may be null by the end of the program.

On-demand Analysis. As mentioned in Section 1, we focus on on-demand
analysis and distinguish between a preprocessing phase in which the algorithm
can perform a lightweight pass over the input and a query phase in which the
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1 void g(int *&a, int *&b) {

2 b = a;

3 }

4

5 int main() {

6 int *a, *b;

7 a = new int (42);

8 g(a, b);

9 *b = 0;

10 }

Fig. 4. A program (left) and its exploded supergraph (right).

algorithm has to respond to a large number of queries. The queries appear in a
stream and the algorithm has to handle each query as fast as possible. Based on
the discussion above, each query is of the form (u1, d1, u2, d2) ∈ V ×D∗×V ×D∗

and the algorithm should report whether there exist an interprocedurally valid
path from (u1, d1) to (u2, d2) in the exploded supergraph G.

Bounded Bandwidth Assumption. Following previous works such as [69,22,45],
we assume that the “bandwidth” in function calls and returns is bounded. More
concretely, we assume there exists a small constant β such that for every inter-
procedural call-to-start or exit-to-return-site edge e in our supergraph G, the
degree of each vertex in the graph representation HM(e) is at most β. This is a
classical assumption made in IFDS and all of its extensions. Intuitively, it mod-
els the idea that every parameter in a called function depends on only a few
variables in the call site line c of the callee, and conversely, that the return value
of a function is only dependent on a few variables at its last line.

3 Treewidth and Treedepth

In this section, we provide a short overview of the concepts of treewidth and
treedepth. Treewidth and treedepth are both graph sparsity parameters and we
will use them in our algorithm in the next section to formalize the sparsity of
control-flow graphs and call graphs, respectively.

Tree Decompositions [71,70,13]. Given an undirected graph G = (V,E), a
tree decomposition of G is a rooted tree T = (B, ET ) such that:
i. Every node b ∈ B of the tree T has a corresponding subset Vb ⊆ V of

vertices of G. To avoid confusion, we reserve the word “vertex” for vertices
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of G and use the word “bag” to refer to nodes of the tree T . This is natural,
since each bag b has a subset Vb of vertices.

ii. Every vertex appears in some bag, i.e.
⋃

b∈B Vb = V .
iii. For every edge {u, v} ∈ E, there is a bag that contains both of its endpoints,

i.e. ∃b ∈ B {u, v} ⊆ Vb.
iv. Every vertex v ∈ V appears in a connected subtree of T . Equivalently, if b

is on the unique path from b′ to b′′ in T, then Vb ⊇ Vb′ ∩ Vb′′ .
When talking about tree decompositions of directed graphs, we simply ignore
the orientation of the edges and consider decompositions of the underlying undi-
rected graph. Intuitively, a tree decomposition covers the graph G by a number
of bags3 that are connected to each other in a tree-like manner. If the bags are
small, we are then able to perform dynamic programming on G in a very simi-
lar manner to trees [11,21,39,40,54]. This is the motivation behind the following
definition.

Treewidth [71]. The width of a tree decomposition is defined as the size of its
largest bag minus 1, i.e. w(T ) := maxb∈B |Vb| − 1. The treewidth of a graph G is
the smallest width amongst all of its tree decompositions. Informally speaking,
treewidth is a measure of tree-likeness. Only trees and forests have a treewidth
of 1, and, if a graph G has treewidth k, then it can be decomposed into bags of
size at most k + 1 that are connected to each other in a tree-like manner.

Example. Figure 5 shows a graph G on the left and a tree decomposition of
width 2 for G on the right. In the tree decomposition, we have highlighted the
connected subtree of each vertex by dotted lines. This tree decomposition is
optimal and hence the treewidth of G is 2.

Fig. 5. A graph G (left) and one of its tree decompositions (right).

Computing Treewidth. In general, it is NP-hard to compute the treewidth
of a given graph. However, for any constant k, there is a linear-time algorithm
that decides whether the graph has treewidth at most k and, if so, also computes
an optimal tree decomposition [12]. As such, most treewidth-based algorithms
assume that an optimal tree decomposition is given as part of the input.

3 The bags do not have to be disjoint.
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Treewidth of Control-flow Graphs. In [78], it was shown that the control-
flow graphs of goto-free programs in a number of languages such as C and Pascal
have a treewidth of at most 7. Moreover, [78] also provides a linear-time algo-
rithm that, while not necessarily optimal, always outputs a tree decomposition
of width at most 7 for the control-flow graph of programs in these languages by
a single pass over the parse tree of the program. This algorithm is implemented
in [24], and is the algorithm we use for obtaining our tree decompositions in Sec-
tion 5. Alternatively, one can use the algorithm of [12] to ensure that an optimal
decomposition is used at all times. The theoretical bound of [78] does not ap-
ply to Java, but the work [44] showed that the treewidth of control-flow graphs
in real-world Java programs is also bounded. This bounded-treewidth property
has been used in a variety of static analysis and compiler optimization tasks to
speed up the underlying algorithms [25,62,3,27,36,26,20,23,5,38,2]. Nevertheless,
one can theoretically construct pathological examples with high treewidth.

Balancing Tree Decompositions. The runtime of our algorithm in Section 4
depends on the height of the tree decomposition. However, [15] provides a linear-
time algorithm that, given a graph G and a tree decomposition of constant
width t, produces a binary tree decomposition of height O(lg n) and width O(t).
Combining this with the algorithms of [78] and [12] for computing low-width
tree decompositions allows us to assume that we are always given a balanced
and binary tree decomposition of bounded width for each one of our control-flow
graphs as part of our IFDS input.

We now switch our focus to the second parameter that appears in our algo-
rithms, namely treedepth.

Partial Order Trees [60]. Let G = (V,E) be an undirected connected graph.
A partial order tree (POT)4 over G is a rooted tree T = (V,ET ) on the same set
of vertices as G that additionally satisfies the following property:

– For every edge {u, v} ∈ E of G, either u is an ancestor of v in T or v is
ancestor of u in T.

The intuition is quite straightforward: T defines a partial order ≺T over the
vertices V in which every element u is assumed to be smaller than its parent pu,
i.e. u ≺T pu. For T to be a valid POT, every pair of vertices that are connected
by an edge in G should be comparable in ≺T . If G is not connected, then we will
have a partial order forest, consisting of a partial order tree for each connected
component of G. With a slight abuse of notation, we call this a POT, too.

Example. Figure 6 shows a graph G (left) together with a POT of depth 4 for
G (right). In the POT, the edges of the original graph G are shown by dotted
red lines. Every edge of G goes from a node in T to one of its ancestors.

Treedepth [60]. The treedepth of an undirected graph G is the smallest depth
among all POTs of G.

4 The name partial order tree is not standard in this context, but we use it throughout
this work since it provides a good intuition about the nature of T . Usually, the term
“treedepth decomposition” is used instead.
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Fig. 6. A graph G (left) and a POT of depth 4 for G (right).

Path Property of POTs [60]. Let T = (V,ET ) be a POT for a graph G =
(V,E) and u and v two vertices in V . Define Au as the set of ancestors of u in
T and define Av similarly. Let A := Au ∩Av be the set of common ancestors of
u and v. Then, any path that goes from u to v in the graph G has to intersect
A, i.e. it has to go through a common ancestor.

Sparsity Assumption. In the sequel, our algorithm is going to assume that
call graphs of real-world programs have small treedepth. We establish this ex-
perimentally in Section 5. However, there is also a natural reason why this as-
sumption is likely to hold in practice. Consider the functions in a program. It
is natural to assume that they were developed in a chronological order, start-
ing with base (phase 1) functions, and then each phase of the project used the
functions developed in the previous phases as libraries. Thus, the call graph can
be partitioned to a small number of layers based on the development phase of
each function. Moreover, each function typically calls only a small number of
previous functions. So, an ordering based on development phase is likely to give
us a POT with small depth. The depth would typically depend on the number
of phases and the degree of each function in the call graph, but these are both
small parameters in practice.

Pathological Example. It is possible in theory to write a program whose
call graph has an arbitrarily large treedepth. However, such a program is not
realistic. Suppose that we want a program with treedepth n. We can create n
functions f1, f2, . . . , fn and then ensure that each function fi calls every other
function fj (j ̸= i). In this strange program, our call graph will simply be a
complete graph on n vertices. Since every two vertices in this graph have to be
comparable, its POT will be a path with depth n. So, its treedepth is Θ(n).

Computing Treedepth. As in the case of treewidth, it is NP-hard to compute
the treedepth of a given graph [64]. However, for any fixed constant k, there is a
linear-time algorithm that decides whether a given graph has treedepth at most
k and, if so, produces an optimal POT [56]. Thus, in the sequel, we assume that
all inputs include a POT of the call graph with bounded depth.
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4 Our Parameterized Algorithm

In this section, we present our parameterized algorithm for solving the general
case of IFDS data-flow analysis, assuming that the control-flow graphs have
bounded treewidth and the call graph has bounded treedepth. Throughout this
section, we fix an IFDS arena (G,D,Φ,M,∪) given by an exploded supergraph
G and assume that every control-flow graph comes with a balanced binary tree
decomposition of width at most k1. We also assume that a POT of depth k2 over
the call graph is given as part of the input. All these assumptions are without
loss of generality since the tree decompositions and POT can be computed in
linear time using the algorithms mentioned in Section 3. Before presenting our
algorithm, we should first define a few useful notions.

Algorithm for Same-Context IFDS. The work [22] provides an on-demand
parameterized algorithm for same-context IFDS. This algorithm requires a bal-
anced and binary tree decomposition of constant width for every control-flow
graph and provides a preprocessing runtime of O(n · |D|3), after which it can an-

swer same-context queries in time O
(
⌈ |D|
lgn⌉

)
. A same-context query is a query

of the form (u1, d1, u2, d2) ∈ V ×D∗ × V ×D∗ which asks whether there exists
a same-context valid path from (u1, d1) to (u2, d2) in the exploded supergraph
G. Below, we use [22]’s algorithm for same-context queries as a black box.

Stack States. Let F be the set of functions in our program. A stack state is
simply a finite sequence of functions ξ = ⟨ξi⟩si=1 ∈ F s. We use a stack state to
keep track of the set of functions that have been called but have not finished
their execution and returned yet.

Persistence. Consider an interprocedurally valid path Π = ⟨πi⟩pi=1 in the su-
pergraph G and let Π∗ = ⟨π∗

i ⟩si=1 be the sub-sequence of Π that only includes
call vertices cl and return vertices rl. For each π∗

i that is a call vertex, let fi be
the function called by π∗

i . We say the function call to fi is temporary if π∗
i is

matched by a corresponding return-site vertex π∗
j in Π∗ with j > i. Otherwise,

fi is is a persistent function call. In other words, temporary function calls are
the ones who return before the end of the path Π and persistent ones are those
that are added to the stack but never popped. So, if the stack is at state ξ before
executing Π, it will be in state ξ · ⟨fi1 · fi2 · · · fir ⟩ after Π’s execution, in which
the fij ’s are our persistent function calls. Moreover, we can break down the path
Π as follows:

Π = Σ0 ·Σ1 · πi1 ·Σ2 · πi2 · · ·Σr · πir ·Σr+1 (1)

in which Σ0 is an intraprocedural path, i.e. the part of Π that does not leave
the initial function. Note that we either have Π = Σ0 or Σ0 should end with a
function call. For every i ̸= 0, Σi is a same-context valid path from the starting
point of a function and πij is a call vertex that calls the next persistent function
fij . We call (1) the canonical partition of the path Π.

Exploded Call Graph. Let C = (F,EC) be the call graph of our IFDS in-
stance, in which F is the set of functions in the program. We define the exploded
call graph C = (F ,EC) as follows:
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– Our vertex set F is simply F ×D∗. Recall that D∗ := D ∪ {0}.
– There is an edge from the vertex (f1, d1) to the vertex (f2, d2) in EC iff:
• There is a call statement c ∈ V in the function f1 that calls f2;
• There exist a data fact d3 ∈ D∗ such that (i) there is a same-context
valid path from (sf1 , d1) to (c, d3) in the exploded supergraph G, and
(ii) there is an edge from (c, d3) to (sf2 , d2) in the exploded supergraph
G.

The edges of the exploded call graph model the effect of a valid path that starts
at sf1 , i.e. the first line of f1, when the function call stack is empty and reaches
sf2 , with stack state ⟨f2⟩. Informally, this corresponds to executing the program
starting form f1, potentially calling any number of temporary functions, then
waiting for all of these temporary functions and their children to return so that
we again have an empty stack, and then finally calling f2 from the call-site
c, hence reaching stack state ⟨f2⟩. Intuitively, this whole process models the
substring Σ · c in the canonical partition of a valid path, in which Σ is a same-
context valid path, and f2 is the next persistent function, which was called at c.
Hence, going forward, we do not plan to pop f2 from the stack.

Treedepth of C. Recall that we have a POT T of depth k2 for the call graph
C. In C, every f ∈ C is replaced by |D∗| vertices (f,0), (f, d1), . . . , (f, d|D|). We

can obtain a valid POT T for C by processing the tree in a top-down order and
replacing every vertex that corresponds to a function f with a path of length
|D∗|, as shown in Figure 7. It is straightforward to verify that T is a valid POT
of depth k2 · |D∗| for C.

Fig. 7. Obtaining T from T by expanding each vertex to a path.

Preprocessing. The preprocessing phase of our algorithm consists of the fol-
lowing four steps:
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1. Same-context Preprocessing: Our algorithm runs the preprocessing phase
of [22]’s algorithm for same-context IFDS. This is done as a black box.
See [22] for the details of this step.

2. Intraprocedural Preprocessing: For every vertex (u, d) ∈ G, for which u is a
line of the program in the function f , our algorithm performs an intrapro-
cedural reachability analysis and finds a list of all the vertices of the form
(c, d′) such that:
– c is a call-site vertex in the same function f.
– There is an intraprocedural path from (u, d) to (c, d′) that always remains

within f and does not cause any function calls.
Our algorithm computes this by a simple reverse DFS from every (c, d′).
Intuitively, this is so that we can later handle the first part, i.e. Σ0, in the
canonical partition in 1. Note that this step is entirely intraprocedural and
our reverse DFS is equivalent to the classical algorithms of [48]. Moreover,
we can consider Σ0 to be a same-context path instead of merely an intrapro-
cedural path. In this case, we can rely on queries to [22] to do this step of
our preprocessing.

3. Computing Exploded Call Graph: Our algorithm generates the exploded call
graph C using its definition above. It iterates over every function f1 and
call site c in f1. Let f2 be the function called at c. For every pair (d1, d3) ∈
D∗ × D∗, our algorithm queries the same-context IFDS algorithm of [22]
to see if there is a same-context valid path from (sf1 , d1) to (c, d3). Note
that we can make such queries since we have already performed the required
same-context preprocessing in Step 1 above. If the query’s result is positive,
the algorithm iterates over every d2 ∈ D∗ such that (c, d3, sf2 , d2) is an edge
in the exploded supergraph G, and adds an edge from (f1, d1) to (f2, d2) in
C. The algorithm also computes the POT T as mentioned above. Intuitively,
this step allows us to summarize the effects of each function call in the call
graph so that we can later handle the control-flow graphs and the call graph
separately.

4. Computing Ancestral Reachability in T : For every vertex u in T , let T
↓
u be

the subtree of T rooted at u and F
↓
u be the set of descendants of u. For every

u and every v ∈ F
↓
u, our algorithm precomputes reach(u, v), i.e. whether u

is reachable from v in C and also reach(v, u). Informally, the idea is that
every path from a vertex a in our exploded call graph to a vertex b has to go
through one of the ancestors of a and b (See Section 3). Thus, it is natural
to precompute the reachability relations between every vertex and all of its
ancestors.
To compute this, for every vertex u and every descendant v of u, we define:

up[u, v] :=

{
1 there is a path from v to u in C[F

↓
u]

0 otherwise
,

down[u, v] :=

{
1 there is a path from u to v in C[F

↓
u]

0 otherwise
.



18 A.K. Goharshady and A.K. Zaher

Note that in the definition above, we are only considering paths whose every
internal vertex is in the subtree of u. We can find the values of down[u, v]
by simply running a DFS from u but ignoring all the edges that leave the

subtree T
↓
u. Similarly, we can find the values of up[u, v] by a similar DFS in

which the orientation of all edges are reversed.
By the path property of POTs, every path ρ from v to u in C either has

all of its vertices in the subtree T
↓
u or visits some ancestors of u as internal

vertices. Let w be the highest ancestor of u that is visited by ρ. Then, we
must have up[w, v] = down[w, u] = 1. Similarly, if there is a path from u to
v, we must have up[w, u] = down[w, v] = 1. Our algorithm simply sets:

reach(u, v) =
∨

w

(up[w, u] ∧ down[w, v]) ,

and
reach(v, u) =

∨

w

(up[w, v] ∧ down[w, u]) .

Query. After the end of the preprocessing phase, our algorithm is ready to accept
queries. Suppose that a query q asks whether there exists a valid interprocedural
path from (u1, d1) to (u2, d2) in G. Suppose that Π is such a valid path and Π
is its trace on the supergraph G, i.e. the path obtained from Π by ignoring the
second component of every vertex. We consider the canonical partition of Π as

Π = Σ0 · (Σ1 · πi1) · (Σ2 · πi2) · · · (Σr · πir ) ·Σr+1

and its counterpart in Π as

Π = Σ0 ·
(
Σ1 · πi1

)
·
(
Σ2 · πi2

)
· · ·

(
Σr · πir

)
·Σr+1.

Let Σj [1] be the first vertex in Σj . For every j ≥ 1, consider the subpath

Σj · πij ·Σj+1[1].

This subpath starts at the starting point sf of some function f and ends at the
starting point sf ′ of the function f ′ called in πij . Thus, it goes from a vertex of
the form (sf , d1) to a vertex of the form (sf ′ , d2). However, by the definition of
our exploded call graph C, we must have an edge ej in C going from (f, d1) to
(f ′, d2). With a minor abuse of notation, we do not differentiate between f and
sf and replace this subpath with ej . Hence, every interprocedurally valid Π can
be partitioned in the following format:

Π = Σ0 · e1 · e2 · · · er ·Σr+1.

In other words, to obtain an interprocedurally valid path, we should first take an
intraprocedural path Σ0 in our initial function, followed by a path e1 ·e2 · · · er in
the exploded call graph C, and then a same-context valid path Σr+1 in our target
function. Note that Σr+1 begins at the starting point of our target function.
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Our algorithm uses the observation above to answer the queries. Recall that
the query q is asking whether there exists a path from (u1, d1) to (u2, d2) in G.
Let f1 be the function of u1 and f2 the function containing u2. Our algorithm
performs the following steps to answer the query:

1. Take all vertices of the form (c, d3) such that c is a call vertex in f1 and (c, d3)
is intraprocedurally reachable from (u1, d1). Note that this was precomputed
in Step 2 of our preprocessing.

2. Find all successors of the vertices in Step 1 in G. These successors are all of
the form (sf ′ , d4) for some function f ′, and their corresponding nodes in the
exploded call graph are of the form (f ′, d4).

3. Compute the set of all (f2, d5) vertices in C that are reachable from one of
the (f ′, d4) vertices obtained in the previous step. In this case, the algorithm
uses the path property of POTs and tries all possible common ancestors of
(f2, d5) and (f ′, d4) as potential internal vertices in the path.

4. For each (f2, d5) found in the previous step, ask the same-context query from
(sf2 , d5) to (f2, d2). For these same-context queries, our algorithm uses the
method of [22] as a black box.

5. If any of the same-context queries in the previous step return true, then our
algorithm also answers true to the query q. Otherwise, it answers false.

Intuition. Figure 8 provides an overview of how our query phase breaks an
interprocedurally valid path down between G (red) and C (blue). Note that we
do not distinguish between the vertex (f2, d5) of C and vertex (sf2 , d5) of G.
Explicitly, any path from (u1, d1) to (u2, d2) should first begin with an intrapro-
cedural segment in the original function f1. This part is precomputed and shown
in red. Then, it switches from the exploded control-flow graph to the exploded
call graph and follows a series of function calls. This is shown in blue. We have
already precomputed the effect of each edge in the call graph and encoded this
effect in the exploded call graph. Hence, the blue part of the path is simply a
reachability query, which we can answer efficiently using our POT. We would
like to see whether there is a path from a = (f ′, d4) to b = (f2, d5). However, any
such path should certainly go through one of the common ancestors of a and b
in the POT. Since the treedepth is bounded, a and b have only a few ancestors.
Moreover, we have already computed the reachability between any vertex and
all of its ancestors. So, a few table lookups can tell us whether there is a path
from a to b. Finally, when we reach the beginning of our target function f2, we
have to take a same-context valid path to our target state (u2, d2). To check if
such a path exists, we simply rely on [22] as a black box.

Runtime Analysis of the Preprocessing Phase. Our algorithm is much
faster than the classical IFDS algorithm of [69]. More specifically, for the pre-
processing, we have:

– Step 1 is a black box from [22] and takes O(n · |D|3).
– Step 2 is a simple intraprocedural analysis that runs a reverse DFS from

every node (c, d) in any function f . Assuming that the function f has α lines
of code and a total of δ function call statements, this will take O(α · δ · |D|3).
Assuming that δ is a small constant, this leads to an overall runtime of
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Fig. 8. An overview of the query phase.

O(n · |D|3). Note that this assumption is in line with reality since we rarely,
if ever, encounter functions that call more than a constant number of other
functions.

– In Step 3, we have at most O(n · |D|) call nodes of the form (c, d3). Based
on the bounded bandwidth assumption, each such node leads to constantly
many possibilities for d2. So, we perform at most O(n·|D|2) calls to the same-
context query procedure. Each same-context query takes O(⌈|D|/ lg n⌉), so
the overall runtime of this step is O(n · |D|3/ lg n).

– In Step 4, the total time for computing all the up and down values is O(n ·
|D|3 · k2). This is because C has at most O(n · |D|) vertices and O(n · |D|2)
edges and each edge can be traversed at most O(|D| · k2) times in the DFS,
where k2 is the depth of our POT for C. Note that the treedepth of C is a
factor |D| larger than that of C. Finally, computing the reach values takes
O(n · |D|3 · k22) time.

Therefore, the total runtime of our preprocessing phase is O(n · |D|3 · k22), which
has only linear dependence on the number of lines, n.

Runtime Analysis of the Query Phase. To analyze the runtime of a query,
note that there are O(δ ·|D|) different possibilities for (c, d3). Due to the bounded
bandwidth assumption, each of these correspond to a constant number of (f ′, d4)’s.
For each (f ′, d4) and (f2, d5), we should perform a reachability query using the
POT T . So, we might have to try up to O(k2 · |D|) common ancestors. So, the
total runtime for finding all the (f2, d5)’s is O(|D|3 · k2 · δ). Finally, we have to
perform a same-context query from every (sf2 , d5) to (u2, d2). So, we do a total
of at most O(|D|) queries, each of which take O(|D|). So, the total runtime is
O(|D|3 · k2 · δ), which is O(|D|3) in virtually all real-world scenarios where k2
and δ are small constants.

5 Experimental Results

Implementation and Machine. We implemented our algorithm, as well as
the algorithms of [69] and [45], in a combination of C++ and Java, and used the
Soot [79] framework to obtain the control-flow and call graphs. Specifically, we
use the SPARK call graph created by Soot for the intermediate Jimple represen-
tation. To compute treewidth and treedepth, we used the winning open-source
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tools submitted to past PACE challenges [33,51]. All experiments were run on
an Intel i7-11800H machine (2.30 GHz, 8 cores, 16 threads) with 12 GB of RAM.

Benchmarks and Experimental Setup. We compare the performance of
our method against the standard IFDS algorithm [69] and its on-demand vari-
ant [45] and use the standard DaCapo benchmarks [8] as input programs. These
are real-world programs with hundreds of thousands of lines of code. For each
benchmark, we consider three different classical data-flow analyses: (i) reach-
ability analysis for dead-code elimination, (ii) null-pointer analysis, and (iii)
possibly-uninitialized variables analysis. For each analysis, we gave each of the
algorithms 10 minutes time over each benchmark and recorded the number of
queries that the algorithm successfully handled in this time. The queries them-
selves were randomly generated5 and the number of queries was also limited
to n, i.e. the number of lines in the code. We then report the average cost of
each query, i.e. each algorithm’s total runtime divided by the number of queries
it could handle. The reason for this particular setup is that [69] and [45] do
not distinguish between preprocessing and query. So, to avoid giving our own
method any undue advantage, we have to include both our preprocessing and
our query time in the mix.

Treewidth and Treedepth. In our experiments, the maximum encountered
treewidth was 10, whereas the average was 9.1. Moreover, the maximum treedepth
was 135 and the average was 43.8. Hence, our central hypothesis that real-world
programs have small treewidth and treedepth holds in practice and the widths
and depths are much smaller than the number of lines in the program.

Results. Figure 9 provides the average query time for each analysis. Each dot
corresponds to one benchmark. We use PARAM, IFDS and DEM to refer to our al-
gorithm, the IFDS algorithm in [69], and the on-demand IFDS algorithm in [45],
respectively. The reported instance sizes are the number of edges in G.

Discussion. As shown in Section 4, our algorithm’s preprocessing has only
linear dependence on the number n of lines and our query time is completely
independent of n. Thus, our algorithm has successfully pushed most of the time
complexity on the small parameters such as the treewidth k1, treedepth k2,
bandwidth b and maximum number of function calls in each function, i.e. δ.
All these parameters are small constants in practice. Specifically, the two most
important ones are always small: The treewidth in DaCapo benchmarks never
exceeds 10 and the treedepth is at most 135. This is in contrast to n which is the
hundreds of thousands and the instance size, which can be up to around 2 · 106.
In contrast, both [69] and [45] have a quadratic dependence on n. Unsurprisingly,
this leads to a huge gap in the practical runtimes and our algorithm is on average
faster than the best among [69] and [45] by a factor of 158, i.e. more than
two orders of magnitude. Moreover, the difference is much starker on larger

5 For generating each query, we randomly and uniformly picked two points in the
exploded supergraph. Note that none of our queries are same-context. Even when
the two points of the query are in the same function, we are asking for reachability
using interprocedurally valid paths that are not necessarily same-context.
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Fig. 9. Comparison of the average cost per query for our algorithm vs [69] and [45].

benchmarks, in which the ratio of our parameters to n is close to 0. On the other
hand, in a few small instances, simply computing the treewidth and treedepth
is more time-consuming than the previous approaches and they outperform us.

6 Conclusion

In this work, we provided a parameterized algorithm for the general case of
the on-demand data-flow analysis as formalized by the IFDS framework. We
exploited a novel parameter, i.e. the treedepth of call graphs, to reduce the
runtime dependence on the number of lines of code from quadratic to linear. This
led to significant practical improvements of more than two orders of magnitude in
the runtime of the IFDS data-flow analysis as demonstrated by our experimental
results. Moreover, this is the first theoretical improvement in the runtime of the
general case of IFDS since the original algorithm of [69], which was published in
1995.
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